
Robust POD Model Stabilization for the 3D Boussinesq Equations Based on
Lyapunov Theory and Extremum Seeking

Mouhacine Benosman, Jeff Borggaard, Boris Kramer

Abstract— We present new results on robust model reduction
for partial differential equations. Our contribution is threefold:
1.) The stabilization is achieved via closure models for reduced
order models (ROMs), where we use Lyapunov robust control
theory to design a new stabilizing closure model that is
robust with respect to parametric uncertainties; 2.) The free
parameters in the proposed ROM stabilization method are auto-
tuned using a data-driven multi-parametric extremum seeking
(MES) optimization algorithm; and 3.) The challenging 3D
Boussinesq equation numerical test-bed is used to demonstrate
the advantages of the proposed method.

I. INTRODUCTION

A well known problem in model reduction for partial
differential equations (PDEs) is the so-called stable model
reduction problem. The goal is to use Galerkin projection
onto a suitable set of modes to reduce PDEs to a small
system of ordinary differential equations (ODEs), while
maintaining the main characteristics of the original model,
such as stability and prediction precision.

In this paper, we focus on reduced order models obtained
by the method of proper orthogonal decomposition (POD)
[1], which has been widely used to obtain surrogate models
of tractable size in fluid flow applications. However, it has
been observed that POD reduced order models can loose
stability even when the flow solutions are stable. This is due
to truncation of the stabilizing modes in the system [2]–[6].

We address the stable model reduction problem by using
closure models, which are classically in the form of additive
viscosity-like terms introduced in the reduced order models
(ROMs) to ensure stability, by simple damping effect. Con-
trary to the existing closure models, which are commonly
obtained from physics-based intuitions, we propose here a
constructive approach, through means of robust Lyapunov
theory, to design a new closure model that is robust to
parametric uncertainties in the model. Furthermore, the ob-
tained closure model has free parameters, which we auto-
tune with a data-driven extremum seeking algorithm to
optimally match predictions of the PDE model. The idea
of using extremum-seeking to auto-tune closure models has
been introduced by the authors in [7], on classical viscosity-
based closure models. However, the difference with this
work lies in the introduction of new robust closure models,
based on robust control theory. In [7], we considered the
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one dimensional Burgers’ equation. Here, we study the
challenging case of 3D Boussinesq equations, which is a
good model for a number of important control applications,
e.g., airflow in HVAC systems [8]. However, it is also well
known in the fluid dynamics community that 3D Boussinesq
equations are hard to simulate, let alone, reduce and stabilize.

Our work extends existing results in the field. Indeed,
stable model reduction of Navier-Stokes flow models by
adding a nonlinear viscosity term to the reduced order model
is considered in [9]. In [10], [11], incompressible flows are
stabilized by an iterative search of the projection modes that
satisfy a local Lyapunov stability condition. An optimization
based approach for the POD modes of linear models, which
solely focused on matching the outputs of the models is
derived in [4], [6]. Kalb and Deane [3] added error correction
terms to the reduced order model for improved accuracy
and stabilization. Moreover, the authors in [2] calibrated
the POD model by solving a quadratic optimization prob-
lem based on three different weighted error norms. Stable
model reduction using closure models were proposed for
the Boussinesq equations in [12]–[14]. These closure models
modify some stability-enhancing coefficients of the reduced
order ODE model using either constant additive terms, such
as the constant eddy viscosity model, or time and space
varying terms, such as Smagorinsky models (cf. [15]). The
amplitudes of the additional terms are tuned in such a way
to accurately stabilize the reduced order model.

However, such closure models, classically motivated from
physics, do not take into account parametric uncertainties in
the model, and their tuning is not always straightforward. Our
work addresses these issues and proposes, based on robust
nonlinear control theory, a new closure model in Section III,
which includes parametric uncertainties in its formulation.
Furthermore, we achieve (online) optimal auto-tuning of this
closure model using a learning-based extremum seeking ap-
proach. Finally, we demonstrate the performance of proposed
approach using the challenging 3D Boussinesq equation in
Section IV. The paper ends with conclusions and future steps
discussed in Section V. First, let us introduce some notations
and necessary definitions.

