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Sparse Sensing and DMD-Based Identification of Flow Regimes and Bifurcations
in Complex Flows∗
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Abstract. We present a sparse sensing framework based on dynamic mode decomposition (DMD) to identify
flow regimes and bifurcations in large-scale thermofluid systems. Motivated by real-time sensing
and control of thermal-fluid flows in buildings and equipment, we apply this method to a direct
numerical simulation (DNS) data set of a two-dimensional laterally heated cavity. The resulting flow
solutions can be divided into several regimes, ranging from steady to chaotic flow. The DMD modes
and eigenvalues capture the main temporal and spatial scales in the dynamics belonging to different
regimes. Our proposed classification method is data driven, robust w.r.t. measurement noise, and
exploits the dynamics extracted from the DMD method. Namely, we construct an augmented DMD
basis, with “built-in” dynamics, given by the DMD eigenvalues. This allows us to employ a short
time series of data from sensors, to more robustly classify flow regimes, particularly in the presence of
measurement noise. We also exploit the incoherence exhibited among the data generated by different
regimes, which persists even if the number of measurements is small compared to the dimension of
the DNS data. The data-driven regime identification algorithm can enable robust low-order modeling
of flows for state estimation and control.
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1. Introduction. The problem of flow sensing and control has received significant at-
tention in the last two decades. Incorporating airflow dynamics into the design of control
and sensing mechanisms for heating, ventilation, and air conditioning systems yields notable
benefits. Combining such mechanisms with systems that exploit the dynamics of natural con-
vection to circulate air can save energy and improve comfort. However, estimation and control
of such systems, especially in real time, is not straightforward. In this paper we provide a
framework for sparse sensing and coarse state estimation of the system.

In principle, the governing equations can be accurately simulated using direct numeri-
cal simulation (DNS) techniques. For example, a well-accepted mathematical model for the
dynamics of buoyancy driven flows, when temperature differences are small, is provided by
the Boussinesq approximation. Still, such simulations require vast computational resources,
rendering them unfeasible in time-critical applications, or use in many-query context.
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Moving from simulation to control of flows adds another level of complexity and poses
numerous additional challenges. In particular, computing a control action based on full-scale
discretized partial differential equation (PDE) models of fluid flow, with typical dimensions of
n ≈ 106−9, is computationally prohibitive in real time. In addition, in the indoor environments
considered herein, the geometry, boundary conditions, and external sources may change over
time. The resulting systems are dependent on a large number of parameters, which further
increases their complexity. Of course, such systems often require sensor-based feedback, which
introduces measurement noise and sensing errors. Thus, modeling and control methods should
be robust to measurement noise and parametric variations.

Undoubtedly, it is of great practical significance to develop a framework for accurate
closed-loop sensing and control strategies for airflow in a built environment, which are robust
to measurement noise and changing operating conditions. In this paper, we make progress
towards this goal using noise-robust methods based on sparse detection and classification,
which lead to data-driven surrogate models for quick online computation.

For parameter-dependent nonlinear systems, low-order models face additional challenges.
Nonlinear systems can show drastically different behavior depending on parameters. Modeling
strategies which do not explicitly take this into account, and try to develop “global” parameter-
independent models instead, are bound to fail. While there have been several attempts at
developing methods to address these issues [44, 41, 55, 7], we suggest that it is important to
first identify the operating regime, to build a corresponding local low-order model, and only
then employ a filtering and control strategy using these local low-order dynamical models.
Since the dynamics of thermofluid systems tend to settle on various attractors (such as fixed
points, periodic orbits, quasiperiodic orbits), we use the term “regime” to mean “neighborhood
of attractors.” This property, shared by many physical systems of interest, has been exploited
extensively to develop data-driven multiscale models [56, 24].

We propose a method that uses a simple hierarchical strategy. First, for each possible
operating regime of the system, we generate an appropriate low-order model that captures
the short-time spatiotemporal dynamics of the particular regime. Then, during operation, we
use the sensor data to first detect the appropriate operating regime, the model of which can
then be used for observing and controlling the system. In this paper, our main contribution
towards this strategy is a general framework for regime detection, and we also show some
numerical results towards coarse reconstruction of the system’s state. Building this framework
was possible largely due to the data-driven nature of dynamic mode decomposition (DMD)
and the fact that it provides dynamics of subspaces we heavily exploit in devising our method.

1.1. Reduced order models and sensing. The goal of replacing expensive computational
models with low-dimensional surrogate models in the context of optimal design, control, and
estimation has led to a rich variety of model reduction strategies in the literature. Nevertheless,
there is not yet a “one-size-fits-all” technique, and each method can outperform others in
particular applications and settings.

One of the most common methods is proper orthogonal decomposition (POD) [3, 28,
35, 61]. This approach finds low-dimensional structures by processing snapshot data from
simulation or measurements of a dynamical system through a singular value decomposition
(SVD). The modes are selected by explicitly maximizing the energy preserved in the system.
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POD-based model reduction has also been used in state estimation of distributed dynamical
systems; see [58, 1, 9, 5].

Since POD is based on snapshots measurements, performance of POD-based models can
be improved by optimizing the sensors’ locations. Using optimized sensor placement, the
authors in [50, 23] employ POD to predict the temperature profiles in data storage centers.
Furthermore, Willcox [63] introduces “gappy POD” for efficient flow reconstruction, and pro-
poses a sensor selection methodology based on a condition number criterion. Sensor placement
strategies for airflow management based on optimization of observability Gramians and related
system theoretic measures are considered in [13, 20] using well-established theory, e.g., [42],
and the references therein.

DMD [49, 54, 17, 60] emerged as an alternative to POD for nonlinear systems. This
data-driven method attempts to capture the dynamics of the system in the low-order model.
Therefore, DMD approximates spatial modes and corresponding dynamic information, regard-
ing growth and decay of the modes in time. Computing the DMD requires a few additional
steps of, often inexpensive, computation compared to POD. DMD has strong connections with
the Koopman operator, an approximation of which is computed in the process [37, 12, 38, 64].
Various extensions to DMD have also been proposed in the context of sparsity promotion [30],
control [47], compressed sensing [10], reduced-order modeling [59], and large datasets [27].

1.2. Dynamic regimes and classification. Our work is motivated by recent developments
in dynamical systems and sparse sensing. We only aim to identify what is necessary to develop
an accurate low-order description of the dynamics and, hence, design a controller. This idea of
extracting “effective dynamics” in complex flows is a central theme in many areas of dynamical
systems and control; see, for example, [26, 21, 48]. Our approach explicitly takes into account
qualitative changes in the dynamics of the system, as captured by different dynamic regimes.
In particular, we formulate a sensing and detection problem to identify such dynamic regimes.
The analytical and computational methods used herein originate in the sparse recovery and
related literature [19, 8].

For parametric systems with different dynamical regimes, the accuracy of a constructed
low-order model depends crucially on choosing the correct subspace. Hence, in real-time
operation, when the system may be in one of several operating regimes, each corresponding
to a distinct subspace, their classification should be done to identify the relevant modes to be
included in a low-order model.

There exists significant literature on the importance of dynamic regimes. Methods for
regime identification, however, are not as common. In particular, bifurcations in complex
systems and their effect on coherent structures has been studied extensively using the Perron–
Frobenius operator [22, 31, 57, 25]. To identify bifurcation regimes in a one-dimensional PDE,
[11] proposes a compressive sensing-based POD formulation that uses an `1 norm optimization
to select the relevant elements from a library of POD-derived bases. In this paper, we build
on the framework introduced in [11] for identification and classification of dynamic regimes
through sparse sensing, and extend it in multiple directions.

1.3. Contributions and outline. Our main contribution is a new method that incorporates
the dynamic information given by the DMD into the sensing and classification step. Using
multiple time snapshots from the same sensors, and thus exploiting the dynamics of the
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system, we are able to significantly improve classification accuracy by increasing the separation
between the subspaces.

We demonstrate our general approach on a fluid flow example using the Boussinesq model,
which we describe in section 3. This challenging example exhibits several bifurcations as
the governing parameter in the system changes, making it a good test case to illustrate the
proposed method. For this model, the DMD is computed from DNS simulation data of a
two-dimensional laterally heated cavity.

