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SYSTEM IDENTIFICATION VIA CUR-FACTORED HANKEL
APPROXIMATION\ast 

BORIS KRAMER\dagger AND ALEX A. GORODETSKY\ddagger 

Abstract. Subspace-based system identification for dynamical systems is a sound, system-
theoretic way to obtain linear, time-invariant system models from data. The interplay of data and
systems theory is reflected in the Hankel matrix, a block-structured matrix whose factorization is
used for system identification. For systems with many inputs, many outputs, or large time-series
of system-response data, established methods based on the singular value decomposition (SVD)---
such as the eigensystem realization algorithm (ERA)---are prohibitively expensive. In this paper, we
propose an algorithm to reduce the complexity of the ERA from cubic to linear, with respect to the
Hankel matrix size. Furthermore, our memory requirements scale at the same rate because we never
require loading the entire Hankel matrix into memory. These reductions are realized by replacing
the SVD with a CUR decomposition that directly seeks a low-rank approximation of the Hankel
matrix. The CUR decomposition is obtained using a maximum-volume--based cross-approximation
scheme that selects a small number of rows and columns to form the row and column space of
the approximation. We present a worst-case error bound for our resulting system identification
algorithm, and we demonstrate its computational advantages and accuracy on a numerical example.
The example demonstrates that the resulting identification yields almost indistinguishable results
compared with the SVD-based ERA yet comes with significant computational savings.
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1. Introduction. We are motivated to enable subspace-based system identifica-
tion from a large amount of system-response data. In particular, we are interested in
using experimental or simulated data to compute reduced-order models [1] that can
be used for design, optimization, and control. Building on system-theoretic concepts,
system identification involves computing a decomposition of a large matrix---the Han-
kel matrix. A Hankel matrix is a block-structured matrix where the data on parallels
to the main antidiagonal are equal.

Historically, the field of system identification from large-scale data relied on ad-
vances in numerical linear algebra to tackle both scalability and computational feasi-
bility of algorithms. After the introduction of a computationally feasible and stable
singular value decomposition (SVD) by Golub and Reinsch in 1970 [6], Kung [18] in
1978 proposed a system identification algorithm by computing an approximate de-
composition of the Hankel matrix through an SVD. A version of this algorithm was
later termed the ``eigensystem realization algorithm"" (ERA) in [16], and it became
popular in engineering due to its simplicity and guaranteed stability. The method uses
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impulse response data to construct a linear, time-invariant system representation---of
any order---that best matches the data, by using system theoretic concepts.

One step of this widely used algorithm involves computing the SVD of the Hankel
matrix. This operation is computationally infeasible for large Hankel matrices often
encountered in practice due to its cubic complexity with respect to matrix size. In
prior work [17], we were able to mitigate this computational bottleneck, specifically
for Hankel matrices that arose from large input/output dimensions, using a suitable
tangential interpolation of the data.

In this work, we propose a more general, and faster, method to combat the expense
of the SVD-based ERA for systems with large Hankel matrices. Namely, we use the
CUR decomposition to directly seek low-rank factorizations of Hankel matrices, which
can then be used in an ERA-based framework. We show that this results in a system
identification algorithm with costs that are linear in the row and column dimension
of the Hankel matrix, versus cubic, for SVD-based methods. Moreover, we obtain
error bounds on the approximation of the impulse response sequence by the identified
reduced model.

The CUR decomposition [11, 2, 4, 22, 20] has emerged as a successful alternative
to the SVD in the area of big data and search/compression algorithms. Recently,
Sorensen and Embree provided a new row and column selection that leads to accurate
matrix approximations and provided a thorough error analysis in [23]. In this paper,
we extend the CUR to system-theoretic approaches to system identification.

Algorithms for computing the CUR gain their advantage by assuming, rather
than discovering, low-rank structure of a matrix. In other words, while the SVD
must compute all of the eigenvalues to determine their decay (and resulting matrix
rank), algorithms for computing CUR decompositions directly seek a factorization
of a given rank. Intuitively, this constraint allows for computational gains. While
the requirement of knowing the matrix rank ahead of time may seem like a barrier,
rank adaptation schemes exist. Furthermore, since our focus is reduced-order model-
ing, the desired/allowable model order is often prescribed a priori. This prescription
typically follows engineering requirements and limitations with regard to available
computational resources.

Furthermore, we utilize a maximum-volume--based cross-approximation algorithm
[9, 10, 21] to compute the CUR decomposition. In contrast to methods that require
access to all matrix elements, e.g., methods based on leverage scores [20], this approach
does not require even a single pass through all matrix columns. Instead, it provides
a deterministic procedure for sampling groups of r columns and rows in order to
progressively increase the volume of the matrix formed by their intersection. As such,
its complexity scales linearly with the size of the matrix instead of quadratically.

System identification with large data is an active area of research. Hokanson [14]
proposes exponential fitting algorithms---determining growth and frequency parame-
ters for exponential signals---for large-scale applications with \scrO (n log n) complexity,
where n is the number of collected data. Exponential fitting can be viewed as a spe-
cial case of the partial realization problem introduced below. Antoulas and Ionita [15]
derive a linear system representation from data by using the matrix pencil approach,
which is easy to implement and works with data both in time- and frequency-domain.
However, the matrix pencil approach does not guarantee stability of the resulting
model.

Finally, we emphasize that this work is purely data-driven. Thus, in contrast to
projection-based model reduction [1], the discussed algorithms do not need access to
the mathematical model or computer code. The stability of projection-based meth-
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ods has been proved, e.g., by Gugercin and Antoulas [12], for reduced-order models
obtained via a mixture of Krylov-based and Gramian-based model reduction. In this
work, we obtain a complementary result on stability in the data-driven setting.

In section 2 we review and introduce the notational setting. In section 3, we
show that any factorization of the Hankel matrix into two matrices with orthogo-
nal columns, and rows, respectively, can be used in the ERA, and that the resulting
reduced-order models remain stable. In section 4, we integrate the CUR factorization
into ERA-based system identification. We present associated error bounds and give
the computational cost of the algorithm. The numerical study in section 5 demon-
strates that the algorithm enjoys speedups of two orders of magnitude when compared
with the standard SVD-based ERA. Furthermore, our algorithm yields comparable
results in terms of accuracy of the resulting reduced-order models.

Throughout this paper, we let In \in \BbbR n\times n denote the identity matrix and shall
use I whenever there is no confusion about the dimension. Given a vector x \in \BbbR n

and r \leq n, the vector x(1: r) denotes the first r components. Similarly, for a matrix
A \in \BbbR n\times n, we denote by A(1:r, 1:r) the leading r \times r submatrix of A.

2. System identification. The state-space form of a linear time-invariant (LTI)
discrete-time system is described by the 4-tuple of matrices (A,B,C,D), where A \in 
\BbbR n\times n, B \in \BbbR n\times m, C \in \BbbR p\times n, and D \in \BbbR p\times m are state-to-state, state-to-input, state-
to-output, and feed-through system matrices, respectively. The states xk \in \BbbR n, the
inputs uk \in \BbbR m, and the outputs yk \in \BbbR p evolve according to1

xk+1 = Axk +Buk,(1)

yk = Cxk +Duk,(2)

where k \in \BbbN +
0 corresponds to time tk = k\Delta t for uniform sampling time \Delta t. The

initial condition x0 is assumed to be zero---the system is excited through external
disturbances.

2.1. Hankel matrix and partial realization. The Markov parameters hk \in 
\BbbR p\times m are defined according to

(3) hk :=

\biggl\{ 
D, k = 0,

CAk - 1B, k = 1, 2, . . .

\biggr\} 
,

so the output response equation for system (1)--(2) is fully determined by the Markov
parameters according to

(4) yk =

k\sum 
j=0

hj uk - j .

This equation is known as the external description of the system.
In practice, the matrices (A,B,C,D) are often unavailable. However, the Markov

parameters can be obtained by observing the reaction of the system to ``delta inputs.""
In particular, we sample the outputs yk when the ith input component is [uk]i = 1
at all sampling instances k \in \BbbN +

0 , and the other inputs are set to zero. Doing this for

1We follow the original ERA notation and assume a standard state-space; i.e., the mass matrix
is the identity. This makes the notation involving Markov parameters and the Hankel matrix much
simpler. The theory can be extended to a general nonsingular mass matrix at the expense of heavier
notation.
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each input channel i = 1, . . . ,m, we can assemble the Markov parameters columnwise
as

hk(1:p, i) = yk  - yk - 1 for [uk]i = 1.

Note that this requires m simulations or experiments of the system. The partial
realization problem addresses the inference of an LTI system from a finite sequence of
Markov parameters.

Definition 1 (see [1, Definition 4.46]). Given the finite set of Markov parameter
matrices hk for k = 1, 2, . . . , 2s - 1, s \in \BbbN +, the partial realization problem consists of
finding a positive integer n and constant matrices A \in \BbbR n\times n, B \in \BbbR n\times m, C \in \BbbR p\times n,
and D \in \BbbR p\times m, such that (3) holds.

The Hankel matrix, denoted by H, plays a key role in system identification, and
it is constructed from the 2s - 1 Markov parameters:

(5) H :=

\left[     
h1 h2 . . . hs

h2 h3 . . . hs+1

...
...

. . .
...

hs hs+1 . . . h2s - 1

\right]     \in \BbbR nr\times nc .

To simplify notation, let nr = ps be the row dimension of H and nc = ms its column
dimension. The Hankel matrix can become large (dim(H) > 105)---and hence the
SVD prohibitively expensive---due to one or more of the following three parameters:

1. Input dimension m: The number of input terminals can be large, m \approx \scrO (10 - 
100), in applications where many actuators are installed.

2. Output dimension p: The number of outputs of a system can in some cases be
of the size of the state space, which is often very large (e.g., fluid dynamical
applications p \geq \scrO (105)).

3. Sample size s: For slowly decaying dynamics, and other practical reasons,
the recorded sample size s can be large, s \approx \scrO (103  - 105).

To motivate the system identification procedure, assume for a moment that the
(A,B,C,D) matrices are known, so that the Hankel matrix reads as

H =

\left[     
CB CAB . . . CAs - 1B
CAB CA2B . . . CAsB

...
...

. . .
...

CAs - 1B CAsB . . . CA2s - 2B

\right]     .

It is well known (e.g., [1, Lemma 4.39]) that for a realizable impulse response sequence,
the Hankel matrix can be factored into the product of the observability matrix and
the controllability matrix :

(6) H =

\left[     
C
CA
...

CAs - 1

\right]     
\underbrace{}  \underbrace{}  

Observ.

[B AB . . . As - 1B]\underbrace{}  \underbrace{}  
Contr.

.

Observe that the shifted observability matrix satisfies

(7)

\left[   C
...

CAs - 2

\right]   A =

\left[   CA
...

CAs - 1

\right]   .
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If the observability matrix in (6) is available, then the above shift-invariance formula
naturally leads to a least-squares problem for the matrix A, since everything except
A is known. Truncating the last block row of the observability matrix gives the data
for the left side of (7), and truncating the first block row yields the right-hand-side
of (7).

The computational challenge is to factorize the Hankel matrix into its observabil-
ity and controllability matrices by solving the least squares problem (7) with data
provided by the Markov parameters. The common observation [1, 19, 17] that the
Hankel matrix is of numerical low rank is a key enabler for many state-of-the-art
rank-revealing matrix factorizations developed by the computer science and numeri-
cal linear algebra communities.

3. Factorization of Hankel matrix. In this section, we show that any de-
composition that provides an orthogonal basis for the range and column space for
H can be used for the purpose of system identification. In particular, we are able
to remove the requirement in [18] that the factorization be in the form of an SVD.
Furthermore, we show that the resulting system is stable. These facts enable using
matrix factorizations that are faster and more efficient than the SVD.

3.1. ERA with general factorization of \bfitH . This section describes the main
steps of the ERA. For the sake of generality, let the Hankel matrix be approximated
by a rank r \leq min(nr, nc) (recall H \in \BbbR nr\times nc , nr = ps, nc = ms) factorization of the
form

Hr = \Theta \Gamma \approx H,

where \Theta \in \BbbR nr\times r and \Gamma \in \BbbR r\times nc . Moreover, let the matrices \Theta and \Gamma have orthogonal
columns and rows, respectively, such that the Gramian matrices satisfy \Theta T\Theta = \Gamma \Gamma T =
S, where S = diag(s1, . . . , sr) \in \BbbR r\times r, and si \in \BbbR +.

In light of (6), if \Theta is the rank r reduced-order observability matrix, then its first
block row can be used to estimate a reduced state-to-output matrix Cr \in \BbbR p\times r such
that

Cr = [Ip 0] \Theta ,

where Ip is the p\times p identity matrix. Similarly, the first block column of \Gamma yields an
rth order representation of the control input matrix Br \in \BbbR r\times m such that

Br = \Gamma 

\biggl[ 
Im
0

\biggr] 
.

Denote the first s - 1 block rows and the last s - 1 block rows of \Theta , respectively, by

(8) \Theta f := \Theta (1:(nr  - p), :), \Theta l := \Theta ((p+ 1):nr, :).

A rank r system matrix Ar is obtained by imposing the shift invariance property (7)
on the rank r observability matrix, i.e.,

(9) \Theta fAr = \Theta l.

The solution of minAr\in \BbbR r\times r \| \Theta fAr  - \Theta l\| F is obtained by using the Moore--Penrose
pseudoinverse [7, Ch. 5], denoted by [\cdot ]\dagger , given by

Ar = [\Theta f ]\dagger \Theta l.



SYSTEM IDENTIFICATION VIA CUR A853

3.2. Stability of system matrix. We now show that the resulting reduced-
order model defined via Ar, Br, Cr is a stable dynamical system. To do so, we make
an assumption on the impulse response data, which is the same as in Kung [18].

Assumption 2. Assume that 2s  - 1 Markov parameters are given and that the
given impulse response sequence is convergent in the sense that

hi \rightarrow 0 for i > s.

Clearly, for asymptotically stable dynamical systems, hi \rightarrow 0 as i \rightarrow \infty . However,
in the case of the finite data this assumption means that after some finite time, the
Markov parameters begin to decay.

Theorem 3. Let
Hr = \Theta \Gamma , Hr \in \BbbR ps\times ms

with
\Theta T\Theta = \Gamma \Gamma T = S = diag(s1, . . . , sr), si > 0,

be a factorization of the Hankel matrix.2 Let \Theta f ,\Theta l be defined as in (8). Let As-
sumption 2 hold; then there exists an N \in \BbbN + such that for s > N , the identified
reduced-order model given by

(10) Ar = [\Theta f ]\dagger \Theta l, Br = \Gamma [Im 0]T , Cr = [Ip 0] \Theta 

is a stable discrete-time dynamical system.

To prove this theorem, we first provide several intermediate results. Define Ur :=
\Theta S - 1/2 and V T

r := S - 1/2\Gamma so that Hr = UrSV
T
r , and UT

r Ur = V T
r Vr = Ir with

\| Ur\| 2 = 1. We partition Ur into two different arrangements,

(11) Ur =

\biggl[ 
Uf
r

\eta s - 1

\biggr] 
=

\biggl[ 
\eta 1
U l
r

\biggr] 
,

where Uf
r , U

l
r \in \BbbR (nr - p)\times r and \eta 1, \eta s - 1 \in \BbbR p\times r. By construction, Ur \in \BbbR nr\times r is

orthogonal with r \ll nr; therefore, there is a selection of r rows of Ur which are linearly
independent. Thus, we can say without loss of generality that Uf

r has (column)
rank r.3

Lemma 4. If Uf
r is constructed as in (11) and Theorem 3, then the following

holds for the Moore--Penrose pseudoinverse:

(12) [Uf
r S

1/2]\dagger = S - 1/2[Uf
r ]

\dagger .

Proof. From [3, Thm. 2.2] we have that for two matrices Y,Z of suitable dimen-
sion, (Y Z)\dagger = Z\dagger Y \dagger if and only if the range (column) spaces \scrR (Y \ast Y Z) \subseteq \scrR (Z) and
\scrR (ZZ\ast Y \ast ) \subseteq \scrR (Y \ast ). Let Y = Uf

r and Z = S1/2, and since they are real matrices,
we have that Y \ast = Y T , Z\ast = ZT . Therefore,

(13) \scrR (Y TY Z) = \scrR ([Uf
r ]

TUf
r S

1/2) \subseteq \scrR (S1/2) = \scrR (Z).

2The entries si do not have to be the singular values of H. In the special case where si = \sigma i(H)
are the leading r singular values of H, the factorization is the standard ERA from [18].

3Strictly speaking, we can replace Uf
r with \scrS Ur \in \BbbR nr - p\times r, where \scrS is a full-rank operator that

selects nr  - p rows of Uf
r and has full column rank (similarly for U l

r), so that the shift-invariance
property (7) still holds. This operator exists due to the rank-r property of Ur.
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Note that with S1/2 being diagonal with positive diagonal elements, the column space
\scrR (S1/2) = \BbbR r. Furthermore,

(14) \scrR (ZZTY T ) = \scrR (S[Uf
r ]

T ) = \scrR ([Uf
r ]

T ) = \scrR (Y T ),

because S is diagonal with positive diagonal elements. Since both conditions are met,
we obtain our stated result. Alternatively, one could use the fact [7, p. 257] that
for a matrix X with full column rank, the pseudoinverse is given via [XTX] - 1XT .
Applying this to X = Uf

r S
1/2 which has full column rank gives the stated result.

Lemma 5. Under Assumption 2 and with Ur segmented as in (11) we have

lim
s\rightarrow \infty 

\| Uf
r \| 2\| U l

r\| 2
1 - \| \eta s - 1\| 22

< 1.

Proof. Consider the SVD H = U \^SV T , so that

HV \^S - 1 = U = [Ur \ast ] =
\biggl[ 
Uf
r \ast 

\eta s - 1 \ast 

\biggr] 
.

From (11) we see that \eta s - 1 is defined as the last p rows of the Ur matrix, and
from (5) we see that [hs, . . . , h2s - 1] is the last p rows of H. Therefore, the first
equality above implies [hs, . . . , h2s - 1]V \^S - 1 = [\eta s - 1 \ast ]. Thus, lims\rightarrow \infty \| [\eta s - 1 \ast ]\| 2 =
lims\rightarrow \infty \| [hs, . . . , h2s - 1]V \^S - 1\| 2, and as a consequence of Assumption 2 this limit is
zero. In particular, lims\rightarrow \infty \| \eta s - 1\| 2 = 0, so that lims\rightarrow \infty \| Uf

r \| 2 = lims\rightarrow \infty \| Ur\| 2 = 1
and \| U l

r\| 2 < 1. Putting these together, we obtain the stated result.

Proof of Theorem 3. To show stability of the discrete-time dynamical system
(10), we need to show that all eigenvalues of Ar lie inside the unit circle in \BbbC . First,
recall that the spectral radius of a matrix, \rho (Ar) := max\{ | \lambda 1(Ar)| , . . . , | \lambda r(Ar)| \} , is
bounded by any induced matrix norm of Ar, i.e., \rho (Ar) \leq \| Ar\| . From (11) we get

(15) Ir = UT
r Ur = [Uf

r ]
TUf

r + \eta Ts - 1\eta s - 1.

Since \Theta = UrS
1/2, it follows that \Theta f = Uf

r S
1/2 and \Theta l = U l

rS
1/2, and we can

rewrite
Ar = [\Theta f ]\dagger \Theta l = S - 1/2[Uf

r ]
\dagger U l

rS
1/2,

where we used Lemma 4 for the reverse-order law of the pseudoinverse product. With
(15) and the above observation that Uf

r has full column rank, we obtain

[Uf
r ]

\dagger U l
r =

\bigl( 
[Uf

r ]
TUf

r

\bigr)  - 1
[Uf

r ]
TU l

r = [Ir  - \eta Ts - 1\eta s - 1]
 - 1[Uf

r ]
TU l

r.

To show stability, it suffices to consider the eigenvalues of

(16) S1/2ArS
 - 1/2 = [Uf

r ]
\dagger U l

r,

which, by a similarity transformation, has the same eigenvalues as Ar. Thus,

\| S1/2ArS
 - 1/2\| 2 = \| [Uf

r ]
\dagger U l

r\| 2
= \| [Ir  - \eta Ts - 1\eta s - 1]

 - 1[Uf
r ]

TU l
r\| 2

\leq \| [Ir  - \eta Ts - 1\eta s - 1]
 - 1\| 2 \| [Uf

r ]
TU l

r\| 2

\leq \| Uf
r \| 2\| U l

r\| 2
1 - \| \eta s - 1\| 22

.
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For the last inequality, we used a bound based on the Neumann series [7, Lemma
2.3.3] since, as a submatrix, \| \eta s - 1\| 2 < \| Ur\| 2 = 1. With the above observation that
the spectral radius of a matrix is bounded by any induced matrix norm, we have

shown that \rho (S1/2ArS
 - 1/2) \leq \| Uf

r \| 2\| U l
r\| 2

1 - \| \eta s - 1\| 2
2
. Since Ar and S1/2ArS

 - 1/2 have the same

eigenvalues, we therefore also have that \rho (Ar) \leq \| Uf
r \| 2\| U l

r\| 2

1 - \| \eta s - 1\| 2
2
. Using Lemma 5 and the

fact that the above inequality holds for all s, we obtain

\rho (Ar) \leq lim
s\rightarrow \infty 

\| Uf
r \| 2\| U l

r\| 2
1 - \| \eta s - 1\| 22

< 1,

which implies our stated result and completes the proof.

Remark 6. Balanced truncation is inherently related to the eigensystem realiza-
tion algorithm. We present the ERA in a more general form, though, not requiring
that \Theta and \Gamma are the optimal balancing modes, but only that they define principal-
axis balancing transformations [1, Lemmas 4.39 and 5.8; Def. 7.2]. This is important
for showing stability of the system in Theorem 3 above. By not requiring the factor-
izations to come from an SVD approximation of the Hankel matrix, we lose optimality
bounds with respect to the transfer function error [1, Thm. 7.10] and the ``theoret-
ical equivalence"" notion to snapshot-based balanced truncation [19]. In fact, using
the general factorizations \Theta and \Gamma above within a balancing framework (when the
matrices are available) leads to a suboptimal error bound. Nevertheless, we show
below that allowing for a general factorization can save much computational effort
and yield approximations with the same order-of-magnitude error as expensive SVD
based methods.

4. CUR-based system identification. In this section, we look at the specific
case of obtaining the decomposition of the Hankel matrix via a CUR factorization.
Furthermore, we provide theoretical bounds relating the approximation error of the
CUR decomposition to the singular values of the matrix. These results are integral to
stating an error bound for the approximate Markov parameters which are obtained
by CUR-based system identification. The numerical results in section 5 demonstrate
that the errors are small in practice. Finally, we show that the advantages of the
CUR factorization include storage requirements of r2 +(nr +nc)r elements and com-
putational complexity that scales linearly with the number of rows and columns of
the Hankel matrix and quadratically with its rank.

4.1. CUR approximation of Hankel matrix. Let \scrI = \{ i1, i2, . . . , ir\} denote
a set of row indices with ik \in \{ 1, 2, . . . , nr\} and \scrJ = \{ j1, j2, . . . , jr\} denote a set of
column indices with jk \in \{ 1, 2, . . . , nc\} . Then the CUR factorization of H is defined
as

(17) Hr := H(:,\scrJ )H(\scrI ,\scrJ )\dagger H(\scrI , :).

If H has finite rank r < min(nr, nc), then we can find \scrI and \scrJ such that the resulting
CUR factorization Hr in (17) is also exact [9].

In practice, however, matrices are often only approximately low-rank. In other
words, they can be decomposed into the sum of a low-rank matrix and a matrix
with small norm, H = Hr + E such that \| E\| F \leq \epsilon . In these cases, the indices
\scrI and \scrJ must be chosen such that the error of the approximation \| H  - Hr\| is
small in some norm. Certain choices of index sets lead to better approximations,
and one ideal choice that we seek is a submatrix H(\scrI ,\scrJ ) that has maximum volume,
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i.e., [\scrI ,\scrJ ] = argmax\^\scrI , \^\scrJ | det(H(\^\scrI , \^\scrJ ))| . If the singular values \sigma i of H are ordered

decreasingly, then this choice provides the following bounds according to [9, 10]:

\| H  - Hr\| C \leq (r + 1)\sigma r+1,

\| H  - Hr\| C \leq (r + 1)2 min
rank(X)=r

\| H  - X\| C ,

where \| \cdot \| C denotes the Chebyshev norm (maximum in absolute value element of the
matrix).

In practice, finding a maximum volume submatrix is infeasible because it is a
combinatorial optimization problem. Therefore, we make two approximations. First,
we use the cross-approximation scheme of Oseledets and Tyrtyshnikov [21] that alter-
nates between searching over rows and columns; this algorithm is reproduced below
by Algorithm 1. The main idea of cross-approximation is to sequentially increase the
volume of a submatrix by alternating a search over rows and columns. The algorithm
we use avoids visiting every element of H and is thus fast to compute. Similar max-
imal volume algorithms were applied recently in the discrete empirical interpolation
framework [23, 5] to improve the interpolation point selection of nonlinear functions.

Algorithm 1. cur-cross: Cross-approximation of a matrix [21].

Input: Matrix H \in \BbbR nc\times nr ;
Rank upper bound estimate r;
Initial column indices \scrJ = [j1, j2, . . . , jr];
Stopping tolerance \delta > 0;
maxvol tolerance \epsilon 

Output: \scrI ,\scrJ such that H(\scrI ,\scrJ ) has ``large"" volume
1: k = 1
2: Q,R = qr(H(:,\scrJ ))
3: \scrI = maxvol(Q, \epsilon )

4: Q,R = qr((H(\scrI , :))T )
5: \scrJ = maxvol(Q, \epsilon )
6: \^Q = Q(\scrJ , :)

7: H1 = H(:,\scrJ )
\Bigl( 
Q \^Q - 1

\Bigr) T

8: repeat
9: Q,R = qr(H(:,\scrJ ))

10: \scrI = maxvol(Q, \epsilon )

11: Q,R = qr((H(\scrI , :))T )
12: \scrJ = maxvol(Q, \epsilon )
13: \^Q = Q(\scrJ , :)

14: Hk+1 = H(:,\scrJ )
\Bigl( 
Q \^Q - 1

\Bigr) T

15: k = k + 1
16: until \| Hk+1  - Hk\| F /\| Hk\| F \leq \delta 

The second approximation seeks a dominant submatrix instead of the maximum
volume submatrix when searching over rows or columns. For a fixed set of rows
(columns) Algorithm 2 is used to find a new set of columns (rows) such that the result-
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ing submatrix is dominant.4 These two algorithmic ingredients, cross-approximation
and seeking a dominant submatrix, allow us to approximately find the maximum-
volume submatrix. Indeed, the volume of a dominant submatrix can bound the max-
imum volume submatrix. Suppose we are considering submatrices of size r\times r of the
matrix H; then, according to [8], the following bounds are obtained:

| det(Hmaxvol)| \geq | det(Hdom)| \geq 
| det(Hmaxvol)| 

rr/2
,

where Hmaxvol is a submatrix of H with maximum volume amongst all submatrices,
and Hdom is any dominant submatrix of H. For more details we refer the reader to [8].
Suppose that | det(Hdom)| \geq \nu | det(Hmaxvol)| for \nu < 1. Then the componentwise error
in H is given in [9] as

(18) \| H  - Hr\| C \leq \nu  - 1(r + 1)\sigma r+1.

Algorithm 2. maxvol: Find dominant submatrix [8].

Input: Matrix Q \in \BbbR nc\times r;
Convergence tolerance \epsilon 

Output: Row indices \scrI = (i1, i2, . . . , ir) such thatQ(\scrI , :) is approximately dominant;

1: L,U,\scrP = lu(Q) \{ pivoted LU decomposition; \scrP is a permutation vector\} 
2: Q\scrP = Q(\scrP , :)

3: G = Q\scrP [Q\scrP (1:r, :)]
\dagger 

4: i\ast , j\ast = argmaxi,j | G(i, j)| 
5: g = G(i\ast , j\ast )
6: while | g| > 1 + \epsilon do
7: \scrP (j\ast ) = i\ast 

8: \scrP (i\ast ) = j\ast 

9: Q\scrP = Q(\scrP , :)

10: G = Q\scrP [Q\scrP (1:r, :)]
\dagger 

11: i\ast , j\ast = argmaxi,j | G(i, j)| 
12: g = G(i\ast , j\ast )
13: end while
14: \scrI = \scrP (1:r)

4.2. Using CUR in the eigensystem realization algorithm. After obtain-
ing the CUR decomposition of H it is necessary to find an orthogonal basis for the
row and column space. To this end, let the SVD of the submatrix H(\scrI ,\scrJ ) be defined
as

U1\Sigma 1V
T
1 = H(\scrI ,\scrJ ),

and recall that it may be obtained with \scrO (r3) operations. Next, a basis for the column
space is obtained by taking a QR decomposition of the combination of the columns
found from Algorithm 1,

QcolR = H(:,\scrJ ),

4Let H be an n \times r matrix with n > r, and let rank(H) = r. Specify an index set \scrJ such that
| \scrJ | = r. The submatrix H(\scrJ , :) is dominant if G = H[H(\scrJ , :)]\dagger has elements such that \| G\| C \leq 1.



A858 BORIS KRAMER AND ALEX A. GORODETSKY

using \scrO (nr2) operations. A basis for the row space is similarly obtained by taking
the LQ decomposition of the rows

LQrow = H(\scrI , :).

We can then form the matrix R [H(\scrI ,\scrJ )]
\dagger 
L = RV1\Sigma 

 - 1
1 UT

1 L by using the SVD of the
submatrix. Taking the SVD of this matrix, we obtain

U\Sigma V T = RV1\Sigma 
 - 1
1 UT

1 L.

The approximation for the Hankel matrix then becomes

H \approx Hr = QcolU\Sigma 1/2\underbrace{}  \underbrace{}  
=:\Theta 

\Sigma 1/2V TQrow\underbrace{}  \underbrace{}  
=:\Gamma 

,

where, in analogy to (6) above, \Theta ,\Gamma are approximations of the observability and
controllability matrices, respectively. A modified ERA with CUR-factored Hankel
approximation is given by Algorithm 3.5 We show as a consequence of Theorem 3 that
the identified reduced-order model is stable, since the factorizations have orthogonal
columns and rows, respectively, by construction.

Corollary 7. Let \Theta and \Gamma be computed as above via the CUR-ERA Algorithm 3.
Then, the identified reduced-order model (10) is stable.

Algorithm 3. CUR-ERA: CUR-based eigensystem realization algorithm.

Input: Markov parameters h1, h2, . . . , h2s - 1;
Reduced model order r;
Tolerances \epsilon , \delta ;
Initial column indices \scrJ 

1: Assemble H from \{ hi\} i=1,...,2s - 1 as in (2.1)
2: \scrI ,\scrJ = cur-cross(H, r,\scrJ , \delta , \epsilon )
3: QcolR = qr(H(:,\scrJ ))
4: LQrow = lq(H(\scrI , :))
5: U1\Sigma 1V1 = svd(H(\scrI ,\scrJ ))
6: U\Sigma V T = svd(RV1\Sigma 

 - 1
1 UT

1 L)

7: \widehat U = QcolU and \widehat V = V TQrow

8: \widehat U1 = \widehat U(1 : nc  - p, :) and \widehat U2 = \widehat U((p+ 1) : nc, :)

9: Ar = \Sigma  - 1/2 \widehat UT
1
\widehat U2\Sigma 

1/2

10: Br = \Sigma 1/2 \widehat V T [Im 0]T

11: Cr = [Ip 0] \widehat U \Sigma 1/2

Remark 8. We note that the proposed CUR-ERA is a direct alternative to the
SVD-ERA and requires the same assumptions. For data sets which do not satisfy the
assumptions, i.e., the convergence-to-zero property, neither of these methods is guar-
anteed to yield stable reduced-order systems and may yield unsatisfactory results. For
example, for mouse-gene data from [24] both SVD-ERA and CUR-ERA gave unsatisfactory
results because the oscillatory nature of the data does not satisfy Assumption 2.

5The initial indices \scrJ in Algorithm 3 are chosen from the uniform distribution on the discrete
set of column indices.
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4.3. Computational complexity of the CUR-based ERA. The computa-
tional complexity of the CUR-based ERA algorithm is defined by the computation
of the CUR decomposition. Algorithm 2, maxvol, requires the LU factorization of
an nc \times r matrix. This factorization requires \scrO (ncr

2) operations. Furthermore, the
dominant cost of each iteration is the multiplication of an nc \times r matrix and an r\times r
matrix, for a cost of \scrO (ncr

2) operations.6 If c \in \BbbN + denotes the number of iterations
performed, then the computational complexity of maxvol is \scrO (cncr

2).
A conservative bound on c is

(19) c \leq 
\bigl( 
log| det(Hmaxvol)|  - log| det(Hstart))| 

\bigr) 
/ log (1 + \epsilon ) ,

where Hstart is the submatrix Q\scrP (1:r, :) \in \BbbR r\times r of line 2 in Algorithm 2 [8].
We now provide the computational cost for cross-approximation.

Lemma 9. Let \kappa \in \BbbN + denote the number of iterations required for Algorithm 1,
and let c \in \BbbN + denote the maximum number of iterations required for maxvol. Then
the total computational cost of Algorithm 1 is

\scrO 
\bigl( 
\kappa r3 + \kappa c (nc + nr) r

2
\bigr) 
.

Proof. The computational cost of Algorithm 1 is dominated by two QR decom-
positions and two calls to maxvol at every iteration. The two QR decompositions are
obtained for the nc\times r and nr\times r matrices, at a cost of \scrO ((nc+nr)r

2) overall. The cost
of maxvol is obtained by calculating the cost of Algorithm 2, which has complexity of
\scrO (cncr

2) for the columns and \scrO (cnrr
2) for the rows. The computational complexity

of computing the difference between the Hankel matrices of successive iterations, i.e.,
the stopping criterion in line 16, is \scrO 

\bigl( 
(nc + nr) r

2
\bigr) 
(see Appendix A).

The overall computational cost of the CUR-based system identification CUR-ERA
is given by the following theorem.

Theorem 10. Let \kappa \in \BbbN + denote the number of iterations required for Algo-
rithm 1, and let c \in \BbbN + denote the maximum number of iterations required for maxvol.
The computational complexity of CUR-ERA is

\scrO (\kappa r3 + \kappa c(nc + nr)r
2).

Proof. The computational complexity of CUR-ERA (Algorithm 3) for system iden-
tification is dominated by decomposing the Hankel matrix into a CUR approximation.
From Lemma 9 we have that the cross-approximation costs \scrO 

\bigl( 
\kappa r3 + \kappa c (nc + nr) r

2
\bigr) 
.

Additionally, two QR decompositions have to be computed, at cost \scrO ((nc + nr)r
2).

The SVD of the small r\times r matrix requires once more \scrO (r3) operations. The two ma-
trix multiplications in line 7 require also (nr + nc)r

2 computations. All other matrix
multiplications are dominated by the above cost. Considering all of this, Algorithm 3
has the same complexity as Algorithm 1.

4.4. Error bound for CUR-based system identification. In this section,
we establish a bound for the maximum approximation error in approximating the
Markov parameters. The error bound below incorporates the first neglected singular
value of the Hankel matrix.

6Note that we require nc > r, and since the cost of computing the pseudoinverse of Q\scrP (1:r, :) is
\scrO (r3), it does not contribute to the complexity as measured by \scrO -notation.
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Proposition 11. Let \{ hk\} 2s - 1
k=1 be the original sequence of Markov parameters,

where hk \in \BbbR p\times m, and let \{ CrA
k - 1
r Br\} 2s - 1

k=1 be the rth order identified sequence via
CUR-ERA in Algorithm 3. The worst-case error in approximating the Markov parame-
ters is

max
k\in \{ 1,...,2s - 1\} 

\| hk  - CrA
k - 1
r Br\| F \leq 

\bigl( 
\nu  - 1\surd mp(r + 1) +

\surd 
r +m+ p

\bigr) 
\sigma r+1(H),

where \nu is as given in (18).

Proof. Let \{ \~hk\} 2s - 1
k=1 be the entries of the CUR approximation Hr to the Hankel

matrix H in (18). For any 1 \leq k \leq 2s - 1 we have by a simple triangle inequality that

max
k\in \{ 1,...,2s - 1\} 

\| hk  - CrA
k - 1
r Br\| F \leq max

k\in \{ 1,...,2s - 1\} 

\Bigl( 
\| hk  - \~hk\| F + \| \~hk  - CrA

k - 1
r Br\| F

\Bigr) 
.

The first term on the right-hand side can be bounded by applying (18) to the block
entry hi in the approximate Hankel matrix Hr, i.e.,

\| hk  - \~hk\| F \leq \nu  - 1\surd mp(r + 1)\sigma r+1(H),

and the second term is bounded by

\| \~hk  - CrA
k - 1
r Br\| F \leq 

\surd 
r +m+ p \sigma r+1(H),

which follows from a conservative application of Kung's error bound [18, Thm. 3.2].
Combining the two error bounds gives the stated result.

There are several steps in the proof of the above result that suggest that the error
bound is not tight. First, the maximum volume approximation algorithm yields a
bound on the maximum elementwise error of the approximate Hankel matrix. How-
ever, the above result is over the Frobenius norm of a particular block in the Hankel
matrix. Thus, the first part of the error bound conservatively bounds every mp entry
in hk by its maximum elementwise error. Second, the value of \nu depends on how close
the volume of the submatrix of the CUR approximation is to the maximum volume
submatrix. While this may be difficult to determine in practice, we expect this part of
the bound to be dominated by the decay of the singular values of the Hankel matrix.
In practice, we see the error decay rate follow the decay rate of the singular values;
we do not see a dominance of \nu . In general, the above theorem is in the same spirit
as Kung's original error bound, relating the Hankel singular values to the error in the
impulse response approximation. Moreover, it should be noted that in [17] Kung's
standard error bound and actual error were computed, and were found to not be sharp
either.

5. Numerical results. In this section7 we numerically compare Algorithm 3,
CUR-ERA, with Kung's standard SVD-ERA.

We consider a mass-spring-damper model from [13, sec. 6]. The model is a system
of ordinary differential equations of dimension n = 1000, and it is equivalent to 500
mass-spring-damper elements. All masses are mi = 4, the spring constants are ki = 4,
and the damping coefficients are ci = 0.1 for i = 1, 2, . . . , 500 = n/2. The states are
the displacement and momentum of the masses, and the outputs are the velocities

7The code for this section is available under GitHub: https://github.com/bokramer/CURERA.

https://github.com/bokramer/CURERA
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of some selected masses. The number of inputs is equal to the number of outputs,
namely m = p = 30. This leads to a continuous-time model,

\.x(t) = \~Ax(t) + \~Bu(t), y(t) = \~Cx(t).

To apply ERA, we convert the continuous-time matrices to a discrete-time model
of the form (1)--(2) with matrices A,B,C via a bilinear transform that maps the
left half-plane onto the unit circle, e.g., [17, 12]. In the discrete-time setting, we
then generate 2s = 1000 Markov parameters via (3). The resulting Hankel matrix
is of size 15, 000 \times 15, 000.8 As a first step for the ERA, a low-rank factorization of
order r = 80 is computed via SVD and CUR, respectively. The tolerances for the
CUR decomposition were set to \delta = 10 - 4 and \epsilon = 2 \times 10 - 2 in Algorithm 1. The
corresponding CPU times and relative Frobenius norm error in the approximation of
the Hankel matrix are given in Table 1. Since the CUR decomposition is initialized
randomly, we averaged the results over 20 test runs.

Table 1
CPU times to compute SVD and CUR decomposition of Hankel matrix. Solved on a desktop

computer with Intel Core i7-3770 CPU @ 3.40GHz \times 8, with 32GB of DDR3 RAM and MATLAB
2015b.

\ttS \ttV \ttD -\ttE \ttR \ttA \ttC \ttU \ttR -\ttE \ttR \ttA 
CPU time 1216.8s 47.72s
\| H  - Hr\| F /\| H\| F 1.56\times 10 - 5 4.35\times 10 - 5

Stability is an important requirement for predictive modeling. For the discrete
LTI systems in this work, stability involves the requirement that eigenvalues are
contained within the unit circle in the complex plane \BbbC . Recall that the CUR-ERA
guarantees stability by Theorem 3. Figure 1 shows the eigenvalues of the identified
reduced-order matrices Ar from CUR-ERA and SVD-ERA.

Figure 2 demonstrates that the eigenvalues close to the critical unit circle, which
are most important for system stability, are accurately approximated. Let \lambda SV D

denote the eigenvalue of the reduced order matrix Ar obtained from the SVD-ERA
algorithm. Let \lambda CUR denote the eigenvalue of the corresponding matrix obtained
from using the CUR-ERA algorithm. The figure plots | \lambda SV D  - \lambda CUR| /| \lambda SV D| against
the difference from the eigenvalues to the stability boundary | 1 - | \lambda CUR| | . Eigenvalues
close to the stability boundary are approximated within 10 - 6 in accuracy, whereas
eigenvalues further away from the boundary of the unit circle have larger errors.

For further comparisons of the results of our CUR-ERA, we map the identified matri-
ces in discrete time, Ar, Br, Cr, back to continuous time, obtaining \~Ar, \~Br, \~Cr, where
we compare simulation results and the transfer functions. The identified reduced-order
transfer function for both approaches is

Gr(i\omega ) := \~Cr(i\omega I  - \~Ar)
 - 1 \~Br, \omega \in \BbbR ,

and we compare them with the full-order model transfer function G(i\omega ) := \~C(i\omega I  - 
\~A) - 1 \~B, \omega \in \BbbR . Note that the transfer function G(\cdot ) is computed in these test
problems for comparison purposes but is, of course, not available in practice.

Figure 3 shows this comparison, whereas Figure 4 shows an error Bode plot. The
errors in the transfer function are almost identical in the critical region of resonance

8We emphasize that the matrices \~A, \~B, \~C are never used in our algorithm, which only has access
to impulse response data.
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Fig. 1. Eigenvalues of the identified system matrix Ar via \ttC \ttU \ttR -\ttE \ttR \ttA and \ttS \ttV \ttD -\ttE \ttR \ttA , respectively.
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Fig. 2. Relative accuracy of the eigenvalues | \lambda SV D  - \lambda CUR| /| \lambda SV D| with respect to distance
from the stability boundary | 1 - | \lambda CUR| | . The relative accuracy of the largest (in magnitude) eigen-
values is significantly higher than for eigenvalues close to the origin, as can also be seen in Figure 1.

\omega \approx 2Hz, yet both fail to approximate the spike fully. This error behavior comes from
the fact that system identification via Markov parameters is equivalent to sampling
the transfer function at infinite frequency, and hence one cannot expect interpolation
at finite frequencies. Rational interpolation-based model reduction schemes would
perform superiorly here, but one needs to be able to sample the transfer function G(\cdot )
at chosen frequencies.

To compare the predictive capabilities of the reduced models from SVD-ERA and
CUR-ERA, we simulate the reduced continuous-time systems as well as the original
continuous-time system, from zero to 50s with zero initial conditions. The input
vector u(t) \in \BbbR m is chosen as in [13, Ex. 6.3] with equal components in all input
channels as e - 0.05t sin(5t). Figures 5 and 6 show the sixth and eleventh outputs.
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Fig. 3. Transfer function of the full model and the two reduced-order models identified from
\ttC \ttU \ttR -\ttE \ttR \ttA and \ttS \ttV \ttD -\ttE \ttR \ttA .

10−4 10−3 10−2 10−1 100 101

10−3

10−2

10−1

100

Frequency ω

|G
(i
ω
)
−

G
r
(i
ω
)|

SVD

CUR

Fig. 4. Error in transfer function from Figure 3.

Both plots demonstrate that the models predict the same qualitative behavior, and
the computationally much faster CUR-ERA system identification matches the traditional
SVD-ERA method extremely well.

6. Conclusions and discussions. We have shown that using the CUR decom-
position together with the classic eigensystem realization algorithm leads to the infer-
ence of accurate reduced-order models from the data-stream of Markov parameters.
We showed that generic factorizations with orthogonal columns and rows, respectively,
of the Hankel matrix can be used within the ERA framework. Furthermore, we were
able to achieve a speedup of 25 compared with the SVD-based ERA, an algorithm
that is widely used in engineering practice. At the same time, the approximation
error of the Hankel matrix via CUR remained in the same order of magnitude as the
optimal rank r SVD approximation.

Appendix A. Fast difference between CUR factorized matrices. Let
H, \widehat H \in \BbbR nr\times nc , C1, C2 \in \BbbR nr\times r; R1, R2 \in \BbbR r\times nc . Let H = C1R1 represent the CUR
factorization of H where C1 = H(:,\scrJ )H(\scrI ,\scrJ ) - 1 is the product of the column matrix
and the submatrix of the CUR. The decomposition requires \scrO (ncr

2) operations. Let\widehat H = C2R2 denote another matrix. A fast computation of \| H  - \widehat H\| F can be obtained
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Fig. 5. Output No. 6 of the continuous-time systems realized using the full and the two identified
reduced-order models.
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Fig. 6. Output No. 11 of the continuous-time systems realized using the full and the two
identified reduced-order models.

by rewriting the difference as

M = H  - \widehat H
= C1R1  - C2R2

=
\bigl[ 
C1  - C2

\bigr] \biggl[ R1

R2

\biggr] 
= CR.

Note that C \in \BbbR nr\times 2r and R \in \BbbR 2r\times nc . In practice, these matrices do not have to
be explicitly formed and, therefore, do not impact the computational expense of the
algorithm. Let the elementwise product be defined as

(20) E = M \odot M =\Rightarrow E[i, j] = (M [i, j])(M [i, j]).
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Then

E[i, j] = C[i, :]R[:, j]C[i, :]R[:, j]

= C[i, :]R[:, j]\otimes C[i, :]R[:, j]

= [C[i, :]\otimes C[i, :]] [R[:, j]\otimes R[:, j]] .

The Kronecker product of the rows C[i, :] requires (2r)2 = 4r2 operations. Similarly,
the Kronecker product of the columns R[:, j] requires 4r2 operations. Define

\langle M,M\rangle =
nr,nc\sum 
i,j=1

E[i, j]

=

nr,nc\sum 
i,j=1

[C[i, :]\otimes C[i, :]] [R[:, j]\otimes R[:, j]]

=

\Biggl[ 
nr\sum 
i=1

[C[i, :]\otimes C[i, :]]

\Biggr] \left[  nc\sum 
j=1

[R[:, j]\otimes R[:, j]]

\right]  
= \Gamma 1\Gamma 2.

Obtaining \Gamma 1 involves computing and summing the Kronecker products of nr row
vectors of C, requiring 4nrr

2 operations. Similarly the cost of computing \Gamma 2 is 4ncr
2.

Note that \Gamma 1 \in \BbbR 1\times 4r2 and \Gamma 2 \in \BbbR 4r2\times 1; thus computing their product requires 4r2

operations. The complexity of computing \langle M,M\rangle is then

(21) \scrO ((nr + nc)r
2),

i.e., linear scaling in the number of columns and rows of the matrix H instead of the
usual quadratic complexity of computing the Frobenius norm. We obtain the desired
result as

\| M\| F =
\sqrt{} 
\langle M,M\rangle .
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