II. BASIC NOTATIONS AND DEFINITIONS

For a vector q ∈ Rn, the transpose is denoted by q∗.
The Euclidean vector norm for q ∈ Rn is denoted by
‖ · ‖ so that ‖q‖ =

√
q∗q. The maximum eigenvalue of a

matrix M is denoted by λmax(M). The Frobenius norm of
a tensor A ∈ R⊗ini , with elements ai = ai1···ik

, is defined

as ‖A‖F ,
√∑n

i=1 |ai|2. The Kronecker delta function is
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defined as: δij = 0, for i 6= j and δii = 1. We call a
function analytic in a given set, if it admits a convergent
Taylor series approximation in some neighborhood of every
point of the set. Our PDEs (the Boussinesq equations) are
solved on the unit cube x ∈ Ω = (0, 1)3 and t ∈ (0, tf ). We
shall abbreviate the time derivative by ḟ(t, x) = ∂

∂tf(t, x),
and consider the following Hilbert spaces: H = L2(Ω),
V = H1

div(Ω) ⊂ (H)3 for velocity and T = H1(Ω) ⊂ H for
temperature. Thus, V is the space of divergence-free vector
fields on Ω with components in H1(Ω). Dirichlet boundary
conditions are also considered in V and T . We define the
inner product 〈·, ·〉H and the associated norm ‖ · ‖H on H
as ‖f‖2H =

∫
Ω
|f(x)|2dx, and 〈f, g〉H =

∫
Ω

f(x)g(x)dx,
for f, g ∈ H. A function T (t, x) is in L2([0, tf ];H) if for
each 0 ≤ t ≤ tf , T (t, ·) ∈ H, and

∫ tf

0
‖T (t, ·)‖2Hdt < ∞

with analogous definitions for the vector valued functions
in (H)3. To generalize the discussion below, we consider
the abstract Hilbert space Z , and later specialize to Z =
V ⊕ T when considering the Boussinesq equations. Finally,
in the remainder of this paper we consider the stability of
dynamical systems in the sense of Lagrange, e.g., [16]: A
system q̇ = f(t, q) is said to be Lagrange stable if for every
initial condition q0 associated with the time instant t0, there
exists ε(q0), such that ‖q(t)‖ < ε, ∀t ≥ t0 ≥ 0.

III. LYAPUNOV-BASED ROBUST STABLE MODEL

REDUCTION OF PDES

A. Reduced Order PDE Approximation

We consider a stable dynamical system modeled by a
nonlinear partial differential equation of the form

ż = F(z), z(0) ∈ Z, (1)

where Z is an infinite-dimensional Hilbert space. Solutions
to (1) can be approximated in an n-dimensional subspace
Zn ⊆ Z through expensive numerical discretization. The
approximate solution is denoted by zn(t, x) ∈ Zn, where
t ∈ R+ is the time variable, and x ∈ Ω denotes the space
variable. In this paper, we use the well-established finite
element method (FEM) for spatial discretization of (1), and
refer the reader to [17] for details.

In many systems, particularly fluid flows considered
herein, solutions of (1) evolve in a much lower-dimensional
subspace Zr ⊆ Zn, spanned by only a few suitable
(optimal) basis [1] functions. This gives rise to reduced
order modeling through Galerkin projection, which follows
three main steps, which we briefly outline below: First,
one (spatially) discretizes the PDE using a finite, but large,
number of basis functions. Second, one determines a set
of r (often r < 100) spatial basis vectors φi(x) ∈ Zn,
that approximate the discretized PDE solution as zn(t, x)
with respect to a pre-specified accuracy criterion. Third, a
Galerkin projection onto the subspace spanned by the φi

yields an r-dimensional ordinary differential equation for the
time-dependent coefficient functions of the ROM expansion.