Then, in section 4, we describe our flow-regime classification algorithm which combines
compressed sensing and sparse representation techniques [15, 16, 18] with dynamics of the
low-order model to classify and reconstruct flow regimes from few spatial measurements.
Fundamentally, our regime classification approach solves a subspace identification problem,
where each regime is represented by a different subspace. Thus, we develop a theoretical worst-
case analysis that provides classification guarantees. Our guarantees are based on metrics
from the compressed sensing literature that measure the separation of different subspaces.
The measures can be easily computed for the DMD library.

The presented theoretical worst-case classification analysis is conservative, which can be
pessimistic. Our numerical results, described in section 5, demonstrate that the performance
is significantly better in practice. We provide numerical demonstration of the effectiveness of
practical sparse boundary sensing, and a comparison of the results with a fully distributed
array of sensors. We will see that the method is particularly robust to measurement noise,
and greatly benefits from using the dynamics provided by the DMD.

Our overarching goal of developing a closed-loop, low-order flow control system is shown
in Figure 1. The work in this paper focuses on the circled components: large-scale simulation,
low-order regime description, sensing, and data-driven regime identification. Our data-driven
framework provides a solid foundation for developing the whole system.

2. Dynamic mode decomposition. DMD is a recently developed data-driven dimension-
ality reduction and feature extraction method. It attempts to capture the underlying dynamic
evolution of the data, such as that from simulation of a PDE. Consider a high-dimensional
nonlinear system of the form

(1) x(t+ 1) = f(x(t)), x(0) = x0 ∈ Rn,

where our particular interest lies in models (1) arising from spatial discretization of a PDE
via, e.g., finite elements, finite volumes, spectral elements. Below, we briefly present the DMD
formulation following the work of [54] and [17].

Let s ∈ N snapshots of the high-dimensional dynamical system (1) be arranged in two
n× s data matrices

X0 := [x(t0), x(t1), . . . , x(ts−1)] and X1 := [x(t1), x(t2), . . . , x(ts)].

The dynamic evolution enters into the DMD formulation by assuming that a linear operator
A ∈ Rn×n maps X0 to X1, namely,

(2) X1 = AX0.
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Figure 1. The offline-online approach to model-based sensing and control of flows, incorporating various
operating regimes. We focus on DMD-based offline extraction of subspaces and dynamics of various regimes
from large-scale simulation data, and online regime selection and coarse reconstruction via sparse sensing.

Since the data are finite dimensional, the action of the operator can be represented as a matrix.
The goal of DMD is to approximate the eigenvalues of A, using the data matrices only. The
first step in DMD is to compute the SVD of X0 = WΣV T , so that we can approximate the
snapshot set via

(3) X0 ≈ X0,r = WrΣrV
T
r ,

where Wr, Vr ∈ Rn×r contain the first r columns of W,V , respectively, and Σr is the leading
r× r diagonal matrix of Σ. From the Schmidt–Eckart–Young–Mirsky theorem it follows that
‖X0−X0,r‖2 = σr+1 (e.g., see [2, p. 37]), so if the singular values decay rapidly, the truncation
error is small. A scaled version of the left singular vectors Wr are the POD modes of the
system. In DMD, however, we seek to extract dynamic information about A by considering

(4) X1 ≈ AWrΣrV
T
r .

Multiplying by W T
r from the left and using the orthogonality of Vr, we obtain a reduced-order

representation Ar = W T
r AWr ∈ Rr×r of the system matrix A, namely,

(5) Ar := W T
r X1VrΣ

−1
r ,

which is (computationally) much cheaper to analyze than A. Next, compute the eigenvalue
decomposition

(6) ArY = Y Λ →W T
r AWrY = Y Λ

and, by assuming WrW
T
r ≈ Ir, one can obtain an approximation for the decomposition,

AWrY ≈WrY Λ,
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and by defining Φ = WrY , it follows that

(7) AΦ ≈ ΦΛ.

Here, Φ = [φ1 φ2 . . . φr] contains the DMD modes φm as column vectors. Note, that the matrix
Ar is, in general, nonsymmetric and, therefore, DMD modes will be complex. Nevertheless,
the r-dimensional subspace of DMD modes Φ in the high-dimensional space Rn is the same
as that spanned by Wr. Hence, the energy content kept in the DMD modes is the same as
that for POD modes.

From a computational cost perspective, the dimensionality reduction due to the POD in
(3) requires a reduced (economy) SVD of size n×s, where s� n. The additional computation
required in the DMD is the eigenvalue decomposition of size s× s in (6).

Remark 2.1. The DMD provides a nonorthogonal set of modes that attempt to capture
the dynamic behavior of the model in a data-driven way. While nonorthogonal bases can
burden computations, a breadth of work in DMD has shown that the added benefits of DMD
can provide new insights into large-scale models with inherently low-dimensional dynamics
[49, 54, 17, 60, 37, 12, 38, 64, 30, 47, 10, 59, 27]. We choose to work with DMD for multiple
reasons:

1. DMD provides a data-driven alternative to other model reduction techniques and, as
such, provides great flexibility. Galerkin projection-based model reduction techniques,
such as POD, require building a low-dimensional system of ordinary differential equa-
tions for future state prediction. This, in turn, requires having access to, at least,
the weak form of the PDE model, and integration routines, which is intrusive. Addi-
tionally, problem specific correction terms, such as shift modes [41] or closure models
[51] are often necessary to obtain accurate dynamic information for POD-Galerkin
models.

2. The information encoded in the DMD modes provide a new viewpoint to the study
of low-dimensional, coherent structures in flows, as evidenced in the pioneering work
of [49, 54]. Every dynamic mode has an associated eigenvalue encoding its dynamic
evolution. This yields additional information about spatial structures and their tem-
poral evolution. For our purposes of short-term state prediction, temporal evolution
extracted directly via DMD modes and eigenvales is justified via the following argu-
ments. Under some conditions on the data [38, 60, 64], the DMD modes provide a
linear basis for the evolution of observables, even if the underlying system is nonlinear.
In particular, the action of the dynamical system on any finite set of observables is
given by the Koopman operator K, which is an infinite-dimensional linear operator [37].
Assuming that the discrete time evolution of the PDE is given by x(t+ 1) = f(x(t)),
the Koopman operator acts on any scalar observable g(x) as

Kg(x) = g(f(x)).

A vector valued observable, such as h ∈ Rn, can be expanded in terms of the (scalar)
Koopman eigenfunctions of K, {θj}∞j=0, and vector valued Koopman modes, {φj}∞j=0
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as

h(x) =

∞∑
j=0

θj(x)φj .

Applying the Koopman operator on h, we obtain

h(f(x)) =
∞∑
j=0

λjθj(x)φj .

Given a data set, the unknown scalars θj(x) can be computed, for example, by pro-
jecting on initial conditions, or using some other way of reducing the overall error in
the approximation [30]. In particular, using βj = θj(x) to simplify notation, the above
expansion takes the form

[
x(t1) x(t2) . . . x(ts)

]
≈
[
φ1 φ2 . . . φr

]

β1

β2

. . .

βr




1 λ1 . . . λs−1
1

1 λ2 . . . λs−1
2

...
...

. . .
...

1 λr . . . λs−1
r

,
where the observable is now a snapshot x(ti) of the finite-dimensional system (1).
In fact, the DMD and the related Koopman mode decomposition have been used to
explain the origin and success of various modifications to the POD-Galerkin system,
such as shift modes [41].

3. The connection of DMD to many established techniques, such as the Floquét de-
composition of linear systems [54], the Fourier decomposition, and the eigensystem
realization algorithm [60] raises further interesting research questions.

We note that DMD has several limitations, which are well documented in the recent
literature. While the original DMD algorithm is successful in resolving the dynamics on
system attractors (and in some small neighborhoods of these attractors [4]), several questions
remain on its validity for accurately modeling off-attractor dynamics. However, recent efforts
have been directed at accurate extraction of DMD modes (and Koopman modes) for general
off-attractor dynamics [64, 39], and rigorously proving their accuracy in the basin of attraction
of these attractors [33]. Hence, as these methods become mature, we expect that our algorithm
can be useful for off-attractor dynamics too.

3. Flow in two-dimensional differentially heated cavity. To demonstrate our approach,
we consider the two-dimensional upright differentially heated cavity problem. This is one of
the fundamental flow configurations for heat transfer and fluid mechanics studies, and has
numerous applications including reactor insulation, cooling of radioactive waste containers,
ventilation of rooms, and solar energy collection, among others [45]. Figure 2 provides an
illustrative schematic of the problem along with the corresponding boundary conditions.

The domain is a two-dimensional enclosure with insulated top and bottom walls, and the
left and right walls serve as hot and cold isothermal sources. We assume the aspect ratio of
the cavity is unity; nonetheless, it should be noted that the variation in aspect ratio alters the
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Figure 2. Schematic of the differentially heated cavity problem. The top and bottom walls are insulated
and the left and right walls are maintained at a constant distinct temperature. The direction of the gravity is
downward. We use two monitoring points marked by “o” at (x, y) = (0.85, 0.88), and “×” represents location
(x, y) = (0.87, 0.93).

features of the flow nontrivially. The flow is driven due to buoyancy forces; the temperature
difference between the walls results in a gravitational force exerted on the volume of the fluid
that initiates the flow. The heated fluid rises along the hot wall, while cooled fluid is falling
along the cold wall. When the heated fluid reaches the top wall, it spreads out to the other
side in the form of a gravity current. In our simulations, the Prandtl number Pr is 0.71, which
is a typical value for air. The temperature difference and other fluid properties are chosen

such that the Rayleigh number, defined as Ra = ρ2gτ∆TH3

µ2
Pr, varies between 101 < Ra < 109.

3.1. Governing equations and numerical scheme. The Boussinesq equations model the
viscous, convective fluid motion associated with buoyancy forces, therefore serving as the
model for natural convection. The Boussinesq equations for an incompressible fluid are given
by

∇ · u = 0,(8)

ut = µ∆u− (u · ∇)u−∇p+ g(ρ− ρ0),(9)

Tt = κ∆T − u · ∇T,(10)

where T (·, ·) is the temperature field and u(·, ·) = [ux, uy]
T is the fluid velocity. If the Boussi-

nesq approximation is applied, the last term in the momentum equation (9) becomes

(11) g(ρ− ρ0) = ρ0gτ(T − T0),

where τ is the coefficient of thermal expansion and T0 is the reference temperature at which
µ, Pr, and ρ0 are defined.

To numerically solve the equation and obtain simulation data, we use the open source
spectral-element solver NEK5000 [43, 46, 40]. Owing to their high accuracy and general usage,
spectral methods are particularly suited to the study of transition to turbulence in near-to-wall
flows, including natural convection within differentially heated cavities.
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Figure 3. Nusselt numbers from our simulations compared with data from [36].

3.2. DNS results and discussion. This problem has been extensively studied and accurate
solutions are available in the literature for comparison; see, e.g., [29, 36, 34]. In Figure 3, we
plot the Nusselt numbers computed using our simulation data, along with the corresponding
values in [36]. Our results are in close agreement with the data of [36]. Since any inaccuracies
in resolving near-wall effects will manifest themselves in heat-flux calculations, close agreement
in Nusselt numbers with previously reported data in the literature provides evidence of validity
of our numerical solver.

A circulatory flow is set up in a vertical layer that is bounded by isothermal surfaces
thermally insulated at the ends, having different temperatures. The flow ascends against the
hot surface and descends at the cold surface. For smaller Rayleigh number, Ra < 108, the
flow field reaches a steady state, that is ∂u/∂t = ∂T/∂t = 0. It is well established that at
steady state, the temperature away from the boundary layers increases linearly over a large
part of the height of the layer [45]. Hence, for those values of Rayleigh numbers, the steady
state is stable near the corners of the cavity as well within the boundary layer close to the
walls.

As the Rayleigh number increases, the flow loses stability. When Ra ≥ Rac, where Rac
is the critical Rayleigh number, first the flow in the corners and then the flow in the thermal
boundary layer become increasingly unstable. For large Rayleigh numbers, say, Ra > 109,
the flow becomes turbulent. When a statistical steady state is reached, the space between
the vertical boundary layers is filled by a virtually immobile stably stratified fluid exhibiting
low-frequency, low-velocity oscillations.

To better understand the behavior, we examine time series data from local velocity and
temperature measurements at the spatial location (x, y) = (0.85, 0.88). The temperature at
this location reaches a steady-state asymptotic value after a finite time. By increasing the
Rayleigh number, however, the nature of the flow undergoes a transition. Consistent with [34],
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(a) Streamlines and velocity vectors superposed by
temperature psuedocolor (from left to right, the tem-
perature varies from hot to cold).
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Figure 4. Flow solution at Ra = 1.82× 108.

we observe that the onset of unsteadiness takes place at a critical Rac = 1.82×108 and that the
first instability mode breaks the usual centrosymmetry of the solution. Figure 4(a) illustrates
the streamlines at this Rayleigh number. The onset of unsteadiness in velocity indicates
oscillations in the temperature field as well. Hence, the time series of the temperature at the
monitoring point shows an asymptotic finite-amplitude periodic state. The period of such
oscillations is measured from DNS data by using the power spectral density (PSD) as shown
in Figure 4(b).

This transition to periodic behavior has been studied in [34]. By numerically computing
the spectrum of the linearized Boussinesq equations operator for Rayleigh numbers below and
above the transition value, it is shown that this transition is a supercritical Hopf bifurca-
tion. Physically, this instability takes place at the base of the detached flow region along the
horizontal walls and is referred to as the “primary instability mechanism.” The frequency
associated with the primary instability mechanism can be seen in Figures 4(b) and 5(b) to be
around ω = 0.045 Hz, close to the value reported in [34].

With respect to the fluctuating temperature, for Ra ≥ Rac, we observe that away from the
corners of the cavity, the contour lines are inclined at an angle of approximately 20 degrees
with respect to the horizontal, and they propagate in time orthogonally to their direction.
These lines, shown in Figure 5(a) for Ra = 2× 108, correspond to the wavefronts of internal
waves, which are shed from the region where the instability mechanism takes place.

By increasing the Rayleigh number such waves propagate into the domain as shown in
Figure 6(a) for Ra = 4 × 108. In addition, we examine the location (x, y) = (0.87, 0.93),
closer to the wall than the one chosen above. At this Rayleigh number, the existence of a
“secondary instability mechanism” has been reported [34] at a frequency close to ω = 0.48 Hz.
In Figure 6(b), we can see that this instability is also observed in our simulation data.
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(a) Instantaneous fluctuating temperature fields.
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Figure 5. Flow solution at Ra = 2× 108.

(a) Instantaneous fluctuating temperature fields.
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Figure 6. Flow solution at Ra = 4× 108.

The conjecture in [34] is that the secondary instability mechanism is a local phenomenon
that originates from the boundary layer at the top wall. Hence, the monitoring point away
from the wall does not capture the resulting localized oscillations. For even higher Rayleigh
numbers, the solutions depend strongly on the initial condition, and multiplicity of the solu-
tions is also observed. For these higher Rayleigh numbers, the oscillations in temperature do
not show a periodic behavior and the flow becomes chaotic.

For a variety of parameter settings we compute the DMD from the simulation data. For
simplicity we compute the same number of modes for all different parameters. In particular
we find that r = 20 modes captures more than 99% of the system energy in all cases.
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(a) The spectrum of DMD eigenvalues, with corresponding frequencies and
DMD mode magnitude. The bar marked “P” refers to the primary instability
frequency discussed in section 3.

(b) DMD mode corresponding to frequency ω ≈
0.04 Hz marked “P” in plot (a).

(c) DMD mode corresponding to frequency ω ≈
0.2 Hz.

Figure 7. DMD modes and spectrum for Ra = 2× 108.

We show the dynamic separation that DMD provides for the spatial modes in Figure 7(a).
We plot the energy content of the DMD modes at different frequencies obtained from the
corresponding DMD eigenvalues. The dominant DMD mode, other than the “base” flow at
zero frequency, has frequency ω ≈ 0.045 Hz, close to the frequency associated with the primary
instability discussed earlier. The absolute value of this DMD mode is also plotted over the
domain in Figure 7, along with the next dominant DMD mode. Figure 8 shows a DMD mode
at frequency ω ≈ 0.02 Hz and another DMD mode at a frequency close to the secondary
instability frequency ω ≈ 0.4 Hz. The mode corresponding to the primary instability was
not found among the dominant DMD modes at this Rayleigh number. This implies that the
secondary instability mechanism is not only localized in space, but also has minimal signature
in the data in the l2 sense. For even higher Rayleigh numbers, DMD modes at several different
frequencies have large and comparable magnitudes, which could be interpreted as a signature
of chaotic behavior.
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(a) The spectrum of DMD eigenvalues, with corresponding frequencies and DMD
mode magnitude. The bar marked ’S’ refers to the secondary instability fre-
quency discussed in section 3.

(b) DMD mode corresponding to frequency ω ≈
0.02 Hz.

(c) DMD mode with frequency marked “S” ω ≈
0.4 Hz.

Figure 8. DMD modes and spectrum for Ra = 4× 108.

4. Robust classification by augmenting DMD basis. We propose a regime classification
approach based on the premise that if a system operates in a particular regime, then snapshots
of the system and, therefore, of the measurements, lie in a low-dimensional subspace particular
to the regime. Thus, our regime detection approach uses offline computation to build a library
of subspaces, as introduced in section 4.1. This general setting allows for any low-dimensional
subspace, or reduced-order model technique to be used for the library generation technique.
In section 4.2 we introduce the classification problem for a single snapshot in time. We then
derive our new method in section 4.3, where we augment the DMD basis by using dynami-
cal information. This particular method heavily relies on the dynamic properties extracted
from the DMD. Section 4.4 incorporates the augmented DMD basis into the classification of
time-sequential measurements of the same dynamic regime, providing a more robust sensing
mechanism. In sections 4.5 and 4.6 we then provide a classification analysis, and introduce
metrics to assess the quality of the classification.
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4.1. Library generation. First, we compute a library of dynamic regimes by using sub-
spaces that are generated from a variety of configurations and boundary conditions, each
leading to a different regime. Thus, let Q = {q1, q2, . . . , qd} denote the set of d different
parameters used to generate the library. For each parameter qi ∈ Q, we obtain data from
solving the high-dimensional model (1). The data are stored in Xi := X(qi) ∈ Rn×s, where
each column of X(qi) is a snapshot of the solution of (1) associated with parameter qi. Next,
we compute ri basis functions for every regime, i = 1, . . . , d, and store them in Φ(qi) := Φi,
a basis for the low-dimensional subspace for the dynamic regime. The set of all such bases
Φi ∈ Rn×ri defines a library

L := {Φ1,Φ2, . . . ,Φd}.

4.2. Classification for single time snapshots. We use a simple classification algorithm
to identify the subspace (and hence the regime) in the library which is most aligned with the
current system measurements.

Our measurements are obtained using a linear measurement matrix C ∈ Rp×n. The
measurement matrix C can represent a large number of possible measurement systems. For
example, point measurements of the jth component of x are obtained using rows of C that
are zero everywhere except the jth component, where they take the value of one. Thus, a
system using only distinct single point measurements satisfies

Ci,j := {0, 1},
n∑
j=1

Ci,j = 1, i = 1, . . . , p,

p∑
i=1

Ci,j = 1, j = 1, . . . , n.

Alternatively, tomographic measurements, which integrate along one or more particular di-
rections, can be represented by placing ones on all the locations along the direction which
is integrated. Of course, C may also be the identity matrix or another complete basis for
the space. In that case, p = n and the matrix preserves the full state information from the
system. In other words, our regime identification approach can be used on the full state, if
available, instead of sparse measurements. Since this is not typical in practical applications,
the subsequent exposition assumes that a sensing system is used, with p� n.

In practice, the measurements1 y(t) ∈ Rp are often noisy, so that

y(t) = Cx(t) + ξ,

where ξ is a noise process, often assumed to be of zero mean and unit variance, i.e., white
noise. Assuming that a low-order representation of the kth regime represents x(t) in Φk, the
measurements should lie in the subspace spanned by the p× rk matrix

Θk = CΦk.

1For ease of presentation, we start by considering a sensor measurement at a single time instance. We extend
this approach by using properties of the DMD in section 4.3 to use the same spatial sensors, but with multiple,
time-sequential measurements. As we demonstrate experimentally in section 5, the classification estimate then
becomes more robust to noise, and leads to high percentages of correct classification.
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Correspondingly, a regime library for the observations is given by

(12) Lobs = {Θ1, Θ2, . . . ,Θd}.

Given the measurements, we identify the regime k? as the subspace in the library Lobs closest
to the measurements in an `2 sense:

(13) k? = arg min
k=1,...,d

{
min
βk
‖y(t)−Θkβk‖2

}
,

where βk denotes the unknown coefficients in the subspace basis Θk. Consequently, β?k is the
least squares solution to the system

(14) β?k = Θ†ky(t),

where (·)† denotes the Moore–Penrose pseudoinverse. The operator Pk = ΘkΘ
†
k is a projection

operator onto the span of Θk and the classification algorithm can be expressed as

(15) k? = arg min
k=1,...,d

‖y(t)− Pky(t)‖2 = arg max
k=1,...,d

‖Pky(t)‖2.

Classification, in other words, projects the measured data y(t) to the span of each basis set Θk

and determines which projection is closest to the acquired data. Because of the orthogonality
of the projection error, this is equivalent to maximizing the norm of the projection. The
underlying classification assumption, which we formalize in the next section, is that the regimes
span sufficiently dissimilar subspaces and that measurements originating from one regime
have smaller projections onto the subspaces describing the other regimes. If the regime k is
identified correctly, then

x?(t) = Φkβ
?
k = ΦkΘ

†
ky(t), Φk ∈ L, Θk ∈ Lobs,

approximates the system state x(t) ∈ Rn from the measurements y(t) ∈ Rp. Using x?(t) as
an initial state estimate, estimation of the full state vector in future can then be obtained
by using the associated local reduced order model (DMD -based or Galerkin-approximation-
based), and an associated state-space observer, e.g., Luenberger observer for the DMD-based
local model.

For the classification given by (15) to be successful, the number of measurements, i.e.,
the dimensionality of y(t), should be greater than the dimensionality of the subspace of each
regime, i.e., p > maxk[rank Θk]. Otherwise the projection error to that regime is zero.
However, the number of measurements needed is significantly less than the total dimension
of subspaces of all regimes, r =

∑
k rank Θk (or, equivalently,

∑
k rk). In other words, we

have the following ordering on the dimension of various quantities, p� r � n, similar to the
ordering in [11]. This ordering is often present in compressed sensing literature [14]. This may
still imply a large number of sensors if only a single time snapshot is used for classification.
This issue is significantly alleviated if we exploit the dynamic information given by the DMD,
and use the time augmentation approach we describe in the next section.
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Remark 4.1. Note that the measurement matrix C might have a null-space that eliminates
some of the basis elements in Φi, i = 1, . . . , d. Subspace-based identification cannot, therefore,
exploit any information along these basis elements. This can be avoided, for example, using
matrices typical in compressive sensing applications. These include matrices with entries
drawn from independently and identically distributed Gaussian or Bernoulli distributions,
which are unlikely to have any of the basis elements in their null-space—a property known as
incoherence (e.g., see [14]). However, such matrices are difficult to realize in physical systems.
Point and tomographic sensors are more typical in such systems. Thus, sensor placement, an
issue we briefly discuss later but do not address in this paper, can significantly affect system
performance.

4.3. Augmented DMD—Incorporating dynamics into basis generation. We propose a
method to incorporate the dynamic information given by the DMD of the data into the basis
generation. Consider a state vector x(t), sampled from the underlying dynamical system at
time t. To keep notation minimal, we first consider a single dynamic regime and drop the
subscripts which would indicate regime membership.2 To begin with, let the state be expressed
in the sparse DMD basis as

x(t) = Φβ(t),

where β(t) ∈ Cr is again the unknown vector of coefficients.3 Recall, that by (7), the DMD
basis approximates the eigenvectors of the advance operator A. Consequently, AΦ = ΦΛ,
where Λ denotes the diagonal matrix of the first r eigenvalues of A. From the one-step-
advance property of the linear operator A, we have

x(t+ 1) = Ax(t) = AΦβ(t) = ΦΛβ(t)

and, iteratively,

x(t+ j) = Ajx(t) = ΦΛjβ(t).

Therefore, subsequent snapshots can be expressed via the same r-dimensional vector β(t)
(and hence the same regime). Therefore, we have more data to make a confident classification
decision. In particular, the above information can be written in batch form as


x(t)

x(t+ 1)
...

x(t+ j)

 =


Φβ(t)

ΦΛβ(t)
...

ΦΛjβ(t)

 =


φ1 φ2 . . . φr
λ1φ1 λ2φ2 . . . λrφr

...
...

...

λj1φ1 λj2φ2 . . . λjrφr

 · β(t).

2In other words, for this section Φ = Φk, r = rk, x(t) = xk(t), β(t) = βk(t).
3The basis Φ depends on the data and time sampling frequency ∆t. Therefore, in practical sensing, this

sampling should be kept the same as the one used for generation of the basis.
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Next, we define the augmented DMD basis vector as

φ̂i,j :=


φi
λiφi

...

λjiφi

 ∈ C(j+1)n with φ̂i,0 := φi,

so that the previous equation can be rewritten as

(16) x(t : t+ j) =


x(t)

x(t+ 1)
...

x(t+ j)

 =
[
φ̂1,k φ̂2,k . . . φ̂r,k

]
· β(t) = Φ̂β(t).

When considering the outputs of the dynamical system, y(t) = Cx(t), the recursion remains
unchanged. Thus, using C ∈ Rp×r to denote, as above, the sensing matrix, we define

(17) C =


C 0 . . . 0
0 C . . . 0
...

...
...

...
0 0 . . . C


p(j+1)×r(j+1)

.

and the sensed augmented DMD basis as

(18) Θ̂k := CΦ̂k.

We can now define the library of augmented DMD modes.

Definition 4.2. Let the DMD modes be Φi = Φ(qi) ∈ Cn×ri, and let the diagonal matrix
of ri eigenvalues Λi = Λri(qi) of each dynamic regime i, where i = 1, . . . , d, be given. The
augmented DMD library is defined as

(19) L̂ :=




Φ1

Φ1Λ1

· · ·
Φ1Λj1

 ,


Φ2

Φ2Λ2

· · ·
Φ2Λj2

 , . . . ,


Φd

ΦdΛd
· · ·

ΦdΛ
j
d


 =

{
Φ̂1, Φ̂2, . . . , Φ̂d

}
.

Similarly, using C from (17), define the observation library as

L̂obs :=
{
CΦ̂1, CΦ̂2, . . . , CΦ̂d

}
=
{

Θ̂1, Θ̂2, . . . , Θ̂d

}
.

4.4. Classification with time-augmented DMD basis. To increase robustness of the clas-
sification and measuring process, we extend the classification problem from section 4.2 to using
multiple time measurements

y(t : t+ j) = [y(t)T y(t+ 1)T y(t+ j)T ]T .
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Multiplying (16) by C from the left (i.e., using only sensed information), the classification
problem with the augmented DMD basis can then be recast as finding

k? = arg min
k=1,...,d

{
min
βk(t)
‖y(t : t+ j)− Θ̂kβk(t)‖2

}
.

Similarly to the least-squares solution from data at a single time (see (14)), the least-squares
estimate for the coefficients is computed via the pseudoinverse of Θ̂i, i.e.,

(20) β?k(t) = Θ̂†ky(t : t+ j).

In order to cast the classification as a maximization of the projection energy, as in (15), the

corresponding projection operator for yk(t : t+ j) is P̂k = Θ̂kΘ̂
†
k. Hence, the solution is given

by projection,

k? = arg max
k=1,...,d

‖P̂ky(t : t+ j)‖2.(21)

Note that y(t : t+ j) ∈ Rp(j+1) are the available data, and βi(t) ∈ Cri . Therefore, we still
have to find ri coefficients, but this time we can use data of length p(j + 1), where j is the
length of the data window to be specified. In the numerical results reported in section 5, we
will see that j ≤ 10 is often sufficient to robustly classify a signal to the correct subspace.

In other words, the time augmentation exploits the dynamic information provided by
DMD to increase the amount of data over time, while keeping the number of spatial sensors
the same. This comes at the expense of a small delay waiting to collect j time snapshots.
Moreover, an improvement is also evident in several library measures that are used in the
compressed sensing community, particularly the alignment and coherence metrics which we
define in the following sections.

Remark 4.3. Single time snapshot classification is, of course, possible using POD-based
reduced models and libraries. However, as is evident from our development, exploiting the
time-evolution dynamics requires the use of DMD modes and the DMD-derived eigenvalues.
As we see in the numerical results below, this significantly increases robustness of the classifica-
tion method, particularly in the presence of sensor noise. Moreover, it improves classification
accuracy in general.

4.5. Classification performance analysis. In this section we develop bounds and metrics
that can be used to guarantee correct classification under the worst-case conditions. As we
observe later in section 5, these metrics can be conservative in practice; however, classification
performance is better than what the bounds suggest. Still, they show the classification per-
formance trends and provide clear intuition on the role of the subspaces and their similarity
in classification. The metrics we discuss here and in the next section can be used both with
a single snapshot, using the tools described in section 4.2, and with multiple snapshots in the
context of augmented DMD described in section 4.4.

Assume that the system is operating under regime k (we will use superscripts in this
section to denote dependence on the regime) and that noiseless measurements,

(22) yk(t) = Cxk(t),
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are obtained at a single time instance, or over an extended time interval (t : t+j). To simplify
notation, and encompass both cases, for the remainder of this section we use yk to denote the
measurements, either from a single or multiple snapshots in time. We also omit ·̂ from the
definitions of projections. The classification algorithm identifies the best matching projection
of the data, Pk?yk, and determines the estimated regime as k?. We declare a classification
successful when k? = k.

Our goal is to determine metrics and guarantees under which classification is successful. To
that end we define the subspaceWk for each k, spanned by the basis functions Θk. Given that
the measurements originate from regime k, most of their energy lies in Wk. To formalize this
statement, we first decompose the measurements to a direct sum of an in-space approximation
component ỹk and an approximation error component ỹ⊥k , which is orthogonal to the space

(23) yk = ỹk + ỹ⊥k , ỹk ∈ Wk, ỹ⊥k ⊥ Wk.

The latter component is due to the approximation performed as part of the dimensionality
reduction. This approximation is accurate if ‖ỹk(t)⊥‖2 ≤ ε‖ỹk(t)‖2 for some small ε which
bounds the approximation error.

Furthermore, we define a metric for subspace alignment, which measures subspace simi-
larity by determining the vectors in one subspace that are most similar to their projection in
the other subspace:

ηjk := ‖PjPk‖2 = max
∀y

‖PjPky‖2
‖y‖2

, j, k ∈ {1, . . . , d}.(24)

Using this metric, which is always less than 1, we can show the following proposition.

Proposition 4.4. Let d subspaces Wj , j = 1, . . . , d, be given, and let the signal ỹk ∈ Wk for
some k ∈ 1, . . . , d according to (23), and t > 0. Moreover, assume that ‖ỹ⊥k ‖2 ≤ ε‖ỹk‖2 with
ηjk defined in (24). Then, if

(25) η = max
j 6=k

ηjk < 1− ε,

the classification in (15) is successful.

Before proving the proposition, we provide a brief discussion on the relevant quantities and
a small example application. In particular, given a set of d subspaces, the ηjk are quantities
easily computable using simple linear algebra in low dimensions. Furthermore, the worst-case
alignment η can be used to formulate the guarantee: given a set of subspaces, we should expect
to always classify signals correctly if η satisfies (25). This in turn gives a priori guidance on
whether a dictionary is suitable for classification, or if two regimes have similar behavior with
respect to their corresponding subspaces. In the following example, we provide some intuition
on the robustness of the alignment measure and our bounds.

Example 4.5. Let us consider two subspaces Wj and Wk, and assume all signals from
regime k contain at least 90% of their energy in the subspaceWk, i.e., ε = .1. Consequently, if
ηjk < .9, we guarantee correct classification of the signal yk to the subspace Wk for all t > 0.
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Proof. To demonstrate the proposition, we start with the decompositon yk = ỹk+ỹ⊥k , ỹk ∈
Wk, ỹ

⊥
k ⊥ Wk, as above. Since ỹ⊥k ⊥ Wk, the projection onto the correct subspace is equal to

Pkyk = ỹk,

i.e., has norm equal to

(26) ‖Pkyk‖2 = ‖ỹk‖2.

The projection onto the other subspaces is equal to

Pjyk = Pj ỹk + Pj ỹ
⊥
k = PjPkỹk + Pj ỹ

⊥
k ,

which, using the triangle inequality and the trivial bound ‖Pj ỹ⊥k ‖2 ≤ ‖ỹ⊥k ‖2 for any projection
Pj , has norm bounded by

(27) ‖Pjyk‖2 ≤ ‖PjPkỹk‖2 + ‖Pj ỹ⊥k ‖2 ≤ ‖PjPk‖2‖ỹk‖2 + ‖ỹ⊥k ‖2 ≤ η‖ỹk‖2 + ‖ỹ⊥k ‖2.

The classification will be accurate if the projection onto the subspace corresponding to regime
k preserves more energy than all other projections, i.e., if

‖Pjyk‖2 ≤ ‖Pkyk‖2 for all j ∈ {1, . . . , d}, j 6= k.

Rewriting (25) as

η‖ỹk‖2 + ε‖ỹk‖2 < ‖ỹk‖2 = ‖Pkyk‖2,(28)

where at most a portion ε of the signal lies out of the correct subspace ‖ỹ⊥k ‖2 ≤ ε‖ỹk‖2, i.e.,

η‖ỹk‖2 + ‖ỹ⊥k ‖2 ≤ η‖ỹk‖2 + ε‖ỹk‖2 < ‖ỹk‖2 = ‖Pkyk‖2.(29)

Using (27) it follows that for all j 6= k

‖Pjyk‖2 ≤ η‖ỹk‖2 + ‖ỹ⊥k ‖2 ≤ η‖ỹk‖2 + ε‖ỹk‖2 < ‖ỹk‖2 = ‖Pkyk‖2.(30)

Thus, the length of the projection to other subspaces is always lower than the length of the
projection to the correct subspace and the regime is correctly classified.

4.6. Block-sparse recovery and classification. In addition to the subspace alignment
measure η introduced in section 4.5, the measures of block coherence between different regimes,
and subcoherence within each regime, can help to understand the classification performance
and requirements on the library (12). These measures are drawn from the block-sparse recov-
ery and the compressive sensing literature (e.g., see [19, 8] and references therein).

Block sparsity models split a vector into blocks of coefficients and impose that only some
of the blocks contain nonzero coefficients.
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Definition 4.6. Let r =
∑d

i=1 ri and βi ∈ Cri. The vector β = [β∗1 β∗2 . . . β∗d ]∗ ∈ Cr is
called block s-sparse if s of its blocks β(qi) are nonzero.

Using the above definition, we have that y(t) = [Θ1,Θ2, . . . ,Θd] β, with only s blocks of
coefficients in β being nonzero, namely, the blocks corresponding to the active regimes. We
are interested in conditions on the sensed library Lobs, such that a block-sparse recovery of
the vector x(t) from p measurements is possible.

Definition 4.7 (see [19]). The block coherence of the library Lobs is defined as

(31) µB := max
i,j=1,...,d

i 6=j

[
1

ri
‖Θ∗iΘj‖2

]
,

where it is assumed that r1 = r2 = · · · = rd.

Definition 4.8 (see [19]). The subcoherence of the library is defined as

ν := max
l∈{1,...,d}

max
θi,θj∈ Θl

i 6=j

‖θ∗i θj‖2.

The subcoherence gives the worst-case measure of nonorthogonality of various basis ele-
ments, computed blockwise. Hence ν = 0 if the basis vectors within each block are orthogonal.
In particular, when using DMD, the basis functions are not generally orthogonal and, there-
fore, ν 6= 0. Given the previous definitions, we can report the following.

Theorem 4.9 (see [19, Thm.3]). A sufficient condition4 to recover the block s-sparse vector
β ∈ Cr from y(t) ∈ Rp measurements via the library Lobs is

s · r < 1

2

(
1

µB
+ r − (r − 1)

ν

µB

)
,

where it is assumed that all library elements Θk have the same number of columns, namely,
r1 = r2 = · · · = rd, so that r = d · r1.

Since we are interested in s = 1 block-sparse solutions (classification of one regime), the
above inequality simplifies to

r <
1 + ν

µB + ν
.

Note, that the above result provides a sufficient, not a necessary, condition for accurate re-
covery of the coefficients βk. Thus, the bound in Theorem 4.9 does not take into account the
number of elements in the block, r. Instead, classification corresponds to recovering only the
support, i.e., recovery of the location of the correct block, a seemingly easier problem. Still,
the quantities above do provide an intuition on the properties of the library of regimes, in-
cluding their similarity, in µB and the similarity of the bases within each regime in ν, affecting
the condition number. When ν = 0, i.e., when the basis is orthonormal, the block coherence
µB is equivalent within a constant scaling 1/r1 to our alignment measure η.

4It is sufficient for certain recovery algorithms, such as Block-OMP.
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Table 1
Flow regimes with corresponding Rayleigh numbers and spectral grid specifications.

R1 R2 R3 R4 R5 R6 R7 R8 R9

Ra 10 102 103 104 105 106 107 108 1.82× 108

Number of elements 4 4 4 4 4 4 4 256 256
Polynomial order 12 12 12 12 12 12 12 18 12

State size n 1728 1728 1728 1728 1728 1728 1728 248,832 110,592

R10 R11 R12 R13 R14 R15 R16

Ra 1.83× 108 1.85× 108 2× 108 4× 108 6× 108 8× 108 109

Number of elements 256 256 256 256 256 256 256
Polynomial order 12 12 12 12 12 12 18

State size n 110,592 110,592 110,592 110,592 110,592 110,592 248,832

5. Numerical results. As described in section 4, the data from DNS simulation is first
heuristically divided into 16 regimes. The spectral element grid for the simulations is finer for
higher Rayleigh numbers, as described in Table 1. Lagrange polynomials are used as spectral
element bases for all simulations.

The velocity and temperature data are stacked into the combined state x = [ux uy T ]T ∈
Rn, and the matrix X(Rai) ∈ Rn×s contains the snapshots (in time) as columns. The velocities
are scaled by a factor of 5000, to have both temperature and velocity in the same order of
magnitude. This way, the SVD step of the DMD algorithm is not biased towards larger
magnitude entries. Furthemore, the full simulation data are subsequently interpolated on a
50× 50 equidistant grid, so that the data for all regimes have identical dimension n = 7500.

We performed a convergence study with respect to the interpolation grid size, to ensure
that the important information in the flow solutions is retained. We computed the DMD
eigenvalues from the full data and compared them with DMD eigenvalues computed from
interpolated data. A good trade-off between accuracy and size was obtained for the 50 × 50
size of the spectral grid, i.e., n = 7500. For regimes R1–R7, the solutions are extrapolated
onto this grid, yet this does not change the eigenvalues considerably. In Figure 9, a plot of
the DMD spectrum of the first twenty eigenvalues computed from standard DMD is given for
various interpolation sizes. Importantly, the eigenvalues close to the unit circle, which exhibit
mainly oscillatory behavior, converge noticeably quick.

For each of the 16 dynamic regimes given by the parameter in Table 1, we compute a
DMD basis Φi of size ri = 20 and, subsequently, assemble the library of regimes L. For the
DMD method with augmented basis as introduced in section 4.3, we use 10 additional blocks,
corresponding to a sequence of j = 10 sequential time measurements. We consider two possible
sensing systems and the corresponding matrices C. For both sensing mechanisms, a study
with respect to the number of sensors is performed, and the number of sensors used in each
test is specified below. In the first sensing system, we sparsely sense from the whole domain
by placing point sensors arbitrarily. This serves as a reference; however, it is not realistic in
many practical applications to assume that sensors can be placed arbitrarily. Thus, in the
second system, we consider sensing close to the boundary of the domain, where important
boundary effects take place.
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(b) Interpolated R11 data.

Figure 9. Comparison of the first twenty DMD eigenvalues computed from the full data and interpo-
lated/extrapolated data.

Inspired by compressive sensing principles, both our sensing experiments use randomly
selected sensors in the corresponding sensing area. Thus, we only use a subset of the sensors
in the selected area to robustly classify the regimes.

5.1. Alignment and coherence metrics. We use a variety of metrics to quantify the
alignment and coherence of the regime library. The metric η from (24) can be interpreted as
the worst-case similarity measure between two subspaces Φi and Φj , since it is based on the
spectral norm. We find that for the computed library of regimes, we have 0.95 ≤ η ≤ 0.99.
A similar qualitative behavior is seen with µB from (31), since it is also based on a spectral
norm. Although, as we will see later in this section, µB better captures the decay in coherence
among regimes when using augmented DMD.

Hence, to get better insight into the coherence of different regimes, we introduce another
measure:

(32) γij =
‖PiPj‖F
‖Pi‖F ‖Pj‖F

,

where Pi = ΦΦ†i for the projection of the full state vector, and Pi = ΘiΘ
†
i for the projection

subject to measurement Θi = CΦi onto the boundary. The subscript F indicates the Frobenius
norm. Figure 10 shows the measure γij as defined in (32), both for the full projection and the
projection subject to measurement onto the boundary.

In contrast to η, the measure γij indicates the fraction of information that is retained on
average by projecting a random vector onto subspaces of two different regimes in succession.
The diagonal contains ones, and the off-diagonal entries are generally decreasing with the
off-diagonal index, indicating that only neighboring regimes (in terms of Rayleigh number)
share similar features. By definition, the matrices are symmetric. Two clusters of regimes
appear, the first one from Ra = 10 to Ra = 107, and the second cluster from Ra = 108

to Ra = 8 × 108. Note, that the last regime for Rayleigh number Ra = 109, resulting in
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(a) Projection onto full n-dimensional space,
spanned by DMD basis functions, Pi = ΦΦ†i .

(b) Projection onto the boundary, Pi = ΘiΘ
†
i with

Θi = CΦi.

Figure 10. The subspace alignment measure γij from (32).

a “chaotic” flow solution, is considerably different from the other regimes. Based on this
information, we conjecture that misidentification gets slightly worse within the two clusters
when sensing close to the boundary; we also expect to see a confusion matrix similar in
structure to Figure 10. The confusion matrix, used to quantify the success of our algorithm,
is defined as follows: the (i, j)th entry contains the percentage of tests in which data from
regime i is identified as belonging to regime j. Tests are performed independently for data
from each regime.

Additionally, we consider the matrix

(33) κij =
‖PiXj‖F
‖Xj‖F

, i, j = 1, . . . , d,

which measures the energy in the projected subspace compared to the actual data, and allows
estimation of ε.

Figure 11 shows this measure for the case of full data and boundary data. The measure
κij , as defined in (33), indicates how much information is preserved by projecting on the
basis Φi, through the projection Pi. As shown in section 2, DMD modes are, in general,
nonorthonormal vectors that span the same subspace as singular vectors given by the SVD
step. Since we picked the top 20 singular vectors to form the DMD subspaces Φi, we see that
the diagonal entries for κij are mostly above 98%. Additionally, neighboring regimes share
similar features; for instance, the projection of the data from regime 3 onto the basis of regime
1 retains a high amount of energy (measured in the Frobenius norm). As before, two groups
of regimes appear. For boundary data case, in analogy to the considerations above for the
measure γij , the similarity within the two clusters increases and the distinction among the
two clusters increases. Consequently, we expect some confusion within the two clusters.
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(a) Projection onto full n-dimensional space,
spanned by DMD basis functions, Pi = ΦΦ†i .

(b) Projection of boundary data Yi = CXi with
Pi = ΘiΘ

†
i with Θi = CΦi.

Figure 11. The data alignment measure κij from definition (33).

5.2. Regime classification. For the first example, we use 10 velocity sensors, and 50
temperature sensors. These sensors are placed on the boundary. The velocity is sensed
one grid point away from the boundaries. The signal-to-noise ratio is set to 20 dB, which
corresponds to 10% noise in the l2 sense. The DMD basis is augmented, i.e., we use the
time-evolution structure as described in section 4.3 with j = 3. For each regime, 100 tests are
performed, where at each test, a snapshot from a given regime is picked and the best match
to one of the 16 regimes is found by projection (15). In Figure 12(a), the confusion matrix
for the 16 regimes is plotted. The block with the highest confusion (worst identification) is
between regimes R9–R12, corresponding to Rayleigh numbers 1.82 × 108 − 2 × 108, which is
expected since the corresponding Rayleigh numbers are very close to each other. From the
discussion in section 3, it is clear that the system has a steady-state behavior for Rayleigh
numbers corresponding to regimes R1 through R7. Thus, we further focus the analysis and
discussion on Rayleigh numbers Ra = 108 and higher, corresponding to R8–R16. The results,
for another 100 tests for each regime, are presented in more detail in Figure 12(b).

5.2.1. Robustness to out-of-sample data. In the tests reported so far, all available data
are used to generate the sparse library and, subsequently, the same data are used for clas-
sification. Here, training and testing datasets are separated, to investigate the robustness
of the algorithm to unknown data. The testing data are taken from regimes R9, R10, and
R11, which correspond to Rayleigh numbers between 1.82 × 108 and 1.85 × 108. As noted
in section 3, there is a bifurcation of the flow at Ra ≈ 1.82 × 108, which has been observed
both experimentally, as well as numerically. We performed 600 independent tests, where at
each test a flow snapshot (or a series of snapshots for the augmented sensing algorithm) is
taken from the test data, and classified using six regimes R8, and R12–R16. One expects the
classification of the testing data to match to regime R12, which is closest to the test regime.
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(a) Flow regimes R1–R16. (b) Flow regimes R8–R16.

Figure 12. Confusion matrices from 100 tests for every regime, indicating if the regime was picked correctly
or misclassified. In each test, we selected boundary sensors (pT = 50 for temperature and pv = 10 for velocity),
and used j = 3 time measurements with augmented DMD.

Table 2
Classification performance with out-of-sample sensor data (taken from regimes R9–R12) for six regimes at

high Rayleigh numbers. The data are mainly classified as regime R12.

Regime R8 R12 R13 R14 R15 R16

Ra 108 2× 108 4× 108 6× 108 8× 108 109

Classification 6% 87% 6% 0% 0% 0%

The signal-to-noise (SNR) ratio is set to 20 dB, and pv = 10 flow sensors are used, together
with pT = 50 temperature sensors, all placed on or near the boundary of the unit square.
To be precise, the velocity sensors are placed slightly inside the domain, since the velocity
is set zero at the boundaries. For better classification performance, and more robustness to
noise, the DMD basis is augmented by two blocks, i.e., three time snapshots are taken for
classification.

Table 2 reports the classification results. The sensing method is able to match the testing
data to the (physically) correct flow patterns. In practice, this is important, since one does
not expect the data to repeat in a given situation. Hence, the sensing mechanism needs to be
able to match data to their “closest” subspace in the library collection.

The regimes R9–R12 correspond to very close parameter values, and their solution sub-
spaces are very similar to each other, as confirmed by looking at Figure 12, and the results of
Table 2. Hence, in the remaining analysis, we only consider the six regimes R8 and R12–R16,
where R12 is the representative of regimes R9 to R12.

5.2.2. Varying the number of sensors and using more data in time. Next, we numeri-
cally study the improvement in classification performance that can be achieved by increasing
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Figure 13. Block coherence measure µB as a function of augmentation j using only sensors on the boundary.

the number of velocity sensors and time measurements, via the augmented DMD algorithm. In
Figure 13, we plot the decay in block coherence measure µB with respect to the number of time
measurements used in augmented DMD. In Figure 14, we plot the classification performance
with pv = 10, 15, 20, 25, 30 velocity sensors, and 10 temperature sensors, all near the bound-
ary. The number of measurements in time used in augmented DMD are j = 1, 3, 5, 10, and
the sensor noise is 10% (SNR = 20 dB). Figure 15 shows the classification results with 30%
sensor noise (SNR = 10 dB). It is evident from these figures that using the augmented DMD
approach significantly improves the classification performance. While the value of the subco-
herence ν is still close to 0.99 and, hence, the theoretical guarantee for accurate reconstruction
is highly conservative, the classification performance is much better. This improvement is re-
flected in the decay of µB as seen in Figure 13. While we have not focused on optimal sensor
placement in this work, this connection between µB and classification performance can be
used to formulate the problem of optimal sensor placement.

5.3. Reconstruction in the library. The goal of this section is to show that the selection
of the correct regime basis, i.e., the local model, is important for subsequent state estimation.
To do so, we conduct the following simple numerical test for two different cases. We run the
system in a specific regime k?. Next, using pT = 10 temperature sensors and pv = 30 velocity
sensors, we collect snapshots of the corresponding output measurement vector yk?(t) ∈ R70.
This output vector is then projected onto bases of different regimes from the library Lobs, and
the resulting coefficients used to reconstruct the full n-dimensional state via the DMD library
L. By using the simple output-state map inversion

x?i (t) = ΦiΘ
†
iyk?(t), i ∈ {8, 12, 13, 14, 15, 16},

we then obtain an estimate of the full state vector history.
In Figure 16, we show the reconstruction results using three time measurements from

regime R16 (i.e., k∗ = 16), and bases from the six regimes. In Figure 17, we show the
reconstruction results using three time measurements from regime R15 (i.e., k∗ = 15), and
bases from the six regimes. Clearly, in both test cases, the estimates using the wrong regimes
have significantly more error than estimates using the correct regime.



SPARSE SENSING AND DMD-BASED IDENTIFICATION 1191

8 12 13 14 15 16

20

40

60

80

100
pV=10 And T=1

8 12 13 14 15 16

20

40

60

80

100
pV=15 And T=1

8 12 13 14 15 16

20

40

60

80

100
pV=20 And T=1

8 12 13 14 15 16

20

40

60

80

100
pV=25 And T=1

8 12 13 14 15 16

20

40

60

80

100
pV=30 And T=1

8 12 13 14 15 16

20

40

60

80

100
pV=10 And T=3

8 12 13 14 15 16

20

40

60

80

100
pV=15 And T=3

8 12 13 14 15 16

20

40

60

80

100
pV=20 And T=3

8 12 13 14 15 16

20

40

60

80

100
pV=25 And T=3

8 12 13 14 15 16

20

40

60

80

100
pV=30 And T=3

8 12 13 14 15 16

20

40

60

80

100
pV=10 And T=5

8 12 13 14 15 16

20

40

60

80

100
pV=15 And T=5

8 12 13 14 15 16

20

40

60

80

100
pV=20 And T=5

8 12 13 14 15 16

20

40

60

80

100
pV=25 And T=5

8 12 13 14 15 16

20

40

60

80

100
pV=30 And T=5

8 12 13 14 15 16

20

40

60

80

100
pV=10 And T=10

8 12 13 14 15 16

20

40

60

80

100
pV=15 And T=10

8 12 13 14 15 16

20

40

60

80

100
pV=20 And T=10

8 12 13 14 15 16

20

40

60

80

100
pV=25 And T=10

8 12 13 14 15 16

20

40

60

80

100
pV=30 And T=10

Increasing Velocity Sensors

Increasing Time
measurements

Figure 14. Classification performance with 10% sensor noise (SNR = 20 dB) for different numbers of
near-boundary velocity sensors pv, and time measurements T = j with pT = 10 temperature sensors at the
boundary. The performance increases significantly as the number of time measurements is increased from 1 to
10, showing the efficacy of augmented DMD.
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Figure 15. Classification performance with 30% sensor noise (SNR = 10 dB) for different numbers of
near-boundary velocity sensors pv, and time measurements T = j with pT = 10 temperature sensors at the
boundary. The performance increases significantly as the number of time measurements is increased from 1 to
10, showing the efficacy of augmented DMD.

Of course, this reconstruction is not a proper state reconstruction in the sense of state-
space observation. Nevertheless, it shows the importance of selecting the right regime basis.
After the correct regime basis has been selected, the corresponding low-dimensional model can
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Figure 16. Reconstruction of three consecutive snapshots from a dynamic regime, corresponding to the
parameter Ra = 1 × 109, in six different regimes, defined via Ra = {1 × 108, 2 × 108, 4 × 108, 6 × 108,
8 × 108, 1 × 109}. The x-axis is the index of the time augmented state vector. The original signal is shown
in green, the reconstructed signal in red, and the error is shown in blue. The corresponding relative errors in
the Euclidean norm are {.0.5895, 0.8549, 0.7075, 0.5346, 0.5514, 0.1373}. The other parameters are 30% noise
(SNR = 10 dB), pv = 30, and pT = 10.

Figure 17. Reconstruction of three consecutive snapshots from a dynamic regime, corresponding to the
parameter Ra = 8 × 108, in six different regimes, defined via Ra = {1 × 108, 2 × 108, 4 × 108, 6 × 108,
8 × 108, 1 × 109}. The x-axis is the index of the time augmented state vector. The original signal is shown
in green, the reconstructed signal in red, and the error is shown in blue. The corresponding relative errors in
the Euclidean norm are {1.0507, 0.9379, 0.9447, 0.9572, 0.3806, 1.1602}. The other parameters are 30% noise
(SNR = 10dB), pv = 30, and pT = 10.
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be used in the framework of state observation. For instance, by using a Luenberger observer,
one can properly estimate the dynamics of the full state vector over time. This part has not
been studied in this paper, but will be the focus of our future work.

6. Summary and conclusion. We have introduced a framework for data-driven regime
selection in parameter-dependent thermofluid systems. Most low-order modeling methods use
Galerkin-projection-based dynamical reduced models of the infinite-dimensional fluid system.
Hence the successful selection of dynamic regimes, and an accurate reconstruction of the
corresponding subspace, is crucial to the success of such models.

Our framework uses ideas from sparse sensing and exploits the dimensionality reduction
performed by reduced-order models. In particular, although our model can operate with
a variety of dimensionality reduction methods, we use DMD to harness the ability of the
Koopman operator to capture the model dynamics. Thus, using a subspace identification
method, we can accurately identify the dynamic regime with few sensors distributed near the
boundary and few time snapshots.

Our framework uses off-line computation to construct a library of regimes to be used for
regime identification. This library comprises DMD eigenvectors and corresponding eigenval-
ues for each regime, which capture the subspace in which the state lies under that regime,
as well as the dynamics of the state. The dynamical information is used to exploit multi-
ple time measurements, which then increases robustness of the classification with respect to
measurement noise and parametric uncertainty.

We numerically demonstrate our approach using a DNS data set of a two-dimensional
differentially heated cavity flow operating at different Rayleigh numbers. The underlying
PDE model is the Boussinesq equation, which captures the dynamics of buoyancy driven
flows well, when temperature differences are small. The numerical results suggest that the
proposed DMD-based classification method with augmented DMD basis is superior to using
only a single time measurement for classification.

Of course, our work is a first step towards our goal of low-order sensing and control
models for complicated parametric thermofluid systems. Parametric DMD [53] is one re-
cent attempt to explicitly take into account the effect of parameters in the DMD framework.
State estimation has not been studied here, and will be the focus of our future report. In-
deed, using the identified low-order model and the correct regime it is possible to construct
a stabilized low-order model and correctly identify its parameters using data-driven learning
techniques [7, 6]. Combining the DMD model with low-order Galerkin models is another
promising direction [59]. These low-dimension models can then be used for state observation,
e.g., using Luenberger observers.

Regime construction is currently a manual process, understood only for a few well-estab-
lished systems. Automated optimal labeling and sorting of data into different regimes, ac-
cording to some measures such as those discussed in this paper, would remove the need for
manual construction of regimes.

Another avenue of further research suggested by this work is the connection between non-
linear systems and sparsity theory. While some basic results in observability, controllability,
and state estimation for linear systems with sparse states are already known [62, 52], our
results suggest that this framework could be extended to nonlinear systems via the DMD.
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Based on the local regime classification framework described here, follow-up work considers
suboptimal control for systems with parametric uncertainties [32], another encouraging step
towards real-time sensing and control of such complex systems.
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quality of this work.
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[30] M. R. Jovanović, P. J. Schmid, and J. W. Nichols, Sparsity-promoting dynamic mode decomposition,

Phys. Fluids, 26 (2014), 024103.
[31] O. Junge, J. E. Marsden, and I. Mezic, Uncertainty in the dynamics of conservative maps, in 43rd

IEEE Conference on Decision and Control, CDC, 2004, Vol. 2, IEEE, Piscataway, NJ, 2004, pp. 2225–
2230.

[32] B. Kramer, B. Peherstorfer, and K. Willcox, Feedback control for systems with uncertain param-
eters using online-adaptive reduced models, SIAM J. Appl. Dyn. Syst., to appear.
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