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Abstract

This work presents two novel approaches for the symplectic model reduction of high-dimensional Hamiltonian systems
sing data-driven quadratic manifolds. Classical symplectic model reduction approaches employ linear symplectic subspaces
or representing the high-dimensional system states in a reduced-dimensional coordinate system. While these approximations
espect the symplectic nature of Hamiltonian systems, linear basis approximations can suffer from slowly decaying Kolmogorov

N -width, especially in wave-type problems, which then requires a large basis size. We propose two different model reduction
ethods based on recently developed quadratic manifolds, each presenting its own advantages and limitations. The addition

f quadratic terms to the state approximation, which sits at the heart of the proposed methodologies, enables us to better
epresent intrinsic low-dimensionality in the problem at hand. Both approaches are effective for issuing predictions in settings
ell outside the range of their training data while providing more accurate solutions than the linear symplectic reduced-order
odels.
2023 Elsevier B.V. All rights reserved.
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1. Introduction

Computational modeling, simulation, and control of dynamical systems characterized by Hamiltonian mechanics
re essential for many science and engineering applications such as robotics, quantum mechanics, solid state physics,
nd climate modeling, see [1,2]. Hamiltonian partial differential equations (PDEs) demonstrate complex dynamic
ehavior while possessing underlying mathematical structures in the form of symmetries, Casimirs, symplecticity,
nd energy conservation. The structure-preserving spatial discretization of Hamiltonian PDEs with finite element
ethods, spectral methods, or finite difference methods leads to finite-dimensional Hamiltonian systems with large

tate-space dimensions.
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For a high-dimensional Hamiltonian system, it is desirable to construct a reduced-order model (ROM) that
reserves the underlying geometric structure and in particular, the stability of the full-order model (FOM). To this
nd, the field of structure-preserving model reduction has developed efficient tools for reducing the computational
omplexity of high-dimensional FOMs while preserving the underlying geometric structure. Symplectic model
eduction of Hamiltonian systems was introduced in [3], where the Galerkin projection-based ROM was modified so
hat the ROM retains the underlying symplectic structure. In another research direction, the work in [4] presented a
reedy approach for symplectic model reduction of parametric Hamiltonian systems. A variety of symplectic model
eduction approaches have been developed along these two research directions recently, e.g., basis generation for
ymplectic model reduction of Hamiltonian systems [5–8], modified projection techniques [9–11], and data-driven
perator inference [12–14]. However, all of the aforementioned methods for symplectic model reduction project onto
inear subspaces which often requires simulating high-dimensional ROMs to obtain accurate approximate solutions.

Classical projection-based model reduction methods encounter substantial difficulties whenever the solution
anifold has so-called Kolmogorov N -widths that decay slowly with increasing N [15]. The Kolmogorov N -width

uantifies the degree of accuracy by which a set can be approximated using linear subspaces of dimension N . If the
N -widths decay slowly with increasing N , the associated ROMs can provide accurate approximate solutions only
or large values of N , which in turn defeats the original purpose of achieving computational speedups. This poses
ubstantial limitations to the spectrum of possible applications. Many physics-based systems do not exhibit a global
ow-rank structure and are characterized by slowly decaying Kolmogorov N -widths, such as those featuring coherent
tructures that propagate in space–time [16,17]. Strategies aimed at overcoming this bottleneck typically fall into one
f three categories: (1) dictionary approaches (local reduced basis methods, divide-and-conquer, [18–22]), (2) time-
ependent basis or other transformations [10,23–30], (3) and the use of nonlinear approximation techniques (deep
earning and other data-driven manifold techniques) [31–38], which are sometimes referred as model reduction on

anifolds. In the present work, we focus on the latter class of methods. Following the pioneering work from [39],
rojection-based reduced-order modeling approaches based on convolutional autoencoders have seen a surge of
ctivity in recent years [31,32,37,40,41]. With various levels of success, these methods can produce ROMs of lower
imensionality—compared to classical approaches based on linear subspaces—for the same level of accuracy. In
eneral, however, nonlinear model reduction methods are not tailored to preserve the underlying geometric structure
nd are thus ill-suited for Hamiltonian systems.

An exception in that regard is the work [42], which uses a nonlinear approximation while preserving the structure
f Hamiltonian systems. There, the symplectic manifold Galerkin (SMG) projection is introduced which generalizes
he structure-preserving model reduction with linear subspaces from [3] to symplectic (nonlinear) approximation

appings. The SMG projection requires a symplectic approximation mapping. While the SMG projection works for
ll symplectic approximation mappings, the numerical example in [42] however only considers a weakly symplectic
apping. Moreover, the mapping is based on a deep convolutional autoencoder which leads to a ROM that lacks

nterpretability. Designing autoencoders requires careful considerations towards reproducible research including the
hoice of network size and depth, activation function, optimizer, and weight initialization. Each physical problem
sually requires its own hyperparameter tuning. Furthermore, different latent space sizes might lead to different
ptimal hyperparameter configurations, rendering the training process tedious and often unstable. Solutions to this
roblem have been proposed in the form of automated parameter choices, but more principled techniques have yet
o be established.

In a similar direction, data-driven quadratic manifolds have emerged to build ROMs for transport-dominated
roblems in [43,44]. Combining quadratic manifolds with Galerkin projection leads to a highly scalable approach
or deriving efficient, yet interpretable, ROMs. However, the application of these approaches to Hamiltonian systems,
n their standard formulation, leads to a violation of the underlying geometric structure. This makes the associated
OMs prone to displaying nonphysical behavior (see Section 3.1). The main goal of this work is to build on

he recent successes of data-driven quadratic manifolds to construct structure-preserving state approximations,
haracterized by quadratic nonlinearities, for symplectic model reduction. We focus particularly on high-dimensional
ynamical-system models that arise from the semi-discretization of Hamiltonian PDEs. The key contributions of
his paper are:

1. We propose the quadratic manifold cotangent lift (QMCL) and the resulting SMG-QMCL-ROM in Section 3.3
that use a quadratic approximation to build a symplectic approximation mapping while using the SMG as
projection. The resulting ROM is a Hamiltonian system of reduced dimension. Thus, the SMG-QMCL is

strictly preserving the structure of Hamiltonian systems throughout the reduction.
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2. We propose the blockwise-quadratic (BQ) approximation mapping and the resulting Galerkin-BQ-ROM in
Section 3.4 that increases the accuracy of linear-subspace Hamiltonian ROMs by introducing quadratic terms
to the state approximation. This approach augments the linear-subspace Hamiltonian ROM with interpretable
and physics-preserving higher-order terms to derive an approximately Hamiltonian ROM with improved
computational efficiency compared to the SMG-QMCL-ROM.

3. Numerical experiments on the challenging cases of a thin moving pulse and a two-dimensional nonlinear
wave equation illustrate that the proposed ROMs of the same dimensionality yield more accurate results
than the symplectic linear subspace ROMs. In a parameter extrapolation study for the nonlinear example,
the proposed methods yield accurate predictions of the high-dimensional state even for parameter values that
are outside the range of the training parameters. In a time extrapolation study, the proposed ROMs provide
long-time stable and accurate predictions outside the training time interval.

This paper is structured as follows. In Section 2 we recall the main concepts and definitions of Hamiltonian
ystems and symplectic model reduction on linear subspaces. We also describe the data-driven construction of
uadratic manifolds for nonlinear dimension reduction. Section 3 presents the proposed SMG-QMCL-ROM and
alerkin-BQ-ROM for deriving ROMs of high-dimensional, Hamiltonian systems. In Section 4 we present various
umerical experiments for the parametric one-dimensional linear wave equation and two-dimensional nonlinear
ave equation. Finally, Section 5 summarizes the contributions and suggests a number of interesting avenues for

uture research.

. Background

Section 2.1 provides an introduction to Hamiltonian PDE models, followed by details about their structure-
reserving space discretization. In Section 2.2 we review the basic principles of symplectic model reduction for
amiltonian systems using linear symplectic subspaces. The data-driven learning of quadratic manifolds directly

rom high-dimensional data is recapitulated in Section 2.3.

.1. Hamiltonian systems

In the following we consider parametric Hamiltonian systems. Let P ⊂ Rnµ denote a parameter set for which we
enote the nµ-dimensional elements µ ∈ P as the parameter vector. We consider infinite-dimensional Hamiltonian
ystems described by evolutionary PDEs of the form

∂y(x, t;µ)
∂t

= S
δH
δy

(y(x, t;µ);µ), (1)

here x is the spatial coordinate, t is time, S is a skew-symmetric operator, and δH/δy is the variational derivative1

f the Hamiltonian energy functional H with respect to the state variable y, and µ ∈ P is a fixed but arbitrary
arameter vector.

Hamiltonian PDEs possess important geometric properties in the form of symplecticity and conservation laws.
hese geometric properties are intimately related to the ability of the space-discretized FOMs to reproduce the

ong-time behavior of the solutions of Hamiltonian PDEs [1,45]. Therefore, the underlying symplectic structure and
he conservative nature of Hamiltonian PDEs should be respected in their spatial discretization. Space-discretized
amiltonian FOMs are finite-dimensional systems that are derived from the Hamiltonian PDE via structure-
reserving semi-discretization. Contrary to the traditional approach in which the governing PDEs are discretized
irectly, Hamiltonian FOMs are obtained through a discretization of the space–time continuous Hamiltonian
unctional H and the skew-symmetric operator S in space [45,46]. The resulting Hamiltonian FOM is given by

ẏ(t;µ) = S∇y H (y(t;µ);µ), y(0;µ) = y0(µ), (2)

here y(t;µ) ∈ R2n is the high-dimensional state vector, y0 : P ↦→ R2n is the parametric initial condition,
= −S⊤ is the skew-symmetric matrix approximation to S in (1), and H (·;µ) ∈ C1(R2n) is the space-discretized

arametric Hamiltonian function. In the above equation, and for the remainder of this paper, the dot notation denotes
ifferentiation with respect to time.