B. Proper Orthogonal Decomposition for ROMs

We briefly review the necessary steps for computing POD
reduced order models, described in detail in [1], [18]. POD-
based models are known for retaining a maximal amount of
energy in the reduced model. The POD basis is computed
from a collection of s time snapshots of the spatially dis-
cretized dynamical system:

S = {zn(t1, ·), ..., zn(ts, ·)} ⊂ Zn. (2)

The ti are time instances at which snapshots are recorded,
which do not have to be uniform. The correlation matrix K
is then defined as

Kij =
1
s
〈zn(ti, ·), zn(tj , ·)〉H, i, j = 1, ..., s. (3)

The normalized eigenvalues and eigenvectors of K are
denoted by λi and vi, respectively. Note that the λi are
also referred to as the POD eigenvalues. The ith POD basis
function is given by

φi(x) =
1

√
s
√

λi

s∑
j=1

vi,jzn(tj , x), i = 1, ..., r, (4)

where r ≤ min{s, n}, the number of retained POD basis
functions, depends on the application. The POD basis func-
tions are orthonormal:

〈φi, φj〉H =
∫

Ω

φi(x)∗φj(x)dx = δij , (5)

where δij denotes the Kronecker delta function. In the POD
basis, the solution of the PDE (1) can then be approximated
by

zn(t, x) =
r∑

i=1

qi(t)φi(x) (6)

where qi(t), i = 1, . . . , r are the time-dependent POD
coefficients, whose dynamics are determined by Galerkin-
projection of (1) onto the rth-order POD subspace Zr ⊆
Zn ⊆ Z . This leads to an ODE of the form

q̇(t) = F (q(t)) ∈ Rr. (7)

A projection of the initial condition for z(0) can be used to
determine q(0).

C. Closure models for ROM stabilization

Consider a parameter-dependent PDE of the form

ż(t) = F(z(t), µ), z(0) = z0 ∈ Z, µ ∈ R, (8)

where parameter µ is assumed to be critical for the stability
and accuracy of the model; changing the parameter can either
make the model unstable, or inaccurate for prediction. As an
example, since we are interested in fluid dynamics problems,
µ can represent a viscosity coefficient. We assume that (8)
satisfies the following

Assumption 1: The solutions of (8) are in L2([0,∞);Z),
for all µ ∈ R.
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The corresponding reduced-order, parameter-dependent
model takes the form:

q̇(t) = F (q(t), µ). (9)

It is well known that Galerkin POD ROM (denoted POD
ROM-G) can produce solutions that become unbounded at a
finite time, despite the fact that the solution of (8) is bounded.

One of the main ideas behind closure modeling is that the
viscosity coefficient µ in (9) can be replaced by a virtual
viscosity coefficient µcl, whose form is chosen to stabilize
the solutions of (9). Furthermore, a penalty term H(·, ·) is
added to the original POD ROM-G, as follows

q̇(t) = F (q(t), µcl) + H(t, q(t)). (10)

The choice of H(·, ·) is often motivated by physics, and
depends on the structure of F (·, ·). For instance, one can
use the Cazemier penalty model described in [20]. However,
as we mentioned earlier, the available choices of H are not
developed via a constructive method and never take into
account parametric uncertainties. We propose to improve this
in the next section.

D. Main result 1: Lyapunov-based Closure Model

We introduce here the first main result of this paper,
namely a Lyapunov-based closure model which is robust
to parametric uncertainties. To do so, we isolate the linear
viscous term of the ROM (9) as follows

q̇(t) = F (q(t), µ) = F̃ (q(t)) + µ Dq(t), (11)

where D ∈ Rr×r represents a constant viscosity damping
matrix, and the function F̃ (·) represents the remainder of
the ROM, i.e., the part without damping.

We consider here the case where F̃ might be unknown
but bounded by a known function. This includes the case
of parametric uncertainties in (8), which lead to structured
uncertainties in (11). In this case, we use Lyapunov theory to
propose a nonlinear closure model that (robustly) stabilizes
the ROM in the sense of Lagrange stability.

We assume that F̃ satisfies the following assumption.
Assumption 2: The norm of the vector field F̃ is bounded

by a known function of q, i.e., ‖F̃ (q)‖ ≤ f̃(q).
We now present the following result.

Theorem 1: Consider the PDE (8), under Assumption 1,
together with its stabilized ROM

q̇(t) = F̃ (q(t)) + µcl Dq(t) + H(q(t)), (12)

where F̃ satisfies Assumption 2, the diagonal elements of D
are negative, and µcl is given by

µcl = µ + µe, (13)

where µ is the nominal value of the viscosity coefficient
in (8), and µe is the additional constant term. Then, the
nonlinear closure model

H(q) = µnlf̃(q) diag(d11, ..., drr) q, µnl > 0 (14)

stabilizes the solutions of the ROM to the invariant set

S = {q ∈ Rr s.t. µcl
λmax(D)‖q‖

f̃(q)
+

µnl‖q‖max{d11, . . . , drr}+ 1 ≥ 0}.

Proof 1: The proof has been removed due to space con-
straints, but will appear in a longer version of this work.

E. Main result 2: Multi-parametric extremum seeking
(MES)-based closure model auto-tuning

As mentioned in our introduction and in [14], the tuning
of the closure model amplitude is important to achieve an
optimal stabilization of the ROM. To achieve optimal sta-
bilization, we use model-free MES optimization algorithms
to tune the coefficients of the closure models presented in
Section III-C. The advantage of using MES is the auto-tuning
capability that such algorithms allow. Moreover, in contrast
to manual offline tuning approaches, the use of MES allows
us to constantly tune the closure model, even during online
operation of the system. Indeed, MES can be used offline
to tune the closure model, but it can also be connected
online to the real system to continuously fine-tune the closure
model coefficients, such as the amplitudes of the closure
models. Thus, the closure model can be valid for a longer
time interval compared to the classical closure models with
constant coefficients, which are usually tuned offline over a
fixed finite time interval.

We start by defining a suitable learning cost function.
The goal of the learning (or tuning) is to enforce Lagrange
stability of the ROM (9), and to ensure that the solutions
of the ROM (9) are close to those of the original PDE
(8). The latter learning goal is important for the accuracy
of the solution. Model reduction works toward obtaining a
simplified ODE model which reproduces the solutions of the
original PDE (the real system) with much less computational
burden, i.e., using the lowest possible number of modes.
However, for model reduction to be useful, the solution
should be accurate.

We define the learning cost as a positive definite function
of the norm of the error between the approximate solutions
of (8) and the ROM (10),

Q(µ̂) = H̃(ez(t, µ̂)),

ez(t, µ̂) = zpod
n (t, x; µ̂)− zn(t, x;µ),

(15)

where µ̂ = [µ̂e, µ̂nl]∗ ∈ R2 denotes the learned parameters,
and H̃(·) is a positive definite function of ez . Note that
the error ez could be computed offline using solutions of
the ROM (12), and exact (e.g., FEM-based) solutions of the
PDE (8). The error could be also computed online where the
zpod
n (t, x; µ̂) is obtained from solving the ROM (12) online,

and the zn(t, x;µ) are real measurements of the system at
selected spatial locations {xi}. The latter approach would
circumvent the FEM model, and directly operate on the
system, making the reduced order model more consistent
with respect to the realtime operating plant.

A practical way to implement the MES-based tuning of
µ̂, is to begin with an offline tuning of the closure model.
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One then uses the obtained ROM (with the optimal values
of µ̂, namely µopt) in the online operation of the system,
e.g., control and estimation. We can then fine-tune the ROM
online by continuously learning the best value of µ̂ at any
given time during the operation of the system.

To derive formal convergence results, we introduce some
classical assumptions on the learning cost function.

Assumption 3: The cost function Q(·) in (15) has a local
minimum at µ̂ = µopt.

Assumption 4: The cost function Q(·) in (15) is analytic
and its variation with respect to µ is bounded in the
neighborhood of µopt, i.e., ‖∇µQ(µ̃)‖ ≤ ξ2, ξ2 > 0,
for all µ̃ ∈ N (µopt), where N (µopt) denotes a compact
neighborhood of µopt.

Under these assumptions the following lemma holds.
Lemma 1: Consider the PDE (8) under Assumption 1,

together with its ROM (12), (13), and (14). Furthermore,
suppose the closure model amplitudes µ̂ = [µ̂e, µ̂nl]∗ are
tuned using the MES algorithm

ẏ1(t) = a1 sin
(
ω1t +

π

2

)
Q(µ̂),

µ̂e(t) = y1 + a1 sin
(
ω1t−

π

2

)
,

ẏ2(t) = a2 sin
(
ω2t +

π

2

)
Q(µ̂),

µ̂nl(t) = y2 + a2 sin
(
ω2t−

π

2

)
,

(16)

where ωmax = max(ω1, ω2) > ωopt, ωopt large enough, and
Q(·) is given by (15). Let eµ(t) := [µe

opt− µ̂e(t),µnl
opt−

µ̂nl(t)]∗ be the error between the current tuned values, and
the optimal values µopt

e , µopt
nl . Then, under Assumptions 3,

and 4, the norm of the distance to the optimal values admits
the following bound

‖eµ(t)‖ ≤ ξ1
ωmax

+
√

a2
1 + a2

2, t →∞, (17)

where a1, a2 > 0, ξ1 > 0, and the learning cost function
approaches its optimal value within the following upper-
bound

‖Q(µ̂)−Q(µopt)‖ ≤ ξ2( ξ1
ω +

√
a2
1 + a2

2), (18)

as t →∞, where ξ2 = maxµ∈N (µopt) ‖∇µQ(µ)‖.
Proof 2: The proof has been removed due to space con-

straints, but will appear in a longer version of this work.

IV. MAIN RESULT 3: THE CASE OF 3D BOUSSINESQ

EQUATION

As an example application of our approach, we consider
the 3D incompressible Boussinesq equations that describe
the evolution of velocity v, pressure p, and temperature T
of a fluid. The coupled equations reflect the conservation of
momentum, mass, and energy,

ρ

(
∂v
∂t

+ v · ∇v
)

= −∇p +∇ · τ(v) + ρg, (19)

∇ · v = 0, (20)

ρcp

(
∂T

∂t
+ v · ∇T

)
= ∇ (κ∇T ) , (21)

where the buoyancy force is driven by changes in density
ρ = ρ0 + ∆ρ and is modeled using the perfect gas law
∆ρg ≈ −ρ0β (T − T0)g, β = 1/T0. The viscous stress
τ(v) = ρν

(
∇v +∇vT

)
with kinematic viscosity ν and

thermal conductivity κ. One typically non-dimensionalizes
these equations depending on the application at hand. For
this study, we perform non-dimensionalization as follows. By
introducing a characteristic length L, characteristic velocity
v0, and defining x̃ = x

L , t̃ = tv0
L , ṽ = v

v0
, p̃ = p

ρv2
0

, and

T̃ = T−T0
Tw−T0

we can reduce the number of free parameters to
three. These are the Reynolds number Re = ρv0L

µ = v0L
ν , the

Grashof number Gr = gβ(Tw−T0)L
3

ν2 , and the Prandtl number
Pr = ν

k/ρcp
. Thus,

∂v
∂t

+ v · ∇v = −∇p +∇ · τ(v) +
Gr
Re2 T, (22)

∇ · v = 0, (23)

∂T

∂t
+ v · ∇T = ∇ ·

(
1

RePr
∇T

)
, (24)

where τ(v) = 1
Re (∇v +∇vT ) and we have dropped the ’̃s.

Following a Galerkin projection onto the subspace spanned
by the POD basis functions, the Boussinesq equation is
reduced to a POD ROM with the following structure, e.g.,
[9]

q̇(t) = µ D q(t) + [Cq(t)]q(t), (25)

v(x, t) = v0(x) +
rv∑
i=1

qi(t)φv
i (x), (26)

T (x, t) = T0(x) +
rT +rv∑
i=rv+1

qi(t)φT
i (x), (27)

where µ > 0 is the viscosity, i.e., the inverse of the Reynolds
number, D is a negative definite matrix with diagonal blocks
corresponding to the viscous stress and thermal diffusion
(scaled by Pr to extract the parameter µ) and C is a three-
dimensional tensor corresponding to the convection terms in
(22) and (24). We notice that this POD-ROM has mainly a
linear term and two quadratic terms, so that it can be written
in the form (11), with

F̃ (q) = [Cq]q.

If we consider bounded parametric uncertainties ∆C for the
entries of C, we can write

F̃ (q) = [(C + ∆C)q]q,

where ‖C + ∆C‖F ≤ cmax, we have the upper-bound

‖F̃ (q)‖ ≤ f̃(q) ≡ cmax‖q‖2.

In this case the nonlinear closure model (14) is

H(q) = µnlcmax‖q‖2diag(d11, ..., drr)q, (28)

for µnl > 0 with dii, i = 1, ..., r being the diagonal elements
of D.
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A. Boussinesq equation MES-based POD ROM stabilization

We consider the Rayleigh-Bénard differential-heated cav-
ity problem, modeled with the 3D Boussinesq equation (19)
with the following parameters and boundary conditions. The
unit cube was discretized with 495k quadratic tetrahedral
elements with 611k nodes leading to 1.83M velocity degrees
of freedom and 611k temperature degrees of freedom. Thus,
n ≈ 2.4 × 106. The velocity was taken as zero on the
boundary and the temperature was specified at ±0.5 on
the x-faces and taken as homogeneous Neumann on the
remaining faces. The non-dimensional parameters were taken
as Re = 4.964 × 104, Pr = 0.712, and Gr = 7.369 × 107,
reasonable values in a quiet room. The simulation (by a
finite elements CFD code) was run from zero velocity and
temperature and snapshots were collected for 78 seconds.

We apply the results of Theorem 1 and Lemma 1 to
this problem. In this case we use 8 POD basis functions
for each variable, for the POD model (POD-ROM-G). The
upper bounds on the uncertainties in the matrix and tensor
entries are assumed to be cmax = 10. The two closure
model amplitudes µ̂ = [µe, µnl]∗ are tuned using the discrete
version of the MES algorithm (16), given by

y1(k + 1) = y1(k) + a1∆t sin
(
ω1k∆t +

π

2

)
Q(µ̂),

µ̂e(k + 1) = y1(k + 1) + a1 sin
(
ω1k∆t− π

2

)
,

y2(k + 1) = y2(k) + a2∆t sin
(
ω2k∆t +

π

2

)
Q(µ̂),

µ̂nl(k + 1) = y2(k + 1) + a2 sin
(
ω2k∆t− π

2

)
,

(29)
where y1(0) = y2(0) = 0, k = 0, 1, 2, ... is the number of
learning iterations, and ∆t is the time increment. We use
MES parameter values: a1 = 0.08 [−], ω1 = 10 [ radsec ], a2 =
10−7 [−], ω2 = 50 [ radsec ]. The learning cost function is
chosen as

Q(µ) =
∫ tf

0

〈eT , eT 〉Hdt +
∫ tf

0

〈ev, ev〉(H)3dt. (30)

Moreover, eT = PrTn − T pod
n , ev = Prvn − vpod

n define
the errors between the projection of the true model solution
onto the POD space Zr and the POD-ROM solution for
temperature and velocity, respectively.

We first report in Figures 1, and 2 the errors between the
true solutions and the POD ROM-G solutions.

Next, we show the learning cost function in Figure 5. We
can see a quick decrease of the cost function within the first
20 iterations. This means that the MES manages to improve
the overall solutions of the POD ROM quickly. The values
of the tuning parameters µ̂e and µ̂nl of the closure model are
reported in Figures 6, and 7. