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Tangential interpolation-based eigensystem realization
algorithm for MIMO systems
B. Kramera and S. Gugercinb
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bDepartment of Mathematics and Interdisciplinary Center for Applied Mathematics, Virginia Tech, Blacksburg, VA,
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ABSTRACT
The eigensystem realization algorithm (ERA) is a commonly used data-
driven method for system identification and reduced-order modelling of
dynamical systems. The main computational difficulty in ERA arises when
the system under consideration has a large number of inputs and outputs,
requiring to compute a singular value decomposition (SVD) of a large-
scale dense Hankel matrix. In this work, we present an algorithm that aims
to resolve this computational bottleneck via tangential interpolation. This
involves projecting the original impulse response sequence onto suitably
chosen directions. The resulting data-driven reduced model preserves
stability and is endowed with an a priori error bound. Numerical examples
demonstrate that the modified ERA algorithm with tangentially interpo-
lated data produces accurate reduced models while, at the same time,
reducing the computational cost and memory requirements significantly
compared to the standard ERA. We also give an example to demonstrate
the limitations of the proposed method.
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1. Introduction

Control of complex systems can be achieved by using low-dimensional surrogate models that
approximate the input–output behaviour of the original system accurately, and are much faster to
simulate. When access to the internal description of the model is not available, data-driven
techniques are used to approximate the system response. The field of subspace-based system
identification (SI) provides powerful tools for fitting a linear time-invariant (LTI) system to given
input–output responses of the measured system. Applications of subspace-based SI arise in many
engineering disciplines, such as in aircraft wing flutter assessment [1,2], vibration analysis for
bridges [3], structural health analysis for buildings [4], modelling of indoor-air behaviour of
energy efficient buildings [5], flow control [6–8], seismic imaging [9] and many more. In all
applications, the identification of LTI systems was crucial for analysis and control of the plant. An
overview of applications and methods for subspace-based SI can be found in [10] and more
recently in [11,12].

The eigensystem realization algorithm (ERA) by Kung [13] offers one solution to the SI
problem, while simultaneously involving a model reduction step. The algorithm uses discrete-
time impulse response data to construct reduced-order models via a singular value decomposition
(SVD). Importantly, the resulting reduced models retain stability, see Section 2. Starting with
Kung’s work [13], various applications and extensions of the algorithm appeared in the literature
[1,3,9,14–17]. As an interesting result, Rowley and co-authors showed in [6] that ERA is the data-
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driven approximation to balanced truncation, and compared ERA to balanced proper orthogonal
decomposition (POD) [18,19] for a flow past an inclined plate. Balanced POD was found to
provide superior reduced-order models, yet assumes that system matrices and their adjoints are
available. The authors in [20] propose a randomized POD technique to reduce the computational
cost of extracting the dominant modes of the Hankel matrix.

Mechanical systems with multiple sensors and actuators are modelled as multi-input multi-
output (MIMO) dynamical systems. Such systems impose additional computational challenges for
SI and for ERA in particular. For instance, ERA requires a full SVD of a structured Hankel matrix,
whose size scales linearly with the input and output dimension. Moreover, large Hankel matrices
can arise if the dynamics of the system decay slowly.

We propose a SI and model reduction algorithm for MIMO systems which reduces the
computational effort and storage compared to the standard ERA, see Section 3. The new algo-
rithm projects the full impulse response data onto smaller input and output subspaces along
carefully chosen left and right tangential directions to minimize the effect of the neglected impulse
response data. Computing the SVD of the projected Hankel matrix then becomes feasible and can
be executed in shorter time with less storage. Moreover, we show that reduced models obtained
via the ERA from tangentially interpolated data (TERA) retain stability. Numerical results in
Section 4 demonstrate the accuracy and computational savings of the modified ERA with
projected data. The error bound in Theorem 3.4 shows the individual contributions of both the
data interpolation and Hankel matrix approximation on the reduced-order model.

For notational convenience, we adopt MATLAB1 notation. Given a vector x 2 R
n and r ≤ n,

the vector x (1: r) denotes the vector of the first r components of x. Similarly, for a matrix
A 2 R

n�n, we denote by A (1: r, 1: r) the leading r × r submatrix of A.

Remark 1.1: A wide range of excellent model reduction techniques for LTI systems exist in the
literature, see [21–23] for an overview. In particular, we shall mention balanced truncation [24,25]
and balanced POD [18,19], the iterative rational Krylov algorithm (IRKA) [26], and Hankel norm
approximations [27]. We do not propose to use ERA as a model reduction technique when state
space matrices are available. We rather suggest to use ERA for the combined task of SI and model
reduction where only black-box code or experimental measurements are available. In this case, the
aforementioned model reduction techniques are not applicable.

Remark 1.2: In this paper, our data will be restricted to time-domain samples of the impulse
response of the underlying dynamical systems. In the frequency domain, this corresponds to
sampling the transfer function and its derivates around infinity. For the cases where one has the
exibility in choosing the frequency samples, a variety of techniques become available such as the
Loewner framework [28], vector fitting [29,30], realization-independent IRKA (transfer function-
IRKA [TF-IRKA]) [31] and various rational least-squares fitting methodologies [30,32–34].
However, as stated earlier, our focus here is ERA and to make it computationally more efficient
for MIMO systems with large input and output dimensions.

2. Partial realization and Kung’s algorithm

In practice, experimental measurements and outputs of black-box simulations are sampled at
discrete time instances. Therefore, consider the discrete-time LTI system in state–space form2

xðt þ 1Þ ¼ AxðtÞ þ BuðtÞ; (1)

yðtÞ ¼ CxðtÞ þ DuðtÞ; (2)
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where t 2 N
þ
0 is a discrete-time instance. The initial condition x (0) = x0 is assumed to be zero –

the system will be excited through external disturbances. In equations (1) and (2), A 2 R
n�n; B 2

R
n�m; C 2 R

p�n and D 2 R
p�m are, respectively, state-to-state, state-to-input, state-to-output and

feedthrough system matrices. The inputs are uðtÞ 2 R
m and the outputs are yðtÞ 2 R

p. The system
is completely determined by the matrices (A, B, C, D). It is common to define the Markov
parameters

hk :¼ D; k ¼ 0
CAk�1B; k ¼ 1; 2; . . .

� �
2 R

p�m; (3)

so the output response equation for system (1)–(2) becomes

yðkÞ ¼
Xk
i¼0

hi uðk� iÞ; (4)

which is known as the external description of the system and is fully determined by the Markov
parameters. Unfortunately, in several practical scenarios, the matrices ðA;B;C;DÞ are not avail-
able; instead one has access to the sequence of Markov parameters, describing the reaction of the
system to external inputs. If only the Markov parameters (and therefore the external description
(4)) are available, how can one reconstruct the internal description (1)–(2) of an LTI system? This
is the classical problem of partial realization.

Definition 2.1: [21, Definition 4.46] Given the finite set of p × m matrices hi; i ¼ 1; 2; . . . ; 2s� 1,
the partial realization problem consists of finding a positive integer n and constant matrices A 2
R

n�n; B 2 R
n�m; C 2 R

p�n and D 2 R
p�m, such that (3) holds.

A finite sequence of Markov parameters is always realizable and there always exists a minimal
realization of order n = rank (H). Define the Hankel matrix, denoted by H, constructed by the
2s� 1 sampled Markov parameters:

H :¼
h1 h2 . . . hs
h2 h3 . . . hsþ1

..

. ..
. . .

. ..
.

hs hsþ1 . . . h2s�1

26664
37775 2 R

ps�ms: (5)

The size of the Hankel matrix grows linearly with m and p. In this work, we propose to
construct a projected Hankel matrix that is independent of the input and output dimensions and
therefore does not exhibit such growth. For a better understanding of the algorithms to follow,
assume for a moment that the system matrices are known, so that the Hankel matrix reads as

H ¼
CB CAB . . . CAs�1B
CAB CA2B . . . CAsB
..
. ..

. . .
. ..

.

CAs�1B CAsB . . . CA2s�1B

2664
3775:

It is well known (e.g. [21, Lemma 4.39]) that for a realizable impulse response sequence, the
Hankel matrix can be factored into the product of the observability matrix O and the controll-
ability matrix C:
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H ¼
C
CA
..
.

CAs�1

2664
3775½B AB . . . As�1B� :¼ O C: (6)

The shifted observability matrix satisfies

Oðf ÞA ¼ OðlÞ; (7)

where Oðf Þ and OðlÞ denote the first and last s� 1 block rows of O. Similarly for the controllability
matrix, we obtain ACðf Þ ¼ CðlÞ.

Silverman [35] proposed an algorithm to construct a minimal realization, which requires
finding a rank n submatrix of the partially defined Hankel matrix. The algorithm determines
the nth order minimal realization directly, and does not involve a model reduction step. If only a
degree-r approximation is constructed where r < n, the algorithm does not guarantee to retain
stability.

Kung’s ERA [13] on the other hand, can be divided into two steps, which are briefly reviewed
below. To guarantee stability, the following assumption is made in [13].

Assumption 2.2: Assume that 2s� 1 Markov parameters are given and that the given impulse
response sequence is convergent in the sense that

hi ! 0 for i > s:

As Kung pointed out in his original work [13], this assumption needs further explanation. Clearly
for asymptotically stable dynamical systems, hi ! 0 as i ! 1: However, in the case of ERA where
only finite length is collected, this assumption means that jjh1jj � jjhsþ1jj; in other words, the
Markov parameters have decayed significantly after s steps. Following the original work [13], we
shall refer to this assumption as the property of the Markov parameters.

Step 1 of ERA: Low-rank approximation of Hankel matrix. Construct the Hankel matrix (5)
from the given impulse response sequence fh1; h2; . . . ; h2s�1g and compute its economy-
sized SVD

H ¼ U�VT 2 R
ps�ms;

where U 2 R
ps�k̂ and V 2 R

ms�k̂ are orthogonal matrices with k̂ ¼ minfms; psg, and � 2 R
k̂�k̂ is

a square matrix containing singular values, �ii ¼ σi; i ¼ 1; . . . ; k̂ (called Hankel singular values).3

Per definition, the Hankel singular values are the singular values of the underlying Hankel
operator; see, for example, [21], which are ordered as σ1 � σ2 � . . . � σn>σnþ1 ¼ 0. The rank
of the Hankel matrix is n, the minimal realization order with n � k̂. Choose r � n and rewrite the
decomposition as

H ¼ ½Ur Ûr� �r 0
0 �̂r

� �
VT
r

V̂T
r

� �
; (8)

where Ur 2 R
ps�r contains the leading r columns of U, the square matrix �r ¼

diagðσ1; σ2; . . . ; σrÞ and Vr 2 R
ps�r. The matrices Ûr; �̂r and V̂r have appropriate dimensions.

Consequently, UT
r Ur ¼ Ir and VT

r Vr ¼ Ir. It follows that

Hr ¼ Ur�rV
T
r

is the best rank r approximation of the Hankel matrix H in the k � k2 and k � kF norm. The

approximation errors are given by kH �Hrk2 ¼ σrþ1 and kH �HrkF ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2rþ1 þ . . .þ σ2n

p
.
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Step 2 of ERA: Approximate Realization of LTI System. It is the goal of this step to find a
realization ðAr;Br;CrÞ of the best approximate Hankel matrix Hr. Kung [13] suggested that Hr

should have ‘Hankel structure’ as well, so that it can be factored into a product of an approximate
observability and controllability matrix as

Hr ¼ OrCr; where Or ¼ Ur�
1=2
r ; Cr ¼ �1=2

r VT
r :

In light of Equation (6), if Or is the approximation to the observability matrix, then its first
block row can be used to estimate Cr, therefore

Cr ¼ ½Ip 0� Ur�
1=2
r ; (9)

where Ip is the p� p identity matrix. Similarly, the first block column of Cr yields an approxima-
tion of the control input matrix Br:

Br ¼ �1=2
r VT

r ½Im 0�T : (10)

To estimate the system matrix Ar , the shift invariance property (7) is imposed on the
approximate controllability and observability matrices as

Oðf Þ
r Ar ¼ OðlÞ

r ; ArCðf Þr ¼ CðlÞr :

The matrix Oðf Þ
r ¼ Orð1 : ðs� 1Þp; :Þ again denotes the first s� 1 block rows of Or. Similarly,

OðlÞ
r refers to the last s� 1 block rows of Or. Either equality can be used to solve the least squares

problem for Ar. Without loss of generality, we focus on the first equality involving the observa-
bility matrix. Since Oðf Þ

r is a pðs� 1Þ � r matrix, a least squares problem to minimize kOðf Þ
r Ar �

OðlÞ
r k has to be solved. The minimizing solution is given by the Moore–Penrose pseudo inverse

[36, Chapter 5] as

Ar ¼ ½Oðf Þ
r �yOðlÞ

r :

Define the matrix Uðf Þ
r via Oðf Þ

r ¼ Uðf Þ
r �

1=2
r , and similarly for UðlÞ

r , so that Ar is computed as

Ar ¼ ��1=2
r ½Uðf Þ

r �TUðlÞ
r �1=2

r : (11)

Theorem 2.3: [13] If the Markov parameters satisfy Assumption 2.2, then the realization given by
ðAr;Br;CrÞ from (9), (10), (11) provides a stable discrete-time dynamical system. In addition,X2s�1

i¼1

kCrA
i�1
r Br � hik2F� σrþ1ðHÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r þmþ p
p

; (12)

where p is the number of outputs, m is the number of inputs, r is the order of the reduced model and
σrþ1ðHÞ denotes the first neglected Hankel singular value.

Theorem 2.3 reveals that if the original model is stable, then reduced order models of any order
r obtained through ERA are stable, too, with an a priori error bound for the impulse response
reconstruction. The rank n of the Hankel matrix is the order of the minimal realization. However,
n can be very large and the resulting model too big for design and control purposes. Instead, one
would like to obtain reduced-order models of order r 	 n. The choice of r depends on many
factors, such as accuracy of the reduced-order model, performance criteria, limitations on
implementable model orders etc.

Example 2.4: This work has been motivated by the need to generate reduced-order models for
the indoor-air behaviour in buildings, see [5, Section 4]. The original model of interest has a large
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number of inputs and outputs, in particular, we are given m = 26 control inputs and p = 42
measured outputs. The impulse response data are sampled over 3600[s] with a Markov parameter
measured every 2[s]. With standard ERA, this requires computing an SVD of size 37,800 × 23,400,
which is a computationally challenging problem on a standard desktop machine.

3. Proposed method: tangential interpolation-based ERA (TERA)

To circumvent the bottleneck of computing the SVD of a large Hankel matrix, we propose to
project the data sequence along left and right tangential directions before assembling the Hankel
matrix. The proposed algorithm, denoted by TERA henceforth, has three stages:

● Compute tangential directions and project the impulse response data into smaller input and
output dimensions, see Section 3.2.

● Use ERA on the projected Hankel matrix to obtain an approximation for the smaller input/
output dimension, see Section 3.3.

● Lift the reduced realization back to the original input and output dimensions to obtain the
final approximation, see Section 3.3.

Our approach is motivated by rational approximation by tangential interpolation, as illustrated in
the next section.

3.1. Tangential interpolation from data

A thorough treatment of rational interpolation of a given data set along tangential directions can
be found in [23,37]. To illustrate the idea, assume for a moment that a discrete-time dynamical
system as in (1)–(2) is given. By taking the z-transform of these equations, we obtain the transfer
function GðzÞ ¼ CðzI � AÞ�1Bþ D; which maps the inputs to the outputs in the frequency
domain via ŷðzÞ ¼ GðzÞûðzÞ where ŷðzÞ and ûðzÞ denote the z-transforms of yðtÞ and uðtÞ,
respectively. Model reduction through rational interpolation seeks a reduced-order transfer
function GrðzÞ ¼ CrðzEr � ArÞ�1Br þ Dr, with Ar 2 R

r�r;Br 2 R
r�m, Cr 2 R

p�r and Dr 2 R
p�m

such that GðziÞ ¼ GrðziÞ for a set of interpolation points fzi : i ¼ 1; 2; . . . ; kg. However, for
MIMO systems, this is too restrictive since it imposes p�m conditions for every interpolation
point leading to unnecessarily high reduced orders. The concept of tangential interpolation eases
those restrictions by only enforcing interpolation along certain directions. Assume that the
transfer function Gð�Þ is sampled at r points fθi : i ¼ 1; 2; . . . ; rg along the right tangential
directions wi 2 C

m and r points fμi : i ¼ 1; 2; . . . ; rg along the left tangential directions vi 2 C
p;

that is, GðθiÞwi and vTi GðμiÞ are measured. Then, the Loewner framework [28] produces a reduced
model GrðzÞ that tangentially interpolates the given data, that is,

vTi GðμiÞ ¼ vTi GrðμiÞ and GðθiÞwi ¼ GrðθiÞwi:

The details of how the interpolant GrðzÞ ¼ CrðzEr � ArÞ�1Br is constructed can be found in
[23,28]; here we only show how Er is constructed:

Erði; jÞ ¼ � vTi ðGðμiÞ � GðθjÞÞwj

μi � θj
; for i; j ¼ 1; . . . ; r: (13)

The matrix Er is related to a divided difference matrix (called the Loewner matrix) correspond-
ing to Gð�Þ. However, in filling the entries of Er, neither the full-matrix data GðμiÞ 2 C

m�p nor
GðθiÞ 2 C

m�p is used; instead the tangential data vTi GðμiÞwj 2 C and vTi GðθjÞwj 2 C are used.
Thus dependence on the input and output dimensions are avoided. Without this modification, the
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reduced matrix Er would be of dimension ðr �mÞ � ðr � pÞ as opposed to r � r. This is the
motivation for our modification to ERA.

Remark 3.1 The choice of interpolation points and tangential directions are of fundamental
importance in model reduction by interpolation. The IRKA of [26] provides a locally optimal
strategy in the H2 norm. In [31], IRKA has been recently coupled with the Loewner approach to
find optimal reduced models in a data-driven setting. However, this approach cannot be applied
here since in the ERA setting, the available frequencies are fixed: one can only sample the Markov
parameters, which corresponds to sampling the transfer function and its derivatives at infinity.

3.2. Projection of Markov parameters

Inspired by tangential interpolation in the Loewner framework, for systems with high dimensional
input and output spaces we will project the impulse response samples hi onto low dimensional
subspaces via multiplications by tangential directions. However, achieving this goal in the ERA
set-up comes with major additional difficulties that do not appear in the Loewner framework.
Therein, the elegant construction of the reduced-model quantities Br and Cr guarantee that the
number of rows and columns still match the original input and output dimensions even when the
tangential interpolation is employed. In other words, only the system dimension is reduced
without changing the input/output dimensions. However, in ERA, once the Markov parameters
hi 2 R

p�m are replaced by the (tangentially) projected quantities ĥi 2 R
,1�,2 where ,1<p and

,2<m, the reduced model via ERA will have ,2 inputs and ,1 outputs; thus the original input and
output dimensions will be lost. Therefore, one will need to carefully lift this reduced model back
to the original m-inputs and p-outputs spaces. The second difficulty arises from the fact that
sampling Markov parameters means sampling Gð�Þ only around infinity. Since we are interested
in approximating not only the first Markov parameter but also the higher-order ones (up to order
2s� 1), with an analogy to tangential interpolation, we need to choose the same tangential
directions for every sample. Since selecting a single direction for all the Markov parameters will
be extremely restrictive, we will pick multiple dominant tangential directions to project all the
Markov parameters.

To deal with large input and output spaces, the authors in [20] use a randomized selection of
inputs and outputs and subsequently collect primal and dual simulation data reducing computational
time and storage requirements for the SVD of the Hankel matrix. However, the method assumes that
primal and dual simulations can be performed separately, which is not possible in several situations
and which we will not assume. In [6] and [19], the authors consider fluid dynamical applications,
where the output of interest is often the entire state, leading to an enormous output space. Hence,
standard ERA is not feasible, especially since the complex dynamical behaviour of fluid systems
makes it necessary to sample many Markov parameters. The authors suggest to project the output
space onto a low-dimensional manifold and use ERA subsequently. However, this is mentioned as a
rather short remark without any details or error analysis and an algorithm to recover the original
output dimension is not given, a crucial difficulty arising in the ERA setup as mentioned above.
Terminal (input/output) reduction algorithms for model reduction of linear (often circuit) systems
are considered within the ESVDMOR framework [38–40]. There, it is assumed that the internal
description of the systems is available, which can efficiently be exploited in the terminal reduction
framework. Moreover, not only the inputs, but also the number of outputs can cause computational
challenges. Recall Example 2.4, where both input and output dimensions are large (m ¼ 26 and
p ¼ 42), which leads to a challenging computation of the SVD. Therefore, we propose a modified
ERA method that works with a two-sided interpolation version of the Markov parameters while
guaranteeing stability of the reduced model endowed with an error bound. The minimization
problem behind the proposed method is to find two projectors P1 and P2 that solve
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min
rankðP1Þ¼,1
rankðP2Þ¼,2

X2s�1

i¼1

kP1hiP2 � hik2F : (14)

Ideally, one would like to pick individual projectors PðiÞ
1 and PðiÞ

2 for every Markov parameter to

produce the minimal error
P2s�1

i¼1

Pminfm;pg
j¼,þ1 σ2j ðhiÞ, where , ¼ ,1 ¼ ,2. However this is imprac-

tical since, in an analogy to tangential interpolation, it would correspond to choosing different
tangential directions for Gð�Þ and G0ð�Þ. Therefore we restrict ourselves to finding two orthogonal
projectors, which are used for the entire dataset of Markov parameters. In Sections 3.3 and 3.4, we
will see that this choice of P1 and P2 preserves the structure of the Hankel matrix at the cost of a
suboptimal approximation error.

Thus, P1 and P2 will be constructed such that

P1 ¼ W1W
T
1 ; rankðP1Þ ¼ ,1;

P2 ¼ W2W
T
2 ; rankðP2Þ ¼ ,2;

where WT
1 W1 ¼ I,1 and WT

2 W2 ¼ I,2 . The goal is to compute P1 and P2 by considering data
streams of Markov parameters. As opposed to solving (14) for P1 and P2 jointly, we will construct
P1 and P2 by solving two separate optimization problems. The reason for this is once again due to
the preservation of the Hankel structure, and will be clarified in Section 3.4 in the proof of
Theorem 3.4. To compute P1, we arrange the impulse response sequence in a matrix

ΘL :¼ ½h1 h2 � � � h2s�1� 2 R
p�mð2s�1Þ; (15)

and solve the optimization problem

P1 ¼ arg min
rankðeP1Þ¼,1

jjeP1ΘL � ΘLjj2F: (16)

The optimal solution of (16) is given by the SVD of ΘL ¼ U�VT , and P1 ¼ W1WT
1 where

W1 ¼ Uð:; 1 : ,1Þ denotes the leading ,1 columns of U. The corresponding minimum error is
then given by jjW1WT

1 ΘL � ΘLjj2F ¼Pp
i¼,1þ1 σ

2
i ðΘLÞ where σiðΘLÞ denotes the ith singular value

of ΘL. To compute P2, we define

ΘR :¼
h1
h2
..
.

h2s�1

26664
37775 2 R

pð2s�1Þ�m (17)

and consider the corresponding optimization problem

P2 ¼ arg min
rankðeP2Þ¼,2

jjΘReP2 � ΘRjj2F: (18)

Similarly, compute the SVD of ΘR ¼ eUe�eVT , and the optimal solution is P2 ¼ W2WT
2 , where

W2 ¼ eVð:; 1 : ,2Þ. The minimal error is given by jjW2WT
2 ΘR � ΘRjj2F ¼Pp

i¼,2þ1 σ
2
i ðΘRÞ. Recall that

our goal is to reduce the size of the Markov parameters, and consequently to lessen the cost of the SVD
of the Hankel matrix. The factors W1 and W2 are employed to project the Markov parameters using

ĥi ¼ WT
1 hiW2 2 R

,1�,2 : (19)

Equation (19) can be considered analogous to tangential interpolation where the transfer
function GðziÞ (zi ¼ 1 in this case) and its derivatives are sampled along various tangential
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directions; the columns of W1 and W2. The projected values ĥi are subsequently used to construct
a reduced size Hankel matrix Ĥ. For this, define the block diagonal matrices

W1 :¼ diagðW1; . . . ;W1Þ ; W2 :¼ diagðW2; . . . ;W2Þ: (20)

Then the projected Hankel matrix becomes

Ĥ ¼ WT
1HW2 2 R

s,1�s,2 : (21)

Unlike the case for H, the row and column dimensions of Ĥ are independent of the original input
and output dimensions m and p.

3.3. ERA for projected Hankel matrix and recovering original input/output dimensions

Once the projected Hankel matrix (21) is computed, ERA can be applied. However due to the
projected input and output dimensions, control and observation matrices are identified in the
reduced output/reduced input spaces. Thus, the goal of TERA is to lift these spaces optimally back
to the original dimension to recover the full input and output dimensions. The Hankel matrix
from tangentially interpolated data is given by

Ĥ ¼ ½ĥ�ij ¼
WT

1

. .
.

WT
1

264
375

h1 h2 . . . hs
h2 h3 . . . hsþ1

..

. ..
. . .

. ..
.

hs hsþ1 . . . h2s�1

26664
37775

W2

. .
.

W2

264
375: (22)

Using the definitions of H, we can rewrite (22) as

Ĥ ¼
WT

1

. .
.

WT
1

264
375

C
CA
..
.

CAs�1

2664
3775½B AB . . .As�1B�

W2

. .
.

W2

264
375;

and by defining Ĉ ¼ WT
1 C and B̂ ¼ BW2, the Hankel matrix from interpolated data can be

decomposed such that

Ĥ ¼
Ĉ
ĈA
..
.

ĈAs�1

26664
37775½B̂ AB̂ . . .As�1B̂�:

This illustrates how to identify ðÂ; B̂; ĈÞ from the interpolated Hankel matrix. The best rank r
approximation of the projected Hankel matrix is given by the truncated SVD

Ĥr ¼ Ûr�̂rV̂
T
r ¼ ÔrĈr;

where Ôr ¼ Ûr�̂
1=2
r and Ĉr ¼ �̂

1=2
r V̂T

r represent the approximate observability and controllability
matrices, respectively. As before, the first block row of Ôr gives an approximation for Ĉr, the
observation matrix matching the interpolated impulse response, so

Ĉr ¼ ½I,1 0� Ûr�̂
1=2
r 2 R

,1�r:
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Analogously, the first block column of Ĉr yields an approximation for B̂r, the control input
matrix for the interpolated impulse response sequence, which reads as

B̂r ¼ �̂1=2
r V̂T

r ½I,2 0�T 2 R
r�,2 :

To solve the least squares problem for the system matrix Âr, one proceeds as in the previous
subsection, so that

Âr ¼ ½Ôðf Þ
r �yÔðlÞ

r ¼ �̂�1=2
r ½Ûðf Þ

r �TÛðlÞ
r �̂1=2

r ; (23)

which is computed as in (11) with appropriate matrices. To illuminate the connection between Ar

in (11) obtained from standard ERA and Âr in (23) obtained from the projected sequence, let eWT
1

denote the matrix obtained from deleting the last block row and column from WT
1 , and similarly

for eWT
2 . Then we have that Ôðf Þ

r ¼ eWT
1 Oðf Þ

r , and it readily follows that

Âr ¼ ½ eWT
1 Oðf Þ

r �y eWT
1 OðlÞ

r ¼ ½Oðf Þ
r �y eW1

eWT
1 OðlÞ

r :

Recall from (11) that Ar ¼ ½Oðf Þ
r �yOðlÞ

r . Thus, Âr works with OðlÞ
r projected onto the range ofeW1. Note that eW1

eWT
1 �I unless eW1 is square (i.e. when there is no reduction in input and output

dimension in which case one recovers the standard ERA.) The identified system matrices Âr, B̂r

and Ĉr match the projected Markov parameters

ĥi 
 ĈrÂ
i�1
r B̂r; i ¼ 1; . . . ; 2s� 1

with a similar type error bound as in the original ERA, see Corollary 3.3. below.
While Âr is an r � r matrix (matching the original ERA construction), B̂r has ,2 columns (as

opposed to m) and Ĉr has ,1 rows (as opposed to p). Therefore, we need to lift B̂r and Ĉr to the
original input/output dimensions. By virtue of the minimization problem (14), the original input–
output dimension of the system can be recovered through injection of ĥi to R

p�m. Recall that

ĥi ¼ WT
1 hiW2. Therefore, fĈrÂi�1

r B̂rg2s�1
i¼1 approximates fWT

1 hiW2g2s�1
i¼1 in the least-squares sense.

To approximate the original sequence fhig2s�1
i¼1 , replace Ĉr with W1Ĉr and B̂r with B̂rWT

2 . In other

words, the original impulse response sequence is approximated via

hi 
 W1Ĉr|fflffl{zfflffl}
:¼Cr

Âr|{z}
:¼Ar

i�1 B̂rW
T
2|fflffl{zfflffl}

:¼Br

¼ CrA
i�1
r Br; (24)

yielding the final reduced-model quantities

Ar ¼ �̂
�1=2
r ½Ûðf Þ

r �TÛðlÞ
r �̂

1=2
r ;

Br ¼ �̂
1=2
r V̂T

r ½I,2 0�TWT
2 ;

Cr ¼ W1½I,1 0� Ûr�̂
1=2
r :

(25)

The modified ERA for tangentially interpolated data, henceforth denoted by TERA (tangential
ERA), is given in Algorithm 1.

3.4. Error analysis and stability

We first show that TERA retains stability.

Corollary 3.2 Let Assumption 2.2 hold (as in the case of the standard ERA). Then the reduced
model given by the matrices Ar;Br;Cr in (25) obtained via TERA from the projected data is a stable
dynamical system.
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Proof. The projected Markov parameters are ĥi ¼ WT
1 hiW2, where W1 2 R

p�,1 and W2 2
R

m�,2 have orthonormal columns. It follows from Assumption 2.2, that khikF ! 0 when i > s.
Therefore,

k ĥikF ¼kWT
1 hiW2kF � kW1kF khikF kW2kF ! 0 when i > s:

Thus, it follows that ĥi ! 0 as i > s, so that the projected impulse response satisfies the
convergence to zero property. Since the reduced matrix Ar for TERA is obtained by the standard
ERA for the projected data, Theorem 2.3 yields stability of the extracted reduced-order model,
which completes the proof.

Using Theorem 2.3, we can directly obtain an error bound for the interpolated Markov
parameters.

Corollary 3.3: With the number of left and right tangential directions ,1; ,2, respectively, the error
in the Markov parameter sequence generated by TERA is given byX2s�1

i¼1

kĈrÂ
i�1
r B̂r � ĥik2F�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r þ ,1 þ ,2

p
� σrþ1ðĤÞ:

Proof. Recall that when ERA is applied to ĥi, it yields a stable reduced-order model as shown in
Corollary 3.2. Using m ¼ ,1 and p ¼ ,2 in Theorem 2.3, the result follows directly, by replacing
all quantities by the ‘hat’ quantities.

Corollary 3.3 gives a bound for the error in the interpolated (projected) Markov parameters.
However, the real quantity of interest is the error in the reconstruction of the original full Markov
parameter sequence fhig. The next results answers this question.

Theorem 3.4: Let fhigi¼1;...;2s�1 be the original sequence of Markov parameters, and let
fCrAi�1

r Brgi¼1;...;2s�1 be the identified sequence via TERA in (24). The approximation error is
given by

Algorithm 1. TERA
input: Markov parameters h1; h2; . . . ; h2s�1;

Reduced model order r;
Number of tangential directions ,1; ,2 .

Output: State space realization ðAr ; Br ; CrÞ.
1: Compute svd: ½h1 h2 � � � h2s�1� ¼ U�VT :
2: W1 ¼ Uð:; 1 : ,1Þ.
3: Compute svd: ½hT1 hT2 � � � hT2s�1�T ¼ eUe�eVT :
4: W2 ¼ eVð:; 1 : ,2Þ.
5: for i ¼ 1 : 2s� 1 do
6: ĥi ¼ WT

1hiW2
7: end for
8: Assemble Hankel matrix Ĥ from fĥigi¼1;...;2s�1 as in (22).
9: Compute svd: Ĥ ¼ Û�̂V̂T :
10: Ûr ¼ Ûð1 : r; :Þ; �̂r ¼ �̂ð1 : r; 1 : rÞ and V̂r ¼ V̂ð1 : r; :Þ.
11: ÛðfÞ

r ¼ Ûð1 : r; 1 : pðs� 1ÞÞ and ÛðlÞ
r ¼ Ûð1 : r; ðsþ 1Þ : psÞ.

12: Ar ¼ �̂
�1=2
r ½ÛðfÞ

r �T ÛðlÞ
r �̂

1=2
r .

13: Br ¼ �̂
1=2
r V̂T

r ½I,2 0�TWT
2 .

14: Cr ¼ W1½I,1 0� Ûr �̂
1=2
r .
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X2s�1

i¼1

khi � CrA
i�1
r Brk2F

� 4
Xp

i¼,1þ1

σ2i ðΘLÞ þ
Xm

i¼,2þ1

σ2i ðΘRÞ
 !

þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r þ ,1 þ ,2

p
� σrþ1ðĤÞ;

(26)

where ΘL and ΘR are as defined in (15) and (17), respectively.

Proof. We use the definitions of Ar;Br and Cr in (24) to rewrite the error in terms of B̂r and Ĉr,
W1 and W2, and then split the error into two parts using the projectors P1 in (16) and P2 in (18):

X2s�1

i¼1

jjhi � CrA
i�1
r Brjj2F ¼

X2s�1

i¼1

jjhi �W1ĈrÂ
i�1
r B̂rW

T
2 jj2F

¼
X2s�1

i¼1

jj hi � P1hiP2|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
¼:Ti

þP1hiP2 �W1ĈrÂ
i�1
r B̂rW

T
2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼:Zi

jj2F

¼
X2s�1

i¼1

jjTi þ Zijj2F

� 2
X2s�1

i¼1

jjTijj2F|fflfflfflfflfflffl{zfflfflfflfflfflffl}
ε1

þ
X2s�1

i¼1

jjZijj2F|fflfflfflfflfflffl{zfflfflfflfflfflffl}
ε2

0BBB@
1CCCA:

Next, we give estimates for the two error terms ε1 and ε2. We begin with ε1:

ε1 ¼
X2s�1

i¼1

jjhi � P1hiP2jj2F

¼
X2s�1

i¼1

jjhi � P1hi þ P1ðhi � hiP2Þjj2F ¼ jjΘL � P1ΘL þ P1ðΘL � ΘLP2Þjj2F

� 2 jjΘL � P1ΘLjj2F þ jjΘL � ΘLP2jj2F
� 	

;

(27)

where P2 ¼ diagðP2; . . . ; P2Þ is block diagonal, and we used in the last equality that P1 is an
orthogonal projector and thus kP1ZkF � kZkF . For the first term in the sum, it follows from the
definition of P1 in (16) (and by the SVD) that

jjΘL � P1ΘLjj2F ¼
Xp

i¼,1þ1

σ2i ðΘLÞ:

The second term in the sum can be rewritten as
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jjΘL � ΘLP2jj2F ¼ jj½h1; h2; . . . ; h2s�1� � ½h1P2; h2P2; . . . ; h2s�1P2�jj2F
¼ jjΘRP2 � ΘRjj2F
¼
Xm

i¼,2þ1

σ2i ðΘRÞ;

where the last equality follows from the definition of P2 in (18). Collecting the terms yields

ε1 � 2
Xp

i¼,1þ1

σ2i ðΘLÞ þ
Xm

i¼,2þ1

σ2i ðΘRÞ
 !

:

The term ε2 can be simplified using the orthogonality of W1 and W2 and by using Corollary 3.3;
namely, we obtain

ε2 ¼
X2s�1

i¼1

jjP1hiP2 �W1ĈrÂ
i�1
r B̂rW

T
2 jj2F

¼
X2s�1

i¼1

jjW1W
T
1 hiW2W

T
2 �W1ĈrÂ

i�1
r B̂rW

T
2 jj2F

¼
X2s�1

i¼1

jjWT
1 hiW2 � ĈrÂ

i�1
r B̂rjj2F

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r þ ,1 þ ,2

p
� σrþ1ðĤÞ:

Collecting the terms, we obtain

X2s�1

i¼1

khi � CrA
i�1
r Brk2F� 2ðε1 þ ε2Þ

� 4
Xp

i¼,1þ1

σ2i ðΘLÞ þ
Xm

i¼,2þ1

σ2i ðΘRÞ
 !

þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r þ ,1 þ ,2

p
� σrþ1ðĤÞ;

which completes the proof. □

Remark 3.5: In addition to the need to preserve the Hankel structure in the projected data (so that
ERA can be applied to the tangentially interpolated data), the error term ε1 in (27) also reveals why
the projections P1 and P2 were computed separately via (16) and (18), respectively; as opposed to the
joint optimization problem (14).

4. Numerical results

In this section, we present numerical results for TERA (Algorithm 3.3) and Kung’s standard
ERA. To test these algorithms, a mass spring damper model (MSD) and a cooling model for
steel profiles (Rail) are considered. The main computational difference between ERA and
TERA is the size of the SVD that needs to be computed. As we will illustrate, TERA offers
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significant computational savings by working with the SVD of a reduced Hankel matrix, see
Table 1.

ERA assumes a discrete-time model. The examples we consider are continuous-time dynamical
systems, that is, they have the form

_xðtÞ ¼ AcxðtÞ þ BcuðtÞ; yðtÞ ¼ CcxðtÞ; (28)

with t 2 R
þ, where the subscripts are used to emphasize the continuous-time setting.

Therefore we convert these continuous-time models to discrete-time via a bilinear transfor-
mation [41], mapping the left half-plane onto the unit circle. Once the reduced models are
computed via ERA and TERA, we use the original system dynamics only for illustration
purposes to present a more detailed comparison both in the time-domain by comparing time-
domain simulations and in the frequency domain by comparing Bode plots. We emphasize
that the matrices Ac;Bc;Cc are never used in the algorithms. Both ERA and TERA have only
access to impulse response data.

4.1. Mass spring damper system

This model is taken from [42] and describes a mass spring damper system with masses mi, spring
constants ki and damping coefficients ci � 0 for i ¼ 1; 2; . . . ; n=2. The state variables are the
displacement and momentum of the masses, and the outputs are the velocities of some selected
masses. We refer to [42, Section 6] for more details about the model. The model dimension is
n ¼ 1; 000, which is equivalent to 500 mass spring damper elements. All masses are mi ¼ 4, the
spring constants are ki ¼ 4 and the damping coefficients are ci ¼ 0:1 for i ¼ 1; 2; . . . ; 500. The
number of inputs is equal to the number of outputs, namely m ¼ p ¼ 30. We collect 2s ¼ 1; 000
Markov parameters. In Figure 1(a), the decay of the normalized Markov parameters is plotted,
khi kF = kh1kF . We observe a steep initial decay, followed by a slower decay. Figure 1(b) shows

Table 1. Specifications, CPU times to execute, and time savings for the numerical examples. Solved on a cluster with a 6-core
Intel Xeon X5680 CPU at 3.33GHz and 48GB RAM, with MATLAB2013b.

Example SVD size for ERA CPU SVD size for TERA CPU

4.1 (MSD) 15,000 × 15,000 1216.8 s 3500 × 3500 18.0 s
4.2 (Rail) 6000 × 7000 110.0 s 4000 × 4000 25.2 s

Number of Markov Parmeters 104

10-5
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10-1

100

101
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(a) Relative norm of the Markov parameters.
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Number of left and right directions, l1 and l2

10
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0

N
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m
ed

 s
in

gu
la

r 
va

lu
es

Singular values of L

Singular values of R

(b) Singular values of ΘL and ΘR.

Figure 1. MSD model: The Markov parameters decay slowly in time (a); the singular values of the matrices ΘL and ΘR help
guide the decision about the number of input/output interpolation directions needed (b).
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the singular values of ΘL and ΘR, which in turn help decide how many input/output directions
,1; ,2 are needed in the TERA framework.

Application of the standard ERA requires computing an SVD of size 15; 000� 15; 000. On the
other hand, in TERA, we pick ,1 ¼ ,2 ¼ 7, reducing the SVD dimension to 3500� 3500. Even
though we picked ,1 ¼ ,2 ¼ 7 for TERA, we illustrate the leading hundred normalized singular
values of both the full Hankel matrix H and several projected Hankel matrices Ĥ in Figure 2 for
various ,1 and ,2 choices. There is a drastic difference in the decay of the singular values. At the
truncation order r ¼ 30, the singular values of Ĥ have already dropped significantly. In contrast,
the singular values of the full Hankel matrix start a rapid decay only after r 
 60.

We choose the reduced model order as r ¼ 30, and apply both ERA and TERA. Theorem 3.4
via the upper bound in (26) can give valuable insight into the success of TERA. Choosing r ¼ 30,
and ,1 ¼ ,2 ¼ 7, the actual relative error in the Markov parameters isP2s�1

i¼1 jjhi � CrAi�1
r Brjj2FP2s�1

i¼1 jjhijj2F
¼ 1:13� 10�1;

and the upper bound in (26) yields

4
Pp

i¼,1þ1 σ
2
i ðΘLÞ þ

Pm
i¼,2þ1 σ

2
i ðΘRÞ


 �
þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r þ ,1 þ ,2

p � σrþ1ðĤÞP2s�1
i¼1 jjhijj2F

¼ 8:79� 10�1:

Notably, the error bound is in the same order of magnitude as the actual error. The main
contribution to the upper bound results from the truncation of ΘL and ΘR. As a comparison, we
also give the actual error and the error bound for the standard ERA. While the actual relative
error due to the standard ERA isP2s�1

i¼1 kCrAi�1
r Br � hik2FP2s�1

i¼1 khik2F
¼ 5:05� 10�1;

the upper bound for ERA is

0 20 40 60 80 100
r

10-4

10-2

100

S
in

gu
la

r 
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lu
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 o
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l m
at

rix

TERA-ROM, l=5

TERA-ROM, l=7

TERA-ROM, l=10

TERA-ROM, l=15

Full ERA ROM

Figure 2. MSD model: The normalized singular values of the Hankel matrices H and Ĥ are shown in decreasing order. With an
increasing number of interpolation directions ,1 ¼ ,2, the singular value decay curves approach the singular value decay of
the full Hankel matrix H.
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σrþ1ðĤÞ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r þmþ p

pP2s�1
i¼1 khik2F

¼ 1:33� 100:

As we shall see again in the next example, Kung’s error bound might not be sharp, and in fact
may vary by several orders of magnitude from the true error. Thus, since the error bound is above
100%, it would have been hard to know a priori how well the ROM behaves.

To compare the reduced models due to ERA and TERA, both reduced models are converted
back to continuous time, yielding

_xrðtÞ ¼ Ar;cxrðtÞ þ Br;cuðtÞ; yrðtÞ ¼ Cr;cxrðtÞ þ Dr;cuðtÞ: (29)

The full model and the reduced systems (29) obtained from ERA and TERA, respectively, are
simulated from zero to 50s with zero initial conditions. The input functions were chosen as in [42,
Ex. 6.3] to be uiðtÞ ¼ e�0:05t sinð5tÞ. Figure 3 shows outputs 6 and 11 of time domain simulations
for the full model and both reduced models. Here, the TERA-based reduced model follows the full
model outputs accurately. In contrast, the ERA-based reduced-order model responses are far from
the actual output and produce erroneous results as shown in Figure 3.

These results illustrate that the reduced order r ¼ 30 is too low for ERA to produce satisfactory
results; thus we increase r to study the performance of ERA more. Based on the plot of the Hankel
singular values, Figure 2, the singular values of the full Hankel matrix start decaying at order
r 
 60. Figure 4 compares the continuous-time simulations of the full model, and both reduced-
order models with r ¼ 60 (the left and right interpolation directions for TERA are kept at
,1 ¼ ,2 ¼ 7). The outputs of the ERA model have now improved in accuracy and mimic the
full model outputs accurately.

For a better comparison of the performance across all inputs and outputs, we include Figure 5
below, where we show the Bode plots for the full model, ERA and TERA with ,1 ¼ ,2 ¼ 10 and
,1 ¼ ,2 ¼ 15. We see that as we increase the interpolation directions, the frequency response of
TERA approaches ERA as expected, and the Bode plot is better matched. Note, that the original
system has m ¼ p ¼ 30 inputs and outputs. However, one should observe that even the original
full ERA misses the sharp pick of the Bode plot around ω ¼ 2 rad/sec. This is unfortunately the
best one can do with an ERA setting here. Unlike other data-driven approaches, such as the
Loewner framework [28] or data-driven optimal H2 interpolation method TF-IRKA [31], we
cannot simply sample the transfer function at various frequencies to have a better/optimal
reduced model (and capture the sharp behaviour around ω ¼ 2). State-space matrices are
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(a) Output No.6.
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(b) Output No.11.

Figure 3. MSD model: Outputs of continuous-time simulations from the full model, and reduced models with r ¼ 30. In this
case, TERA-ROM matches the output of the full order model better, whereas ERA shows strong deviations compared to the full
order model.
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assumed not available to start with. All that is available are Markov parameters (data), and the
goal is to get a reduced model from this data, which are stable, and have a bound for the sum of
squares in the Frobenius norm of the error in the Markov parameters.

We have tried several lower order models and observed that we needed to increase the reduced
order to around r ¼ 60 to have a satisfactory reduced model from ERA. This was also reflected in
the decay of the singular values in Figure 2. Thus, for this example, TERA produced a better
reduced-order model than ERA even with a smaller r value at the same time reducing the effort
for the SVD from a 15; 000� 15; 000 matrix to a 3; 500� 3; 500 matrix. For r ¼ 60, ERA provides
a slightly better match in terms of the output of time-domain simulations, yet it still remains more
expensive to compute and the advantage of the computational effort for TERA is still persistent.
Moreover, the reader should note that a careful balancing of the number of interpolation
directions ,1; ,2, and the reduced-order model size r, led to a satisfactory accuracy in the ROM,
while saving computational time. We shall add though, that in general we do not expect TERA to
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Figure 4. MSD model: Outputs of continuous-time simulations from the full model, and reduced models with r ¼ 60. At higher
reduced order dimension, ERA performs better, and is visually indistinguishable from the full model.
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outperform ERA in accuracy, as it did in this particular case. Nonetheless, since ERA is only
optimal in reconstruction, the fact that an improvement in accuracy occurred here, is not
contradictory.

4.2. Cooling of steel profiles – Rail model

The model is taken from the Oberwolfach benchmark collection for model reduction [43] and is
further described in [44]. The process is modelled by a two-dimensional heat equation with
boundary control input. A finite element discretization results in a model ðE;A;B;CÞ with n ¼
1; 357 states, m ¼ 7 outputs and p ¼ 6 outputs. The generalized eigenvalue of Av ¼ λEv; v�0,
with largest real part is λmax ¼ �1:76� 10�5, which implies that the Markov parameters will
decay slowly. It is therefore necessary to sample many Markov parameters to capture enough of
the system dynamics. The model is converted to a discrete-time model through the bilinear
transformation and simulated to construct 2s ¼ 2; 000 Markov parameters. Once again, the
original matrices are only used for Markov parameter generation and never enter into the
algorithm. Figure 6, shows the normalized decay of the Markov parameters over time, that is,
khikF = kh1kF for i ¼ 1 : 20 : 2; 000. The plot can guide the choice of when to stop collecting
data. Next, we investigate the performance of ERA/TERA, with reduced-model order r ¼ 20,
unless indicated otherwise. Thus, the standard ERA is applied to the sequence of 2s ¼ 2; 000
Markov parameters in R

6�7 requiring an SVD of size 6; 000� 7; 000. Unless otherwise stated, the
Markov parameters are projected with ,1 ¼ ,2 ¼ 4 tangential directions, so that ĥi 2 R

4�4.
Therefore, only a singular value decomposition of size 4; 000� 4; 000 has to be computed.

Figure 7(a) shows the normalized singular values of the matrices ΘL and ΘR, respectively. In
addition to computational cost limitations, the decay of the singular values gives valuable insight
for choosing the tangential truncation orders ,1 and ,2, since they occur in the error bound in
(26). Moreover, in Figure 7(b), we see the convergence of the singular values of Hankel matrix
from tangentially interpolated data for various values of ,1 and ,2, as the dimension of the
reduced-order model r increases. As the size of the Hankel matrix grows the singular values
converge to the full model. The first neglected singular value σrþ1ðĤÞ enters into the upper bound
of the TERA error in Equation (26).
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(a) TERA with �1 = �2 = 10.
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(b) TERA with �1 = �2 = 15.

Figure 5. MSD model: Transfer function for ERA and TERA where ROMS have order r ¼ 80, and the TERA models were obtained
by interpolating the data with a different number of directions. In plot (a), the original transfer function shows a peak around
ω ¼ 2. In both (a) and (b), ERA remains unchanged, and we show that TERA approaches the transfer function obtained from
ERA as we increase the number of tangential directions.
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Figure 8 compares the full transfer function GðiωÞ with the reduced-order transfer functions
GrðiωÞ of the ERA and TERA ROMs by showing the amplitude Bode plots. The H1 error (where
the Hardy-norm Gj jjH1 ¼ supω2R

�� �� GðiωÞj jj2) for TERA is 3:58� 10�2 and similarly 1:36� 10�2

for ERA, which is in the same order of magnitude.
In the following, we shed some light on the behaviour of the error bound for ERA in (12) as

well as the TERA error bound in (26). While the true relative error due to TERA with ,1 ¼ ,2 ¼
4 is

P2s�1
i¼1 jjhi � CrAi�1

r B̂rjj2FP2s�1
i¼1 jjhijj2F

¼ 2:98� 10�3;

the upper bound from Theorem 3.4 yields
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Figure 6. Rail model: Norm (relative) decay of the Markov parameters over time, jjhijjF=jjh1jjF .
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(a) Singular values of ΘL and ΘR.
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Figure 7. Rail model: The singular values of the matrices ΘL;ΘR as well as of the Hankel matrix provide insight into truncation
of input/output directions, as well as the ROM dimension r. In plot (b), for increasing numbers of tangential directions, the
singular value decay approaches the behaviour of the ERA model, as expected.
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4
Pp

i¼,1þ1 σ
2
i ðΘLÞ þ

Pm
i¼,2þ1 σ

2
i ðΘRÞ


 �
þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r þ ,1 þ ,2

p � σrþ1ðĤÞP2s�1
i¼1 jjhijj2F

¼ 8:54� 10�2:

Even though the upper bound is not too pessimistic, it is not as tight as the previous example.
This was expected from the slower decay of the Hankel singular values and the singular values of
ΘL and ΘR. On the contrary, the error bound for the standard ERA is rather pessimistic. While the
true relative error due to the standard ERA isP2s�1

i¼1 kCrAi�1
r Br � hik2FP2s�1

i¼1 khik2F
¼ 3:53� 10�5;

the upper bound for ERA is

σrþ1ðĤÞ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r þmþ p

pP2s�1
i¼1 khik2F

¼ 2:50� 10�1;

four orders of magnitude higher than the actual error. A more thorough look at the error bound
of TERA for various reduced-order model sizes r and interpolation directions ,1 and ,2 is given in
Figure 9. ERA obviously produces the lowest errors, yet the error bound is almost three orders of
magnitudes higher than the true error. For TERA, we see that the error bound and actual error are
within the same order of magnitude, yet the method produces higher errors. The error bound in
Equation (26) is dominated by the truncated singular values of the matrices ΘL and ΘR, so that
there is no significant decay trend of the error bound with increasing order r.

The continuous-time reduced-order models (29) are simulated with an input vector uðtÞ 2 R
m

with uiðtÞ ¼ 0:2e�:005t , for i ¼ 1; . . . ;m ¼ 7. For time stepping, we used ode45 in MATLAB with
standard error tolerances. The outputs are compared to the outputs of simulations of the full model.
Figure 10 shows outputs No. 1, No. 2 and No. 5 computed from the full model as well as the reduced
models obtained through both standard ERA and TERA. In addition to reducing the computational
time andmemory requirements of standard ERA, the TERA framework performs well in time domain
simulations. Outputs No. 1 and No. 2 are captured very accurately. While one can observe a deviation
in the approximation of output No. 5, the overall behaviour is still approximated well.

For both models, to show that the success of the selection of projection/tangential directions
for TERA via SVD is not random, we generated tangential directions from a random normal
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(a) Transfer functions.
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(b) Errors in the transfer function.

Figure 8. Rail model: Bode plots (transfer function) for full model, and the reduced-order models through ERA and TERA. As
seen from (a), the transfer functions in the original scaling are visually identical. Thus, plot (b) shows the error of TERA and ERA
with respect to the original transfer function.
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distribution (as opposed to using the singular vectors of ΘR and ΘL). This approach gave
unsatisfactory results in all the test runs and we, therefore, safely exclude it as a choice for
tangential directions. For illustration purposes, for the Rail model, we plotted the results of the
continuous-time simulations for output two and six in Figure 11, where random interpolation
directions were used for Ĥ, leading to a rather poor model reduction performance.

4.3. Indoor-air model for thermal fluid dynamics

We offer a brief explanation for the limitations of the proposed TERA approach by revisiting the
indoor-air behaviour model [5] from Example 2.4. The motivation is that it is often not possible
to extract system matrices from commercial software, yet one can use SI methods to obtain
reduced-order models for the dynamics. Given the size of the problem (input–output dimension
as well as data), it would be computationally beneficial to use ERA with tangentially interpolated
data. The tools developed earlier can help us decide whether TERA could be applied here.

We consider a similar model as illustrated in Example 2.4. For this problem, 1437 Markov
parameters were obtained by simulating the underlying dynamical system using the ANSYS
FLUENT software with a spatial discretization of approximately 200; 000 finite volume elements
used in a three dimensional domain. The version of the model we consider here already has a
reduced number of outputs, p ¼ 19, yet similar inputs, m ¼ 26. Consequently, this would mean
that the standard ERA for this model is computationally demanding, requiring an SVD for a
matrix of dimension 18; 668� 13; 642; thus reflecting a limitation for the standard ERA itself.
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Figure 9. Rail model: The error bound of ERA (normalized) from (12) and TERA from (26) versus the actual errors.
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Figure 10. Rail model: The plot shows outputs of time domain simulations of the full and reduced-order models. In plot (a) and
(b), all three models provide visually identical results, in plot (c), TERA shows a slight deviation for the first 20 s of simulation.
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Since the internal representation is not available, we cannot provide the same level of detailed
comparison as above.

First, we show in Figure 12(a), the norm of the Markov parameters of the full model jjhijj2F versus
the norm of the interpolated Markov parameters jjĥijj2F . This shows the information that is retained
after the tangential interpolation procedure, which then enters the TERA algorithm. Figure 12(b)
shows the decay of the singular values of ΘL and ΘR to determine the number of necessary interpola-
tion directions. The reader should compare this to Figures 1(b) and 7(a), where a faster decay in the
singular values is observed. Since the error bound in Theorem 3.4 contains the summed tail of the
neglected singular values of ΘR and ΘL, the upper bound is expected to be loose.

The other ingredient to the error bound in Theorem 3.4 is the first neglected singular value of the
full Hankel matrix, σrþ1ðĤÞ. The singular values of the Hankel matrix from interpolated data are
shown in Figure 13(a). As in the previous examples, the Hankel singular values converge to the true
values as we increase the interpolation directions ,1 ¼ ,2 ¼ ,. However, the convergence is noticeably
slower than in the previous two examples. Taken together, one might expect TERA not to yield
satisfactory results for small values of ,; which could hint at the fact that all inputs and outputs are
highly relevant for this particular model as we shall see below. In contrast, for large ,, the computa-
tional benefit of using TERA is negligible, in which case one would say that the methods ‘fails’.
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Figure 12. Indoor-air model: A high number of interpolation directions is needed to retain enough information from the sequence of
Markov parameters. Especially plot (b) shows that decay of the singular values for ΘL;ΘR with respect to ,1; ,2 is very slow.
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Figure 11. Rail model: Time domain simulations of the full and reduced-order models, where the TERA model was obtained by
interpolation with random directions. The full model and the ERA model are visually indistinguishable on this scale.
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Following this a priori analysis, in Figure 13(b), we compare the original and identified Markov
parameters, using ERA (an expensive computation of the 18; 668� 13; 642 SVD) and TERA with
,1 ¼ ,2 ¼ 10. In both cases, r ¼ 300 is chosen as the ROM model order. We note here that the
relative error

P
k jjhi � CrAk

rBrjj2F=
P

k jjhkjj2F is 2:39� 10�1 for ERA and 2:70� 10�1 for TERA.
Thus, ERA still performs better, but the errors are still too large for a reduced-order model with
good predictive capabilities. In this example, due to several illustrated factors, TERA could not
provide a computational benefit to ERA. This illustrates how to approach the problem of deciding
whether tangential interpolation of the data prior to SI is beneficial.

5. Conclusions

We modified the standard ERA to handle MIMO systems more efficiently. After the input and
output dimensions are reduced by tangential interpolation of the impulse response data, the standard
ERA is used on the low dimensional input and output spaces. The observation and control matrices
are subsequently lifted back to the original input and output dimensions. The resulting reduced-
order model has the original input and output dimensions, and is guaranteed to retain stability. The
computational savings for the necessary singular value decomposition are significant, in particular
since the complexity of the SVD grows cubically with the size of the Hankel matrix. Moreover, we
give criteria to guide the user whether in a particular model using TERA can be beneficial. The a
priori error bound in Theorem 3.4 provides a clear picture regarding the contribution of the
tangential interpolation error, and the truncation error of the Hankel matrix to the overall error.
The numerical findings demonstrate the success of TERA. The algorithm can run with inputs from
experiments or black-box code and accurately identify reduced order dynamics.

There are several interesting directions one can pursue. As showed in [6], ERA can be
considered a data-driven approximation to balanced truncation. Establishing and understanding
a similar connection for TERA might yield other ways of choosing the left and right directions to
project the impulse response data. This connection can also help handling the cases where, for
example, only the output dimension is massive but there is only a single input. In the setting of
balanced truncation, the authors in [45] offered an effective methodology for those situations by
employing a numerical quadrature in the computation of one of the gramians involving the other
gramian. It will be beneficial to understand the implications for ERA and TERA as well.
Moreover, understanding the effect of noise on the TERA computations will also be important.
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Figure 13. Indoor-air model: The TERA models slowly approach the ERA model as the number of interpolation directions ,1 ¼
,2 is increased, see plot (a). Part (b) shows that even the identified Markov parameters from a full ERA model do not match the
original sequence well.

304 B. KRAMER AND S. GUGERCIN

D
ow

nl
oa

de
d 

by
 [

] 
at

 0
6:

35
 2

2 
Ju

ly
 2

01
6 



Notes

1. MATLAB and Statistics Toolbox Release 2015b, The MathWorks, Inc., Natick, Massachusetts, United States.
2. We follow the original ERA notation and assume a standard state-space, that is, the E-term is E = I. This

makes the notation involving Markov parameters and the Hankel matrix much simpler. The theory can be
extended to the general case. One of the numerical examples in Section 4 has E ≠ I.

3. We use this term to refer to the singular values of the Hankel matrix.
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