1 The variational derivative of H is defined through d H[y + εv;µ]| =

⟨
δH (y;µ), v

⟩
where v is an arbitrary function.
dε ε=0 δy

3
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We focus on high-dimensional Hamiltonian systems with canonical symplectic structure S = J2n =

(
0 In
−In 0

)
,

here In is the n-dimensional identity matrix. For canonical Hamiltonian systems, the state vector can be partitioned
s y(t;µ) = (q(t;µ)⊤, p(t;µ)⊤)⊤ ∈ R2n where q(t;µ) ∈ Rn is the generalized position vector, and p(t;µ) ∈ Rn

is the generalized momentum vector. The governing equation for the canonical Hamiltonian FOM equals

ẏ(t;µ) =
(

q̇(t;µ)
ṗ(t;µ)

)
= J2n∇y H (q(t;µ), p(t;µ);µ), y(0;µ) = y0(µ). (3)

he flow map2 ϕt (y(0;µ);µ) = y(t;µ) for Hamiltonian FOMs (3) preserves a skew-symmetric, bilinear form
nown as the canonical symplectic form ω =

∑n
i=1 dpi ∧ dqi and conserves the Hamiltonian function H ,

.e., H (q(0;µ), p(0;µ);µ) = H (q(t;µ), p(t;µ);µ) for all t .
The field of geometric numerical integration [1,47,48] has developed a wide variety of time integrators for

amiltonian systems that are designed to respect some of the geometric features, such as energy, momentum, or the
ymplectic form. Structure-preserving integrators for finite-dimensional Hamiltonian systems can be divided into two
ategories: (i) symplectic methods [49–51] that preserve the canonical symplectic form ω and (ii) energy-preserving
ntegrators [46,52,53] that conserve the space-discretized Hamiltonian H exactly.

.2. Symplectic model reduction using linear subspaces

The main goal in symplectic model reduction of high-dimensional Hamiltonian systems is the preservation
f symplectic structure during the projection step. The methodologies described in Section 3 may be viewed as
onlinear extensions of the symplectic model reduction method from [3], which covered linear subspaces and is
riefly reviewed here.

To approximate the high-dimensional system state y(t;µ) ∈ R2n we seek an approximation mapping Γ : R2r
↦→

2n , with r ≪ n, as follows:

y(t;µ) ≈ Γ (̃y(t;µ)) ∈ R2n, (4)

here ỹ(t;µ) ∈ R2r denotes the reduced state vector of dimension 2r at time t and parameter vector µ. We continue
y defining the linear symplectic lift (LSL) as

Γ LSL (̃y(t;µ)) := yref + Ṽy(t;µ), (5)

here yref ∈ R2n is a reference state that is used for centering the training data and the basis matrix V ∈ R2n×2r is
symplectic matrix, that is a matrix that satisfies

V⊤J2nV = J2r . (6)

he set of all 2n × 2r symplectic matrices is referred to as the symplectic Stiefel manifold and denoted with
p(2r,R2n). The symplectic inverse V+ ∈ R2r×2n of a symplectic matrix V is defined by

V+ := J⊤2r V⊤J2n such that V+V = I2r ∈ R2r×2r , (7)

hich allows one to define the symplectic Galerkin projection with

ỹ(t;µ) = V+ (y(t;µ)− yref) .

ssuming y(t;µ) − yref ∈ colspan(V) for all t , the time evolution of the reduced state ˙̃y(t;µ) is derived from the
ymplectic projection of the FOM (3) on the symplectic subspace via V+. This results in the ROM equations
˙̃y(t;µ) = V+J2n∇y H (Γ LSL (̃y(t;µ)))

= J2r V⊤∇y H (Γ LSL (̃y(t;µ)))
= J2r∇ỹ H (Γ LSL(̃y(t;µ))),

(8)

here we used V+V = I2r on the left-hand side, V+J2n = J2r V⊤ in the second step, and the chain rule
ỹ H (Γ LSL(̃y(t;µ))) = V⊤∇y H (Γ LSL(̃y(t;µ))) for ỹ(t;µ) ∈ R2r in the last step. Even if y(t;µ)−yref /∈ colspan(V)

or some t , the rightmost expression in (8) is still well-defined.

2 For a dynamical system ẏ(t) = f(y(t)) described by a differentiable vector field f with initial value y(0) = y0, the flow map ϕt (y0) := y(t)
escribes the solution as a function of the initial value.
4
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Algorithm 1 Cotangent lift algorithm [3]

Input: Centered snapshot data matrix Yµ = (Q⊤µ , P⊤µ )⊤ ∈ R2n×ns arranged as in (11) and reduced dimension r
utput: Linear symplectic basis matrix V ∈ R2n×2r

1: Assemble the extended snapshot matrix Ye := (Qµ, Pµ) ∈ Rn×2ns

2: Compute the SVD of Ye
3: Φ ∈ Rn×r

← the r leading left-singular vectors of Ye

4: V =
(
Φ 0
0 Φ

)
∈ R2n×2r with V+ = V⊤ ▷ Assemble linear symplectic basis matrix

By defining the reduced Hamiltonian H̃ : R2r
↦→ R as H̃ (̃y(t;µ);µ) := H (Γ LSL (̃y(t;µ))), we can rewrite (8) as

canonical Hamiltonian system. Thus, the symplectic Galerkin projection of a 2n-dimensional Hamiltonian system
3) is given by a 2r -dimensional LSL-ROM with

˙̃y(t;µ) = J2r∇ỹ H̃ (̃y(t;µ);µ). (9)

The basis matrix can be computed using one of many snapshot-based basis generation techniques. Such
echniques collect solutions of the Hamiltonian FOM (the snapshots) for different time instances and parameter
ectors. The proper symplectic decomposition [3] is a snapshot-based basis generation method to find a symplectic
asis matrix V ∈ R2n×2r . The basis is required to minimize the projection error of the symplectic projection in the
ean over all snapshots which is characterized by the optimization problem

min
V∈R2n×2r

s.t. V⊤J2n V=J2r

Yµ − VV+Yµ


F , (10)

here the centered snapshot data matrix Yµ is defined as

Yµ :=
(
Yµ1 , . . . , YµM

)
∈ R2n×ns , (11)

hich stacks ns := M K centered snapshots in its columns for M parameter instances µ1, . . . ,µM , each with K
ime steps with

Yµ j :=

⎛⎝ | |

(y(t1;µ j )− yref) . . . (y(tK ;µ j )− yref)
| |

⎞⎠ ∈ R2n×K . (12)

or canonical Hamiltonian systems, the centered snapshot data matrix Yµ can be partitioned as Yµ = (Q⊤µ , P⊤µ )⊤

ith the (centered) generalized position and momentum data matrices Qµ ∈ Rn×ns and Pµ ∈ Rn×ns , respectively.
e denote the columns of Yµ, Qµ, and Pµ as y j , q j , and p j , respectively, with j = 1, . . . , ns in the following.
Since no general solution is known for (10), we seek to find solutions in subsets of Sp(2r,R2n) by imposing

urther assumptions on V. In this paper the cotangent lift algorithm,3 summarized in Algorithm 1, is considered for
omputing a linear symplectic basis

V =
(
Φ 0
0 Φ

)
∈ R2n×2r (13)

f block-diagonal structure. For problems where Qµ and Pµ have very disparate scales, one can scale the extended
napshot data matrix in Algorithm 1, i.e., Ye := (Qµ, γ Pµ) ∈ Rn×2ns , before computing Φ via SVD of the
xtended snapshot matrix, see [3] for more details. Other symplectic basis generation techniques consider greedy
asis generation [4,6], non-orthogonal, symplectic basis generation via the SVD-like decomposition [7], iterative
asis generation via optimization on manifolds [5], or optimal symplectic basis generation under certain assumptions
n the Hamiltonian system [8].

3 The cotangent lift algorithm [3] is an SVD-based algorithm for constructing a symplectic basis matrix V. Unlike the cotangent lift of
a smooth map defined for general nonlinear diffeomorphisms [54], the cotangent lift algorithm in [3] only considers linear transformations.
5
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2.3. Data-driven learning of quadratic state approximations

Many datasets in problems involving high-dimensional state spaces are amenable to dimension reduction using
inear techniques such as the POD. However, driving the projection error to an acceptable value can require a large
educed dimension r , rendering the associated ROMs inefficient. We therefore follow [44] in introducing nonlinear
tate approximations with quadratic dependence on the reduced state vector as

y(t;µ) ≈ ΓQ (̃y(t;µ)) := yref + Ṽy(t;µ)+ V(̃y(t;µ)⊗ ỹ(t;µ)), (14)

here V ∈ R2n×2r is a basis matrix that has v j as its j th column; V ∈ R2n×r (2r+1) is a matrix whose columns
re populated by the vectors v j ; and ⊗ denotes the Kronecker product without the redundant terms.4 Learning
he quadratic state approximation (14) from the centered snapshot set {y j }

ns
j=1 ⊂ R2n amounts to a representation

earning problem in which the matrices V, V, and the reduced-order state representations {̃y j }
ns
j=1 ⊂ R2r are

determined numerically through the solution of the optimization problem

arg min
V,V,{̃y j }

ns
j=1

(
J (V, V, {̃y j }

ns
j=1)+ γ

V
2

F

)
, (15)

here

J (V, V, {̃y j }
ns
j=1) =

ns∑
j=1

y j − Ṽy j − V(̃y j ⊗ ỹ j )
2

2 . (16)

scalar regularization factor γ ≥ 0 is used to avoid the overfitting of data.
We learn state approximations of the form (14) in a two-step fashion. First, the columns of the basis matrix V

re chosen as the left-singular vectors corresponding to the 2r largest singular values of the centered snapshot data
atrix Yµ. The representation of the data in the reduced coordinate system can then be computed via the projection
j = V⊤y j for every centered snapshot y j with j = 1, . . . , ns. This leaves only the matrix operator V to be inferred

from the data. Given the basis matrix V and snapshot set {̃y j }
ns
j=1, the optimization problem (15) simplifies to

arg min
V

(
J (V, V, {̃y j }

ns
j=1)+ γ

V
2

F

)
, (17)

hich is a linear least-squares problem with the explicit solution

V = (I− VV⊤)YµW⊤(WW⊤ + γ I)−1
∈ R2n×r (2r+1), (18)

here

W :=

⎛⎝ | |

ỹ1 ⊗ ỹ1 . . . ỹns ⊗ ỹns

| |

⎞⎠ ∈ Rr (2r+1)×ns . (19)

y construction of V in (18), each column of V is in the column space of the orthogonal complement of V in
R2n so that the orthogonality condition V⊤V = 0 holds, see [44] for more details. The inferred basis matrix then
pproximates y(t;µ) ≈ ΓQ (̃y(t;µ)) in a least-squares sense. Eq. (15) amounts to a regularized linear least-squares
roblem that can be solved for each row of V for a total of 2n such problems, each inferring r (2r + 1) unique

entries.

3. Symplectic model reduction of Hamiltonian systems using quadratic manifolds

We now present two different approaches that use, at their core, data-driven quadratic manifolds for building
projection-based ROMs of Hamiltonian systems. Section 3.1 motivates the need for preserving the symplectic
structure while deriving ROMs when using quadratic manifold constructions. Section 3.2 formalizes the problem
considered in this paper. In Section 3.3, we employ quadratic manifolds to develop a novel nonlinear mapping
that is guaranteed to be symplectic and then use this mapping to derive a Hamiltonian ROM of (3) via the SMG

4 For a column vector x = [x1, x2, . . . , xm ]⊤ ∈ Rm , the column-wise Kronecker product without the redundant terms is defined by
x⊗ x :=

[ 2 2 2 ]⊤ ∈ Rm(m+1)/2.
x1 x1x2 . . . x1xm x2 x2x3 . . . x2xm . . . xm

6
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Fig. 1. One-dimensional linear wave equation. Even though plot (a) shows low relative state error (49) for some of the quadratic ROMs
in the training data regime, the corresponding energy error (50) behavior in plot (b) reveals that the conventional model reduction using
quadratic manifolds violates the underlying Hamiltonian structure. The black dashed line indicates end of training time interval.

projection. In Section 3.4, we use data-driven quadratic manifolds to derive approximately Hamiltonian ROMs that
are computationally more efficient than the Hamiltonian ROMs derived in Section 3.3. In this alternate approach,
we augment the linear symplectic approximation mapping (based on the cotangent lift) with terms of the quadratic
Kronecker product to derive a quadratic approximation mapping and then combine it with a Galerkin projection to
derive an approximately Hamiltonian reduced model of (3).

3.1. A motivating example

We motivate the need for symplectic model reduction using quadratic manifolds by demonstrating how the
conventional approach for deriving ROMs using quadratic manifolds [44] violates the underlying Hamiltonian
structure. To demonstrate this we consider ROMs for a nonparametric linear wave equation with periodic boundary
conditions. The space–time continuous Hamiltonian for the linear wave equation, see definition (55), is discretized
using n = 2048 grid points. This leads to snapshot vectors with 2n = 4096 entries. The scalar parameter value in this
numerical experiment is fixed to µ = 0.5. Since we aim to reproduce the dynamics of only a single trajectory, we
omit the dependence on the scalar parameter µ in our derivation of the governing ROM equations in this subsection.
The corresponding FOM equations for the linear wave equation are

ẏ(t) =
(

q̇(t)
ṗ(t)

)
= A

(
q(t)
p(t)

)
, with A :=

(
0 In

0.25Dfd 0

)
, (20)

where Dfd denotes the finite difference approximation of the spatial derivative ∂xx . The Hamiltonian FOM is
integrated using a symplectic integrator based on the implicit midpoint rule with a fixed time step of ∆t = 10−3.
For this numerical example, we center the training data about the initial condition (54), that is yref = y(0). Based

n ns = K = 4000 FOM data snapshots in the range t ∈ [0, 4], we compute a POD basis matrix V by stacking the
eading 2r left-singular vectors of the centered snapshot data matrix. We then obtain V by numerically solving the

optimization problem (17) via (18). Employing the quadratic manifold approximation of the full state y(t), together
ith a Galerkin projection step, yields the following ROM equations

˙̃y(t) = V⊤Ayref + V⊤AṼy(t)+ V⊤AV (̃y(t)⊗ ỹ(t)) . (21)

e then solve (21) using the same fixed time step as the FOM, after which we carry out a reconstruction of the
educed-state data in the original state space using (14).

Fig. 1(a) shows the state approximation error in the training data regime for ROMs of different reduced
imensions. We observe that the relative state error (see (49) for a precise definition) in the training data regime
ecreases from 2r = 12 to 2r = 20 and then increases from 2r = 20 to 2r = 36. For 2r = 8 and 2r = 40, the ROM
olutions become unstable in the training data regime, which is the reason there are no markers for these points
n Fig. 1(a). For 2r = 32 and 2r = 36, we observe similar instabilities at approximately t = 8 (not shown here).
7
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Despite some of the quadratic ROMs (21) exhibiting a relative state error below 10−1 in the training data regime,
they do not conserve the space-discretized Hamiltonian H . The Hamiltonian error plots (see (50) for a precise
definition) in Fig. 1(b) show that, as expected, the FOM energy is not preserved by standard quadratic ROMs of
different sizes. This behavior can be attributed to the reduced quadratic operators not preserving the Hamiltonian
structure. In the remainder of this section, we propose two novel approaches that employ data-driven quadratic
manifolds to derive structure-preserving ROMs of Hamiltonian systems. The numerical experiments in Section 4
show that the proposed methods lead to accurate and stable ROMs with predictive capabilities.

3.2. Problem formulation

We consider a canonical high-dimensional parametric Hamiltonian system

ẏ(t;µ) = J2n∇y H (y(t;µ);µ), y(0;µ) = y0(µ). (22)

pecifically, we focus on parametric Hamiltonian systems with FOM Hamiltonians of the form

H (q, p;µ) =
1
2

p⊤Hp(µ)p+
1
2

q⊤Hq (µ)q, (23)

here Hq (µ), Hp(µ) ∈ Rn×n are obtained by structure-preserving spatial discretization of parametric Hamiltonian
DEs. The corresponding FOM equations are

ẏ(t;µ) =
(

q̇(t;µ)
ṗ(t;µ)

)
= J2n∇y H (y(t;µ);µ) =

(
0 In

−In 0

)(
Hq (µ) 0

0 Hp(µ)

)(
q(t;µ)
p(t;µ)

)
. (24)

he block-diagonal structure in the FOM equations is related to the separable nature of (23) where the FOM
amiltonian is additively separable with respect to generalized position vector q and generalized momentum vector
. Separable Hamiltonian FOMs of the form (24) appear as models in many science and engineering applications
uch as the linear wave equation in physics, the linear elasticity equation in solid mechanics, and Maxwell’s
quations in electromagnetics.

We consider an intrusive model reduction setting in this work where the FOM operators Hq (µ) and Hp(µ) are
ssumed to be known. In the scope of this work, a projection-based model reduction technique consists of (a) an
pproximation mapping Γ : R2r

↦→ R2n and (b) a projection of the residual

r(t;µ) :=
d
dt

(Γ (̃y(t;µ)))− J2n∇y H (Γ (̃y(t;µ));µ) ∈ R2n, (25)

where ỹ(t;µ) ∈ R2r denotes the reduced state vector.
In this paper, we propose two novel approaches that employ data-driven quadratic manifolds, as introduced

in Section 2.3, to derive accurate and stable ROMs for Hamiltonian systems. The two distinct model reduction
techniques proposed in Sections 3.3 and 3.4 are named by the approximation map and the projection that are
used to define it, SMG-QMCL (with the SMG projection and the QMCL approximation map) and Galerkin-BQ
(with a Galerkin projection and the BQ approximation map). The reduced-order matrix operators in both the
SMG-QMCL-ROM and the Galerkin-BQ-ROM may be precomputed in the offline part of the approach.

Since the parameter vectors µ ∈ P are fixed (but arbitrary) for each FOM or ROM, we simplify the notation
by omitting the explicit dependence on the parameter: the FOM state vector y(t;µ) at time t and parameter µ is
therefore often denoted as y(t). Analogously, the generalized position and momentum vectors q(t;µ), p(t;µ) are

enoted as q(t) and p(t), respectively.

emark 1. For noncanonical Hamiltonian systems with a constant and non-degenerate skew-symmetric matrix
in (2), there exists a congruent transformation which can transform the noncanonical Hamiltonian system to

he canonical form, see [3,14] for more details about the model reduction of noncanonical Hamiltonian systems.
hus, the proposed approaches can be applied to noncanonical systems with constant and non-degenerate S after

ransforming the noncanonical FOM to a canonical form.
8
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3.3. Quadratic manifold cotangent lift (QMCL) state approximation and the SMG-QMCL-ROM

We introduce a model reduction technique that strictly preserves the structure of the Hamiltonian system. To this
nd, an approximation mapping is constructed—based on data-driven quadratic manifolds—which is guaranteed
o be symplectic. We begin by considering a quadratic approximation mapping for the generalized position vector
∈ Rr in the form of

ΓQMCL,q (̃q) := qref + Vqq̃+ Vq (̃q⊗ q̃), (26)

ith a constant vector qref ∈ Rn and matrices Vq ∈ Rn×r , Vq ∈ Rn×r (r+1)/2 with

V⊤q Vq = Ir and V⊤q Vq = 0 ∈ Rr×r (r+1)/2. (27)

ased thereon, we introduce the quadratic manifold cotangent lift (QMCL) as the approximation mapping of the
state ỹ = (̃q⊤, p̃⊤)⊤ ∈ R2r with

ΓQMCL (̃q, p̃) :=
(

ΓQMCL,q (̃q)
ΓQMCL,p (̃q, p̃)

)
:=

(
qref + Vqq̃+ Vq (̃q⊗ q̃)

pref +

(
Vq + VqB(̃q)

)̃
v(̃q, p̃)

)
, (28)

ith ṽ(̃q, p̃) :=
(

Ir + (B(̃q))⊤ V⊤q VqB(̃q)
)−1

p̃ ∈ Rr where B(̃q) := D(· ⊗ ·)|̃q ∈ Rr (r+1)/2×r denotes the derivative
f the Kronecker product and a constant vector pref ∈ Rn . We show later in this subsection (in a more general
ramework) that the approximation mapping ΓQMCL is (i) continuously differentiable and (ii) a symplectic map, i.e.
he Jacobian DΓQMCL

⏐⏐̃
y ∈ R2n×2r is a symplectic matrix

DΓQMCL
⏐⏐⊤
ỹ J2n DΓQMCL

⏐⏐̃
y = J2r for all ỹ ∈ R2r . (29)

These two properties allow us to formulate the symplectic inverse (7) of the Jacobian DΓQMCL
⏐⏐̃
y which we denote

s DΓQMCL
⏐⏐+
ỹ(t). Thus, we can directly apply the techniques from [42] to use the SMG projection.

efinition 1 (SMG Projection [42]). The SMG projection requires that the symplectic projection of the residual
25) with the Jacobian of the approximation mapping vanishes, that is

DΓQMCL
⏐⏐+
ỹ(t) r(t) = 0 ∈ R2r for all t. (30)

roposition 1. The ROM obtained via the SMG projection (30) of a canonical Hamiltonian system with ΓQMCL (28)
s again a canonical Hamiltonian system.

roof. We apply the proof from [42, Section 2.3] to the QMCL approximation mapping proposed in the present
ork: Substituting the residual (25) into the definition of the SMG projection (30) leads to

˙̃y(t) = DΓQMCL
⏐⏐+
ỹ(t) J2n∇y H (ΓQMCL (̃y(t)))

=J2r DΓQMCL
⏐⏐⊤
ỹ(t) ∇y H (ΓQMCL (̃y(t)))

=J2r∇ỹ H (ΓQMCL (̃y(t))),

here we use that for all ỹ ∈ R2r it holds that DΓQMCL
⏐⏐+
ỹ DΓQMCL

⏐⏐̃
y = I2r on the left-hand side, DΓQMCL

⏐⏐+
ỹ J2n =

2r DΓQMCL
⏐⏐⊤
ỹ in the second step, and the chain rule for the gradient of the Hamiltonian ∇ỹ H (ΓQMCL (̃y)) =

DΓQMCL
⏐⏐⊤
ỹ ∇y H (ΓQMCL (̃y)) in the last step. With the definition of the reduced Hamiltonian H̃d := H ◦ ΓQMCL ∈

1(R2r ), we see that this is indeed a canonical Hamiltonian system

˙̃y(t) = J2r∇ỹ H̃d (̃y(t)) ∈ R2r , (31)

f reduced dimension 2r . □
9
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Remark 2 (SMG-QMCL-ROM for the Linear Hamiltonian System (24)). For the special case of a linear Hamiltonian
ystem of the form (24), the ROM obtained using the SMG-QMCL approach can be written as

˙̃y(t) = J2r DΓQMCL
⏐⏐⊤
ỹ(t) HΓQMCL (̃y(t)), with H =

(
Hq 0
0 Hp

)
∈ R2n×2n. (32)

To write the specific operations out more explicitly, we introduce the abbreviations

V2 :=

(
Vq 0
0 Vq

)
∈ R2n×2r , V2 :=

(
Vq 0
0 Vq

)
∈ R2n×r (r+1), yref :=

(
qref
pref

)
∈ R2n, (33)

and for ỹ = (̃q⊤, p̃⊤)⊤ ∈ R2r the respective nonlinear, but low-dimensional, coefficient functions

cV2 (̃q, p̃) :=
(

q̃
ṽ(̃q, p̃)

)
∈ R2r , cV2

(̃q, p̃) :=
(

(̃q⊗ q̃)
B(̃q)̃v(̃q, p̃)

)
∈ Rr (r+1),

uch that the mapping ΓQMCL and its derivative are

ΓQMCL (̃y) = yref + V2cV2 (̃y)+ V2cV2
(̃y), DΓQMCL

⏐⏐̃
y = V2 DcV2

⏐⏐̃
y + V2 DcV2

⏐⏐̃
y .

The SMG-QMCL-ROM for the linear Hamiltonian system (23) can be written as

˙̃y(t) = J2r DcV2

⏐⏐⊤
ỹ(t)

(
H̃Vyref + H̃VV cV2 (̃y(t))+ H̃VV cV2

(̃y(t))
)

+ J2r DcV2

⏐⏐⊤
ỹ(t)

(
H̃Vyref

+ H̃⊤VV cV2 (̃y(t))+ H̃VV cV2
(̃y(t))

)
,

(34)

ith different projections of H as

H̃Vyref := V⊤2 Hyref ∈ R2r , H̃VV := V⊤2 HV2 ∈ R2r×2r , H̃VV := V⊤2 HV2 ∈ R2r×r (r+1),

H̃Vyref
:= V⊤2 Hyref ∈ Rr (r+1), H̃VV := V⊤2 HV2 ∈ Rr (r+1)×r (r+1). (35)

ote that all multiplications in (34) are independent of the full dimension n and only depend on the reduced
imension r . Thus, this model is offline–online separable if H is parameter-separable as then the reduced operators
35) can be computed offline following standard techniques (see e.g. [55, Section 3]). In the online stage, the SMG-
MCL approach requires O(r5) multiplication operations to evaluate the right-hand side of the nonlinear ROM and
(r5) multiplication operations to evaluate the Jacobian of this right-hand side.

The derived equations hold for all Vq ∈ Rn×r and V ∈ Rn×r (r+1)/2 which fulfill (27). In our approach, we compute
Vq = Φ through the cotangent lift algorithm from Algorithm 1 and the matrix Vq for the quadratic part is computed
s in Section 2.3 by only using the snapshot matrix Qµ. This approach minimizes the reconstruction errors in q
ased on Qµ snapshot data, which leads to a linear least-squares problem for computing Vq. Alternatively, one could

think about construction Vq based on reconstruction errors for q and p. However, since ΓQMCL,p depends on the
acobian of ΓQMCL,q , this would lead to challenging nonlinear least-squares problem. The SMG-QMCL approach
s summarized in Algorithm 2.

Since the SMG-QMCL approach is based on the SMG projection, we can directly transfer results on the stability
n the sense of Lyapunov:

roposition 2 ([42]). If the Hamiltonian FOM (22) has Lyapunov-stable states and these states are included in the
mage of the symplectic approximation mapping ΓQMCL (28), then these states are also Lyapunov-stable states of
he SMG-QMCL-ROM (34).

It remains to show that the proposed nonlinear approximation map ΓQMCL is (i) continuously differentiable and
ii) a symplectic map. The proof is based on a more general approximation mapping, which we refer to as the
anifold cotangent lift. We begin by introducing immersions and the Moore–Penrose inverse:

efinition 2 (Immersion). An immersion f ∈ C1(Rk,Rm) is a mapping for which the Jacobian Df|x ∈ Rm×k is of
ank k at every point x ∈ Rm .
10
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Lemma 1 (Moore–Penrose Inverse and Immersions). For an immersion f ∈ C1(Rk,Rm) with k ≤ m, the
Moore–Penrose inverse of the Jacobian

Df|†x :=
(

Df|⊤x Df|x
)−1

Df|⊤x (36)

is well-defined for all x ∈ Rk . If f ∈ C2(Rk,Rm), we have that Df|†(·) ∈ C1(Rk,Rm×k).

Proof. Since f ∈ C1(Rk,Rm) is an immersion with k ≤ m, the Jacobian Df|x ∈ Rm×k is of full column
rank k for all x ∈ Rk . Thus, the product (Df|x)

⊤ Df|x is of full rank and thus (36) is well-defined. For an
immersion f ∈ C2(Rk,Rm), we know that Df|(·) ∈ C1(Rk,Rm×k) with constant rank k which is enough to show
Df|†(·) ∈ C1(Rk,Rm×k) (see [56, Theorem 4.3]). □

We propose a nonlinear generalization of the linear symplectic lift employed in the cotangent lift algorithm,
hich we refer to as the manifold cotangent lift.

efinition 3 (Manifold Cotangent Lift). For a given immersion ΓMCL,q ∈ C2(Rr ,Rn), we define the manifold
cotangent lift (MCL) embedding as

ΓMCL (̃q, p̃) :=
(

ΓMCL,q (̃q)
ΓMCL,p (̃q, p̃)

)
withΓMCL,p (̃q, p̃) := pref +

(
DΓMCL,q

⏐⏐†
q̃

)⊤
p̃, (37)

or some pref ∈ Rr .

We show that an MCL embedding is (i) continuously differentiable and (ii) a symplectic map.

heorem 1. The MCL embedding ΓMCL from (37) is continuously differentiable.

roof. We argue about the differentiability of the two components of ΓMCL (37) in three steps. First, we know that
he first component ΓMCL,q ∈ C2(Rr ,Rn) is continuously differentiable by assumption. Second, ΓMCL,p is smooth
n p̃ since the function is linear in p̃. Finally, since ΓMCL,q ∈ C2(Rr ,Rn) is an immersion, Lemma 1 applies and

we know that the Moore–Penrose pseudo inverse is continuously differentiable. Then, we know that ΓMCL,p is
continuously differentiable in q̃ by composition of continuously differentiable functions. □

Theorem 2. The MCL embedding ΓMCL from (37) is a symplectic map (29).

roof. For all ỹ = (̃q⊤, p̃⊤)⊤ ∈ R2r , the derivative of the nonlinear mapping ΓMCL can be written as

DΓMCL |̃y =

⎛⎝ DΓMCL,q
⏐⏐̃
q 0n×r

Dq̃ΓMCL,p
⏐⏐̃
y

(
DΓMCL,q

⏐⏐†
q̃

)⊤
⎞⎠ ∈ R2n×2r ,

here 0n×r ∈ Rn×r is the matrix of all zeros and Dq̃(·) denotes the partial derivative w.r.t. q̃. Using the above
xpression for DΓMCL |̃y, we can write the left-hand side of (29) as

DΓMCL|
⊤

ỹ J2n DΓMCL |̃y =

⎛⎝2 skew
(

DΓMCL,q
⏐⏐⊤
q̃ Dq̃ΓMCL,p

⏐⏐̃
y

)
DΓMCL,q

⏐⏐⊤
q̃

(
DΓMCL,q

⏐⏐†
q̃

)⊤
− DΓMCL,q

⏐⏐†
q̃ DΓMCL,q

⏐⏐̃
q 0r×r

⎞⎠ , (38)

here skew(A) := 1
2 (A− A⊤) denotes the skew-symmetric part of A ∈ Rr×r . To prove the symplecticity, we need

to show that (38) is equal to J2r . We observe that the off-diagonal terms already match due to

Ir = DΓMCL,q
⏐⏐†
q̃ DΓMCL,q

⏐⏐̃
q =

(
DΓMCL,q

⏐⏐†
q̃ DΓMCL,q

⏐⏐̃
q

)⊤
= DΓMCL,q

⏐⏐⊤
q̃

(
DΓMCL,q

⏐⏐†
q̃

)⊤
.

Thus, it remains to show that the term with the skew-symmetric part in (38) equals zero for which we use that

p̃ = Ir p̃ = DΓMCL,q
⏐⏐⊤ (DΓMCL,q

⏐⏐†)⊤ p̃ = DΓMCL,q
⏐⏐⊤ ΓMCL,p (̃q, p̃). (39)
q̃ q̃ q̃

11
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For a better presentation, we reformulate this equation to index notation and use the notation (ΓMCL,q )i, j =(
DΓMCL,q

⏐⏐̃
q

)
i j

for the Jacobian with respect to q̃. Then, we can write (39) in index notation for 1 ≤ i ≤ r
as

(̃p)i =

r∑
k=1

(ΓMCL,q )k,i
(
ΓMCL,p

)
k .

Deriving this equation w.r.t. q̃ yields by using the product rule for 1 ≤ i, j ≤ r

0 =
r∑

k=1

(ΓMCL,q )k,i j
(
ΓMCL,p

)
k +

r∑
k=1

(ΓMCL,q )k,i
(
ΓMCL,p

)
k, j  

=

((
DΓMCL,q |̃q

)⊤
Dq̃ΓMCL,p |̃y

)
i j

,

here we identify in the underbrace the term which we want to make an assertion about for (38). We move this
erm to the left-hand side and obtain for 1 ≤ i, j ≤ r(

DΓMCL,q
⏐⏐⊤
q̃ Dq̃ΓMCL,p

⏐⏐̃
y

)
i j
= −

r∑
k=1

(ΓMCL,q )k,i j
(
ΓMCL,p

)
k . (40)

Since ΓMCL,q ∈ C2(R2r ,R2n), we know by the Lemma of Schwarz that the Hessian of each component (ΓMCL,q )i

is symmetric, i.e. in the presented index notation (ΓMCL,q )k,i j = (ΓMCL,q )k, j i . Thus we know that the terms in (40)
are symmetric in i and j and the skew-symmetric part vanishes. This concludes the proof that (38) equals J2r and
thus ΓMCL is a symplectic map. □

We can show that the cotangent lift and the QMCL can be interpreted as an MCL embedding. For this purpose,
we have to show (a) that these methods can be formulated with (37) via a specific choice for ΓMCL,q and (b) that
this specific ΓMCL,q is indeed an immersion.

Proposition 3 (Cotangent Lift Algorithm as Special Case of MCL). For a matrix Vq ∈ Rn×r with orthonormal
columns, V⊤q Vq = Ir , the choice ΓMCL,q (̃q) = qref+Vqq̃ in the MCL embedding (37) recovers the cotangent lift
with Vq = Φ.

Proof. The Jacobian DΓMCL,q ≡ Vq is of full column rank by the assumption of orthonormal columns in Vq
and thus this linear choice for ΓMCL,q is an immersion. Since DΓMCL,q ≡ Vq with V⊤q Vq = Ir , we know
hat ΓMCL,p (̃q, p̃) = pref+

(
V⊤q Vq

)−1 Vqp̃ = pref+Vqp̃. Thus, the approximation mapping from (37) equals the
pproximation mapping in the linear symplectic lift (5) with V from (13). □

roposition 4 (QMCL as Special Case of MCL). For the quadratic function ΓMCL,q ≡ ΓQMCL,q from (26), the
CL recovers the QMCL from the beginning of this section.

roof. With the requirements (27) on Vq and Vq, we know

DΓMCL,q
⏐⏐⊤
q̃ DΓMCL,q

⏐⏐̃
q = Ir + (B(̃q))⊤ V⊤q VqB(̃q),

nd thus ΓMCL,p (̃q, p̃) = ΓQMCL,p (̃q, p̃). Again, using (27), we can show that ΓQMCL,q is an immersion since

DΓMCL,q
⏐⏐̃
q = Vq + VqB(̃q) and thus V⊤q DΓMCL,q

⏐⏐̃
q = Ir .

Then, with a rank argument DΓMCL,q
⏐⏐̃
q is of full column rank r for all q̃ ∈ Rr . □

MCL embeddings offer a blueprint for generating (nonlinear) mappings which are guaranteed to be symplectic.
This is a clear advantage over [42] which uses a weakly symplectic approach in the numerical experiments to
determine nonlinear approximations of the state. Moreover, the proposed QMCL approximation mapping allows an
offline–online separation for parameter-separable, linear Hamiltonian systems (which is another missing key piece

in [42]) for symplectic model reduction using nonlinear approximation mappings.

12
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3.4. Blockwise-quadratic (BQ) state approximation and the Galerkin-BQ-ROM

The SMG-QMCL approach in Section 3.3 employs a state-dependent projection (28) which leads to a nonlinear
amiltonian ROM (34) with computational complexity O(r5) in the online stage for linear problems. In this section,
e propose an alternative approach to derive approximately Hamiltonian ROMs that are computationally more

fficient in online computations. This approach also retains the physical interpretation of the state variables at the
educed level by choosing the following quadratic approximation for ỹ = (̃q⊤, p̃⊤)⊤ ∈ R2r

ΓBQ (̃y) :=
(
ΓBQ,q (̃q)
ΓBQ,p (̃p)

)
:=

(
qref + Vq q̃+ Vq (̃q⊗ q̃)
pref + Vpp̃+ Vp (̃p⊗ p̃)

)
, (41)

hich we refer to as blockwise-quadratic (BQ) approximation mapping. We then choose Vq = Vp = Φ in accord
ith cotangent lift algorithm 1. The matrices Vq and Vp are obtained from centered snapshots {y j }

ns
j=1 through the

umerical solution of the following pair of optimization problems:

arg min
Vq

(
Jq (Vq , Vq , {̃q j }

ns
j=1)+ γq

Vq
2

F

)
; arg min

Vp

(
Jp(Vp, Vp, {̃p j }

ns
j=1)+ γp

Vp
2

F

)
, (42)

where

Jq (Vq , Vq , {̃q j }
ns
j=1) :=

ns∑
j=1

q j −Φq̃ j − Vq (̃q j ⊗ q̃ j )
2

2 ,

Jp(Vp, Vp, {̃p j }
ns
j=1) :=

ns∑
j=1

p j −Φp̃ j − Vp (̃p j ⊗ p̃ j )
2

2 ,

(43)

ith the reduced snapshots q̃ j = Φ⊤q j and p̃ j = Φ⊤p j from y j = (q⊤j , p⊤j )⊤ ∈ R2n for j = 1, . . . , ns and the
calar regularization parameters γq , γp ≥ 0.

Since the BQ state approximation is not a symplectic map, we cannot use the SMG projection for deriving
OMs. Instead, we use a Galerkin projection that requires the residual (25) to be orthogonal to the columns of

=

(
Φ 0
0 Φ

)
, that is V⊤r(t;µ) = 0. Fusing BQ approximation (41) with the Galerkin projection, we obtain the

alerkin-BQ-ROM

˙̃y(t) = V⊤J2n∇y H (ΓBQ(̃y(t))) = J2r V⊤∇y H (ΓBQ(̃y(t))). (44)

or linear Hamiltonian systems of the form (23), the Galerkin-BQ-ROM simplifies to

˙̃q(t) = Φ⊤Hppref +Φ⊤HpΦp̃(t)+Φ⊤HpVp (̃p(t)⊗ p̃(t)) ,

˙̃p(t) = −Φ⊤Hqqref −Φ⊤HqΦq̃(t)−Φ⊤HqVq (̃q(t)⊗ q̃(t)) ,
(45)

here we used the orthogonality properties of the basis matrices Φ⊤Vq = Φ⊤Vp = 0. This system of equations
an be rewritten as(

˙̃q(t)
˙̃p(t)

)
=

(
H̃ref,p

−H̃ref,q

)
+

(
0 Ir

−Ir 0

)(
H̃q 0
0 H̃p

)(
q̃(t)
p̃(t)

)
+

(
0 H̃p

−H̃q 0

)(
q̃(t)⊗ q̃(t)
p̃(t)⊗ p̃(t)

)
, (46)

here the reduced operators are

H̃ref,q := Φ⊤Hqqref ∈ Rr , H̃q := Φ⊤HqΦ ∈ Rr×r , H̃q := Φ⊤HqVq ∈ Rr×r (r+1)/2,

H̃ref,p := Φ⊤Hppref ∈ Rr , H̃p := Φ⊤HpΦ ∈ Rr×r , H̃p := Φ⊤HpVp ∈ Rr×r (r+1)/2.
(47)

Approximation (28) of the SMG-QMCL-ROM transforms the high-dimensional problem (24) into a reduced
onlinear Hamiltonian system. In sharp contrast, the use of the Galerkin-BQ-ROM leads to a reduced linear
amiltonian system with a quadratic perturbation term. Nonetheless, (41) exploits knowledge about the canonical

tructure of the FOM, leading to an approximately Hamiltonian ROM (46) that retains the intrinsic coupled structure
f the FOM and has interpretable states. The numerical results in Section 4 demonstrate that this is indeed a very

ccurate strategy. The Galerkin-BQ-ROM is summarized in Algorithm 3.

13
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Algorithm 2 Offline phase for the SMG-QMCL-ROM

Input: Centered snapshot data matrix Yµ = (Q⊤µ , P⊤µ )⊤ ∈ R2n×ns arranged as in (11), reference state yref =

(q⊤ref, p⊤ref)
⊤, Hamiltonian FOM operators Hq and Hp (24), and reduced dimension r .

utput: Reduced operators H̃Vyref , H̃Vyref
, H̃VV, H̃VV, H̃VV for Hamiltonian ROM (34) and basis matrices Vq and

Vq (28).
1: Vq = Φ ← Compute symplectic basis matrix using Algorithm 1 ▷ Basis computation
2: q̃ j = Φ⊤q j for j = 1, . . . , ns ▷ Represent q j in reduced-dim. coordinate system
3: Vq ← Solve linear least-squares problem (17) ▷ Representation learning problem
4: H̃Vyref , H̃Vyref

, H̃VV, H̃VV, H̃VV ← Compute matrix operators from (35) ▷ ROM operators

Algorithm 3 Offline phase for the Galerkin-BQ-ROM

Input: Centered snapshot data matrix Yµ = (Q⊤µ , P⊤µ )⊤ ∈ R2n×ns arranged as in (11), reference state yref =

(q⊤ref, p⊤ref)
⊤, Hamiltonian FOM operators Hq and Hp (24), and reduced dimension r .

utput: Reduced operators H̃ref,q , H̃ref,p, H̃q , H̃p, H̃q , H̃p for Hamiltonian ROM (46), and basis matrices Vq , Vp,
Vq , and Vp (41).

1: Vq = Vp = Φ ← Compute symplectic basis matrix using Algorithm 1 ▷ Basis computation
2: q̃ j = Φ⊤q j for j = 1, . . . , ns ▷ Represent q j in reduced-dim. coordinate system
3: p̃ j = Φ⊤p j for j = 1, . . . , ns ▷ Represent p j in reduced-dim. coordinate system
4: Vq , Vp ← Solve linear least-squares problems (42) ▷ Representation learning problem
5: H̃ref,q , H̃ref,p, H̃q , H̃p, H̃q , H̃p ← Compute matrix operators from (47) ▷ ROM operators

The Galerkin-BQ-ROM requires O(r3) online multiplication operations to evaluate the right-hand side of the
OM and O(r4) multiplication operations to evaluate the Jacobian of this right-hand side. The SMG-QMCL-ROM,
n the other hand, requires O(r5) multiplications for both of these tasks. In other words, by allowing an approximate

Hamiltonian structure we achieve a computationally more efficient online phase compared to the SMG-QMCL-ROM
from Section 3.3. Importantly, we do not compromise the improved accuracy from data-driven quadratic manifolds.

4. Numerical results

In this section, the proposed model reduction methods are applied to two parametrized wave equations, which
are prototypical of transport problems for which slowly-decaying Kolmogorov N -widths have been observed in
similar settings in [16]. Section 4.1 provides details about the numerical implementations and the reported error
measures. In Section 4.2, we demonstrate that the proposed approaches yield more accurate ROMs than the linear
symplectic ROMs for a model that generalizes in the parameter and extrapolates in time. Finally, in Section 4.3, we
demonstrate the parameter extrapolation capabilities of the proposed approaches on a two-dimensional nonlinear
wave equation.

4.1. Practical considerations & error measures

All numerical experiments in this paper are conducted using MATLAB version 2022a. For time integration we
use the implicit midpoint rule for all FOM and ROM simulations. For time-continuous dynamical systems the
corresponding time-marching equations are

yk+1 − yk

∆t
= f

(
yk + yk+1

2

)
,

here ∆t is the fixed time step. The implicit midpoint rule is a second-order symplectic integrator that exhibits
ounded energy error for nonlinear Hamiltonian systems [47]. The Galerkin-BQ-ROM (46) is solved at every time
tep using Newton’s method. The SMG-QMCL-ROM (34), on the other hand, uses a quasi-Newton scheme that
eglects the second-order derivatives of Γ for an improvement of the online runtime, following the procedures
QMCL

14
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from [39]. The regularization parameters γq , γp in (42) are chosen to ensure accurate and stable ROMs throughout
the range of time integration. They are found by means of a two-dimensional grid search across a sufficiently wide
range of parameter values. For both the linear and the nonlinear wave equation example, we use the same γq value
for the SMG-QMCL-ROMs and the Galerkin-BQ-ROMs which leads to the same projection error in q for both
approaches. Furthermore, all the numerical examples in this work use the same regularization parameter values for
different basis sizes.

In the following, we introduce the error measures used in the remainder of the paper with a general approximation
Γ , which can either be Γ LSL (5), ΓQMCL (28), or ΓBQ (41). With Γ q , we denote the restriction of the mapping to
the variable q. The average relative projection error in q(t;µ) is computed as

errproj,q =
1
M

M∑
i=1

∥Q(µi )− Γ q (V⊤Q(µi ))∥2
F

∥Q(µi )∥2
F

, (48)

where µ1, . . . ,µM ∈ P denotes a set of parameters. This error is valid for both the training and the test parameters.
n equivalent metric errproj,p is defined for p(t;µ). The average relative state error is computed as

errsim =
1
M

M∑
j=1

∥Y(µ j )− Γ (Ỹ(µ j ))∥2
F

∥Y(µ j )∥2
F

, (49)

here Ỹ(µ j ) is obtained from the ROM simulations and Γ (Ỹ(µ j )) is the reconstruction of a trajectory at parameter
alue µ j in the original state space. We introduce two separate energy error measures for comparing the preservation
f the Hamiltonian in the different ROMs. Since the FOM state trajectories for the linear wave equation preserve
he energy exactly, the error in the Hamiltonian for the linear wave equation example in Section 4.2 is computed
s

∆Hlin(t) = |H (Γ (̃y(t;µ));µ)− H (Γ (̃y(0;µ));µ)| , (50)

here H (Γ (̃y(t;µ));µ) is the FOM energy approximation. For nonlinear Hamiltonian FOMs, the FOM state
rajectories do not preserve the energy exactly because the implicit midpoint scheme only preserves invariances
p to the quadratic order. As a result, the error in the Hamiltonian for the nonlinear wave equation example in
ection 4.3 is computed as

∆Hnonlin(t) = |H (Γ (̃y(t;µ));µ)− H (y(t;µ);µ)| . (51)

.2. Parametrized linear wave equation

We revisit the linear wave example from Section 3.1. This model problem is similar to the parametric linear wave
xample in [4]. Let Ω = (−0.5, 0.5) ⊂ R be the spatial domain and consider the parametrized one-dimensional
ave equation

∂2

∂t2 ϕ(x, t;µ) = µ2 ∂2

∂x2 ϕ(x, t;µ), (52)

ith the state ϕ(x, t;µ) at the spatial coordinate x ∈ Ω , time t ∈ (0, T ], and the scalar parameter µ ∈ P =
5/12, 5/7]. Homogeneous Dirichlet boundary conditions

ϕ(−0.5, t;µ) = ϕ(0.5, t;µ) = 0, (53)

re imposed for t ∈ (0, T ] and µ ∈ P . We consider a parametric initial condition of the form ϕ0(x;µ) := h(s(x;µ))
ased on the spline function

h(s(x;µ)) :=

⎧⎪⎨⎪⎩
1− 3

2 s(x;µ)2
+

3
4 s(x;µ)3 0 ≤ s ≤ 1,

1
4 (2− s(x;µ))3 1 ≤ s ≤ 2,

0 s > 2
(54)

ith s(x;µ) :=
(
4
⏐⏐x + 1

−
µ
⏐⏐) /µ for which the exact solution is given by ϕ(x, t;µ) = ϕ (x − µt;µ).
2 2 0
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4.2.1. Hamiltonian PDE formulation and FOM implementation details
We rewrite (52) as an infinite-dimensional Hamiltonian system with q(x, t;µ) := ϕ(x, t;µ) and p(x, t;µ) :=

ϕ(x, t;µ)/∂t . The associated Hamiltonian functional is

H(q(x, t;µ), p(x, t;µ);µ) =
∫
Ω

[
1
2

p(x, t;µ)2
+

1
2
µ2
(

∂

∂x
q(x, t;µ)

)2
]

dx, (55)

nd the original PDE can be recast as a Hamiltonian PDE

∂

∂t
q(x, t;µ) =

δH
δp

(q, p;µ) = p(x, t;µ),
∂

∂t
p(x, t;µ) = −

δH
δq

(q, p;µ) = µ2 ∂2

∂x2 q(x, t;µ). (56)

We discretize the spatial domain Ω with n = 2048 equally spaced grid points leading to a Hamiltonian FOM of
dimension 2n = 4096. Using a finite difference scheme, we obtain the following space-discretized Hamiltonian

H (q(t;µ), p(t;µ)) = ∆x
n∑

i=1

[
pi (t;µ)2

2
+

µ2(qi+1(t;µ)− qi (t;µ))2

4∆x2 +
µ2(qi (t;µ)− qi−1(t;µ))2

4∆x2

]
, (57)

ith

qi (t;µ) := ϕ(xi , t;µ), q(t;µ) = (q1(t;µ), . . . , qn(t;µ))⊤ ∈ Rn,

pi (t;µ) :=
∂

∂t
ϕ(xi , t : µ), p(t;µ) = (p1(t;µ), . . . , pn(t;µ))⊤ ∈ Rn.

he corresponding parametrized Hamiltonian FOM equals

ẏ(t;µ) =
(

q̇(t;µ)
ṗ(t;µ)

)
= J2n∇y H (y(t;µ)) =

(
0 In

µ2Dfd 0

)(
q(t;µ)
p(t;µ)

)
. (58)

.2.2. Generalization to unseen parameters
Let µ1 = 0.417, µ2 = 0.476, µ3 = 0.536, µ4 = 0.595, µ5 = 0.655, µ6 = 0.714 ∈ P be M = 6 parameters

quidistantly distributed in P . In this study, a training dataset is built by integrating the Hamiltonian FOM (58)
or each training parameter with the implicit midpoint method until final time T = 1. We use a fixed time step of
t = 2.5× 10−4. For this study, we do not shift the trajectory snapshot data, i.e., qref = pref = 0. From these six

rajectories, we construct the nonlinear approximation functions ΓQMCL (28) and the corresponding SMG-QMCL-
OM, as well as ΓBQ (41) and the corresponding Galerkin-BQ-ROM. For this study, we found γq = γp = 102 to
e a robust choice for SMG-QMCL and Galerkin-BQ ROMs of dimension 4 ≤ 2r ≤ 20. We provide more details
n this selection in Section 4.2.3. We consider Mtest = 2 test parameters µtest,1 = 0.51 ∈ P and µtest,2 = 0.625 ∈ P
o evaluate how these data-driven ROMs generalize for parameter values outside the training dataset.

In Fig. 2, we compare the relative projection error from (48) for the training data for different values of the
educed dimension. For both q and p the quadratic manifold approximations yield higher accuracy compared
o the linear symplectic subspaces for all reduced dimension values. For this study, we use the same quadratic
pproximations for q in both the SMG-QMCL and the Galerkin-BQ approach, and therefore the relative projection
rror for q in Fig. 2(a) is the same. The projection error comparison for p is shown in Fig. 2(b) where we observe
hat the Galerkin-BQ yields marginally lower projection error than the SMG-QMCL.

The comparison of the relative state error (49) between nonlinear SMG-QMCL-ROM and quadratic Galerkin-
Q-ROM is shown in Figs. 3(a) and 3(b) for the training and the test parameters, respectively. Compared to the

inear symplectic ROMs, we observe that SMG-QMCL-ROM and Galerkin-BQ-ROM obtain lower relative state
rror in both training and testing data regimes. The plots in Figs. 3(a) and 3(b) show that the linear symplectic
ubspace approach produces the least accurate ROMs whereas the Galerkin-BQ-ROM admits the highest accuracy
n both training and test data regimes.

The energy error (50) plots in Figs. 4(a) and 4(b) show that the approximately Hamiltonian Galerkin-BQ-ROMs
xhibit bounded error in the Hamiltonian for both µtest,1 = 0.51 and µtest,2 = 0.625. The Hamiltonian SMG-
MCL-ROMs demonstrate a substantially lower Hamiltonian error due to the usage of the exactly symplectic
apping ΓQMCL and the structure-preserving SMG projection. For both approaches, we observe a decrease in the
amiltonian error when we increase the ROM size from 2r = 16 to 2r = 20.
16
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y

l

Fig. 2. One-dimensional linear wave equation (generalization to unseen parameters). Data-driven approximations based on quadratic manifolds
ield lower relative projection error (48) than the linear symplectic subspaces for q and p variables. The regularization factors are chosen

to be γq = γp = 102.

Fig. 3. One-dimensional linear wave equation (generalization to unseen parameters). Galerkin-BQ-ROMs and SMG-QMCL-ROMs achieve
ower state error (49) than the linear symplectic ROMs for both training and test parameters.

We compare the approximate numerical solution for µtest,1 = 0.51 of the linear symplectic ROM, the SMG-
QMCL-ROM and the Galerkin-BQ-ROM of size 2r = 16 in Fig. 5. Even though the FOM solution snapshots for
µtest,1 = 0.51 are not included in the training data, the ROMs based on an quadratic approximation, SMG-QMCL-
ROM and Galerkin-BQ-ROM, capture the correct wave shape at t = 1. The approximate solutions of the linear
symplectic ROM, on the other hand, suffer from spurious oscillations, which grow in magnitude as the solution
evolves with time.

4.2.3. Sensitivity to regularization parameters
We study the effect of the regularization parameters γq and γp on the accuracy of the proposed ROMs in Fig. 6.

There, we fix the reduced dimension to 2r = 16, set γp = γq , and vary the regularization parameter γq from 10−3

to 103. In Fig. 6(a), we observe that the relative projection error in q for both approaches remain approximately
1
constant up to γq = 10 . However, as γq increases further, the relative projection error increases in magnitude. For

17
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Fig. 4. One-dimensional linear wave equation (generalization to unseen parameters). The Hamiltonian error (50) for the Galerkin-BQ-ROMs
remains below 10−2 for µtest,1 = 0.51 and µtest,2 = 0.625 whereas the Hamiltonian error for the SMG-QMCL-ROMs remains below 10−6

or both test parameter values.

he comparison in Fig. 6(b), we observe that the projection error in p increases marginally for the SMG-QMCL
pproach whereas the Galerkin-BQ approach demonstrates nearly constant projection error. In Fig. 6(c), we observe
hat both the SMG-QMCL and the Galerkin-BQ approach yield ROMs with approximately same accuracy up to
q = 1. For γq > 1, we observe a marginal decrease in the accuracy with increasing γq for both approaches.

Overall, the relative state error values for SMG-QMCL and Galerkin-BQ ROMs of different dimensions remain
largely unaffected by the regularization parameter in the investigated range and hence we choose γq and γp values
that lead to accurate and stable ROMs over a range of reduced dimensions. The results from this sensitivity study
illustrate that the proposed approaches provide higher accuracy than the linear symplectic subspace approach over a
wide range of regularization parameters. Therefore, the regularization parameters used for the numerical results in
Section 4.2.2 are quite robust and can be used to derive accurate and stable ROMs without extensive fine-tuning.

4.2.4. Time extrapolation study
A key motivation for symplectic model reduction using data-driven quadratic manifolds is to obtain low-

dimensional ROMs that can capture the periodic behavior in an accurate and stable manner. In this study, we
fix the scalar parameter in (58) to µ = 0.5 and build a training dataset of snapshots over one cycle by integrating
the Hamiltonian FOM with the implicit midpoint method until time t = 4 with a fixed time step ∆t = 10−3. Note
hat we use the same training dataset with the same fixed time step ∆t = 10−3 as in the motivational example in
ection 3.1. For this time extrapolation study, we found γq = γp = 106 to be a robust choice for the proposed

approaches. For test data, we consider the FOM solution snapshots over the next nine cycles, i.e., from t = 4 to
t = 40. For this time extrapolation study, we center the trajectory snapshot data about the initial condition with
qref = q(0) and pref = p(0).

We compare the accuracy and the energy error performance of the proposed ROMs in Fig. 7. In Fig. 7(a), we
bserve that both the SMG-QMCL and the Galerkin-BQ approach yield ROMs with similar accuracy in the training
ata regime. Compared with Fig. 1(a), we observe that the proposed approaches yield stable ROMs that demonstrate
decrease in state error with increasing reduced dimension. The energy error plots in Fig. 7(b) demonstrate stability
utside the training data regime for both the SMG-QMCL-ROMs and the Galerkin-BQ-ROMs of different reduced
imensions. For both approaches, we observe that the error in the Hamiltonian decreases marginally with an
ncrease in the reduced dimension 2r . All three SMG-QMCL-ROMs exhibit bounded energy error and the error

−7
n the Hamiltonian for all three ROMs remain below an absolute value of 10 outside the training time interval.

18
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Fig. 5. One-dimensional linear wave equation (generalization to unseen parameters). Plots show the numerical approximation of the solution
of (52) for µtest = 0.51 using low-dimensional (2r = 16) LSL-ROM, Galerkin-BQ-ROM and SMG-QMCL-ROM at different t values. The
Galerkin-BQ-ROMs and SMG-QMCL-ROMs capture the correct wave shape at t = 1 whereas the LSL-ROM 2r = 16 exhibits spurious
oscillations from t = 0.25 onwards.

Fig. 6. One-dimensional linear wave equation (sensitivity to regularization parameters). The accuracy of the proposed ROMs with reduced
dimension 2r = 16 does not change with the regularization parameter up to γq = 101. For γq > 101, we observe a marginal decrease in
the accuracy for both the SMG-QMCL-ROM and the Galerkin-BQ-ROM.
19
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Fig. 7. One-dimensional linear wave equation (time extrapolation study). Plot (a) shows that LSL-ROMs, Galerkin-BQ-ROMs, and SMG-
QMCL-ROMs achieve similar accuracy in the training data regime. Plot(b) compares the energy error behavior for ROMs of different
sizes. The nonlinear SMG-QMCL-ROMs exhibit bounded error in the Hamiltonian (50) outside the training data regime. In contrast, the
Hamiltonian errors for the quadratic Galerkin-BQ-ROMs slowly grow with time. The dashed black line indicates end of training time interval
at t = 4.

Despite the Hamiltonian error for the Galerkin-BQ-ROM remaining below an absolute value of 10−1 over the entire
observation interval t ∈ [0, 40], we do observe a slow growth because of its approximately symplectic structure.

The space–time evolution of the FOM solution field is compared with the space–time evolution of the
pproximate solutions obtained using ROMs of dimension 2r = 24 in Fig. 8. While all three ROMs approximate the
OM solution accurately in the training data regime, we observe that the linear symplectic ROM exhibits spurious
scillations that gradually become more pronounced as we march forward in time in Fig. 8(b). In Fig. 8(c) and
ig. 8(d), we observe that both proposed approaches provide stable and accurate approximate solutions at time
= 40, which is 900% outside the training time interval. Unlike the conventional quadratic manifolds approach in
ection 3.1 which can lead to unstable ROMs, the long-time stable and accurate predictions of future cycles in this

ime extrapolation study highlights the utility of the proposed methods for high-dimensional systems with periodic
ehavior.

.3. Parametrized two-dimensional nonlinear wave equation

For a second numerical example, we consider the two-dimensional nonlinear wave equation with parametric
onlinearity. This parametric model problem is similar to the two-dimensional nonlinear wave equation example
n [57]. Let Ω = (−10, 10)× (−10, 10) ⊂ R2 be the spatial domain and consider the parametrized two-dimensional
onlinear wave equation

∂2ϕ

∂t2 (x, y, t;µ) =
∂2ϕ

∂x2 (x, y, t;µ)+
∂2ϕ

∂y2 (x, y, t;µ)− µϕ(x, y, t;µ)3, (59)

ith the state ϕ(x, y, t;µ) at (x, y) ∈ Ω , time t ∈ (0, T ], and the scalar parameter µ ∈ P = [0.1, 3]. Periodic
boundary conditions

ϕ(−10, y, t;µ) = ϕ(10, y, t;µ), ϕ(x,−10, t;µ) = ϕ(x, 10, t;µ), (60)

are imposed for t ∈ (0, T ] and µ ∈ P .
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Fig. 8. One-dimensional linear wave equation (time extrapolation study). Plots show the numerical approximation of the FOM solution using
low-dimensional (2r = 24) LSL-ROM, SMG-QMCL-ROM, and Galerkin-BQ-ROM for t ∈ [0, 40]. The dashed black line indicates the end
of the training time interval at t = 4. Plot (b) shows that the LSL-ROM yields inaccurate solutions after t = 8 whereas plot (c) and plot
(d) show that SMG-QMCL-ROM and Galerkin-BQ-ROM provide accurate approximate solutions even at t = 40.

4.3.1. Hamiltonian PDE formulation and FOM implementation details
We rewrite (59) as an infinite-dimensional canonical Hamiltonian system with q(x, y, t;µ) := ϕ(x, y, t;µ) and

p(x, y, t;µ) := ∂ϕ(x, y, t;µ)/∂t . The associated space–time continuous Hamiltonian functional is

H(q(x, y, t;µ), p(x, y, t;µ);µ) =
1
2

∫
Ω

[
p(x, y, t;µ)2

+

(
∂

∂x
q(x, y, t;µ)

)2

+

(
∂

∂y
q(x, y, t;µ)

)2
]

dxdy

+

∫
Ω

µ

4
q(x, y, t;µ)4dxdy (61)

nd the original nonlinear PDE can be recast as a canonical Hamiltonian PDE

∂

∂t
q(x, y, t;µ) =

δH
δp

(q, p;µ) = p(x, y, t;µ),

∂

∂t
p(x, y, t;µ) = −

δH
δq

(q, p;µ) =
∂2

∂x2 q(x, y, t;µ)+
∂2

∂y2 q(x, y, t;µ)− µq(x, y, t;µ)3.

We discretize the two-dimensional spatial domain Ω with nx = ny = 100 equally spaced grid points in both spatial
directions leading to system states of dimension 2n with n = nx ny = 10,000. Using a finite difference scheme in
both spatial directions, we obtain the following space-discretized Hamiltonian

H (q(t;µ), p(t;µ);µ) = ∆x∆y
nx ,ny∑
i, j=1

[
pi, j (t;µ)2

+
(qi+1, j (t;µ)− qi, j (t;µ))2

4∆x2 +
(qi, j (t;µ)− qi−1, j (t;µ))2

4∆x2

]

+∆x∆y
nx ,ny∑
i, j=1

[
(qi, j+1(t;µ)− qi, j (t;µ))2

4∆y2 +
(qi, j (t;µ)− qi, j−1(t;µ))2

4∆y2 +
µ

4
qi, j (t;µ)4

]
, (62)

ith

qi, j (t;µ) := ϕ(xi , y j , t;µ), q(t;µ) = (q1,1(t;µ), . . . , qnx ,ny (t;µ))⊤ ∈ Rn,

pi, j (t;µ) :=
∂

∂t
ϕ(xi , y j , t;µ), p(t;µ) = (p1,1(t;µ), . . . , pnx ,ny (t;µ))⊤ ∈ Rn.
21
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Fig. 9. Two-dimensional nonlinear wave equation. Both the QMCL and the BQ state approximation yield a substantially lower relative
rojection error (48) than the linear symplectic subspaces for q and p variables. The regularization factors are chosen to be γq = γp = 10−1.

he corresponding parametrized nonlinear Hamiltonian FOM is

ẏ(t;µ) =
(

q̇(t;µ)
ṗ(t;µ)

)
= J2n∇y H (y(t;µ)) =

(
0 In

Dfd,2d 0

)(
q(t;µ)
p(t;µ)

)
− µ

(
0

q(t;µ)3

)
, (63)

here Dfd,2d denotes the finite difference approximation in the two-dimensional setting and the vector q(t;µ)3
∈ Rn

ontains as components the entry-wise cubic exponential of the generalized state vector q(t;µ).

.3.2. Parameter extrapolation study
Let µ1, . . . , µ10 ∈ Ptrain be M = 10 parameters equidistantly distributed (including the endpoints) in Ptrain =

0.1, 1]. For this parameter extrapolation study, we build a training dataset by integrating the nonlinear Hamiltonian
OM (63) for each training parameter with the implicit midpoint method until final time T = 8. We use a fixed

ime step of ∆t = 0.1. In this study, we do not shift the trajectory snapshot data, i.e., qref = pref = 0. From this
raining dataset, we first construct data-driven nonlinear approximation functions, i.e., ΓQMCL (28) and ΓBQ (41).

e then derive the corresponding nonlinear SMG-QMCL-ROM (31) and nonlinear Galerkin-BQ-ROM (44) for
ifferent reduced dimensions. For this parameter extrapolation study, we found γq = γp = 10−1 to be a robust
hoice for both approaches. We also consider Mtest = 4 test parameters µtest,1 = 1.25, µtest,2 = 1.5, µtest,3 = 2, and
test,4 = 3 to evaluate how the proposed nonlinear data-driven ROMs generalize for parameter values outside the

raining dataset.
In Fig. 9, we compare the relative projection error in q and p for the training data consisting of ten trajectories.

or both q and p, the nonlinear approximations based on data-driven quadratic manifolds yield a substantially
igher accuracy compared to the linear symplectic subspaces for all reduced dimensions. Similar to the linear wave
quation example, we use the same quadratic approximations for q in both the SMG-QMCL and the Galerkin-BQ
pproach, and therefore the relative projection error for q in Fig. 9(a) is the same. In Fig. 9(b), we observe that the
Q approximation mapping yields a lower projection error than the QMCL approximation for p.

In Fig. 10, we observe that the proposed SMG-QMCL and Galerkin-BQ approaches provide ROMs with lower
elative state error than the linear symplectic ROMs for both training and test parameters. The comparison plots for
he training parameters are shown in Fig. 10(a) where we observe that the proposed approaches achieve substantially
ower state error than the symplectic ROMs based on linear symplectic subspaces. The comparison for the test
arameters in Fig. 10(b) shows that the ROMs based on SMG-QMCL and Galerkin-BQ approaches achieve two to
our times lower relative state error than the ROMs based on the linear symplectic subspace approach.

The Hamiltonian error (51) plots in Fig. 11 show that the approximate solutions obtained using SMG-QMCL
nd Galerkin-BQ ROMs of different reduced dimensions accurately approximate the FOM Hamiltonian for both
22
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t
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Fig. 10. Two-dimensional nonlinear wave equation. The proposed SMG-QMCL and Galerkin-BQ ROMs achieve lower state error (49) than
he LSL-ROMs for both training and test parameters.

test,1 = 1.25 and µtest,4 = 3. For µtest,1 = 1.25, the error in the Hamiltonian in Fig. 11(a) for the proposed
approaches remain below 10−2. In Fig. 11(b), we observe that the energy error for the Hamiltonian ROMs based
on the SMG-QMCL approach level off at approximately 5×10−3. The approximately Hamiltonian ROMs based on
the Galerkin-BQ approach, on the other hand, exhibit oscillatory error behavior with the error in the Hamiltonian
slowly growing with time.

Finally, we study the accuracy of the proposed ROMs over the two-dimensional computational domain by
comparing the pointwise error in q between the FOM solution and the reconstructed solution Γ q(Q̃(µ)) of the
ROM solution Q̃(µ) for two test parameter values. The time-evolution of the pointwise error in q for the nonlinear
Hamiltonian ROM of size 2r = 48 based on the linear symplectic subspace is compared with the corresponding
errors for the SMG-QMCL-ROM and the Galerkin-BQ-ROM in Figs. 12 and 13 for µtest,1 = 1.25 and µtest,4 = 3,
respectively. For µtest,1 = 1.25, we observe that the nonlinear ROMs based on SMG-QMCL and Galerkin-BQ
approaches yield reconstructed solution fields for q with a maximal pointwise error of approximately 10−3 at all
three time instances. In contrast, we observe that the maximal pointwise error in q for the linear symplectic subspace
approach increases from approximately 5×10−3 to 2×10−2 as we march forward in time. For µtest,4 = 3, we observe
that both the SMG-QMCL and the Galerkin-BQ ROM exhibit a maximal pointwise error of approximately 10−2

whereas the linear symplectic subspace approach exhibits a maximal pointwise error of approximately 10−1 which
is an order of magnitude higher than the error for proposed approaches. These results demonstrate the ability of
both the SMG-QMCL and the Galerkin-BQ approach to provide accurate numerical solutions for multi-dimensional
nonlinear problems, even for parameter values outside the range of training parameters.

5. Conclusions & future work

We have presented two projection-based model reduction approaches that use data-driven quadratic manifolds
to derive accurate structure-preserving reduced-order models of canonical Hamiltonian systems. The SMG-QMCL
approach derives Hamiltonian ROMs using the quadratic manifold cotangent lift mapping which is based on a
quadratic manifold approximation for the generalized position vector. More generally, we proposed the manifold
cotangent lift approximation mapping which is a symplectic map and can thus be used with the SMG projection
to build a symplectic SMG-MCL-ROM. Note, that this construction does not require the approximation to be
a quadratic mapping, as in the QMCL, so the SMG-MCL-ROM could be used to formulate symplectic MOR
with other nonlinear approximation mappings like e.g., higher-order polynomials or autoencoders in future work.
The Galerkin-BQ approach, on the other hand, augments the linear symplectic subspace with quadratic Kronecker
product terms to derive approximately Hamiltonian ROMs. Both approaches are offline–online separable for linear

Hamiltonian systems which means that the ROMs of both approaches are independent of the FOM dimension.

23
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s
s
t

Fig. 11. Two-dimensional nonlinear wave equation. The error in the Hamiltonian (51) for SMG-QMCL-ROMs and Galerkin-BQ-ROMs
remains below 10−2 for µtest,1 = 0.125 whereas both approaches exhibit bounded error in the Hamiltonian below 10−1 for µtest,4 = 3.

Fig. 12. Two-dimensional nonlinear wave equation. Plots compare the pointwise error in q between the FOM solution and the reconstructed
olution Γ q(Q̃(µ)) of the ROM solution Q̃(µ) using low-dimensional (2r = 48) LSL-ROM, SMG-QMCL-ROM, and Galerkin-BQ-ROM at
elected time instances t ∈ {6, 7, 8} for µtest,1 = 1.25. The pointwise error for the linear symplectic ROM increases as we march forward in
ime whereas the SMG-QMCL ROM and Galerkin-BQ-ROM yield accurate approximate solutions even at t = 8.
24
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Fig. 13. Two-dimensional nonlinear wave equation. Plots compare the pointwise error in q between the FOM solution and the reconstructed
olution Γ q(Q̃(µ)) of the ROM solution Q̃(µ) using low-dimensional (2r = 48) LSL-ROM, SMG-QMCL-ROM, and Galerkin-BQ-ROM at
elected time instances t ∈ {6, 7, 8} for µtest,4 = 3. The proposed approaches yield a lower pointwise error than the LSL-ROM at all three
ime instances.

he Galerkin-BQ-ROM approach is particularly attractive from a computational efficiency standpoint due to the
OMs admitting a convenient linear-quadratic model structure with computational complexity on the order of O(r4)
ompared to O(r5) for the SMG-QMCL-ROM. On the other hand, the SMG-QMCL-ROM is favorable in terms of
ong-term energy conservation. Both of these novel approaches together constitute a first step towards the model
eduction of dynamical systems on nonlinear manifolds using interpretable (e.g., polynomial) manifold constructions
hat ensure that the approximate solution satisfies key physical properties as dictated by the original high-dimensional
roblem.

The numerical experiments with the parametrized linear and nonlinear wave equations demonstrate the advantages
f using data-driven quadratic manifold approximations for structure-preserving model reduction of transport-
ominated problems. The numerical results also show that the proposed approaches produce stable ROMs with
igher accuracy and better predictive capabilities than their linear counterparts. Notably, the proposed methods
ield accurate predictions of the high-dimensional state even for parameter values that were not included in the
raining data.

This work has opened a number of avenues for future work. Improving the computational efficiency of the
roposed nonlinear ROMs based on data-driven quadratic manifolds is necessary. To reduce the online computational
ost, the proposed approaches could be combined with the very recently developed structure-preserving DEIM [58]
o improve the computational efficiency of the nonlinear SMG-QMCL and Galerkin-BQ ROMs. To further reduce
he computational cost, alternative formulations for learning manifold approximations in high-dimensional state
paces could be exploited to formulate more suitable symplectic mappings. In another direction, the proposed
ethodologies could be extended to noncanonical Hamiltonian systems with state-dependent and degenerate
orms by building on the recent linear subspace approaches [59]. Finally, we seek to broaden the application
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of the presented framework by learning Hamiltonian dynamics directly from time-domain simulation data in a
non-intrusive fashion using operator inference methods [12,14,60].
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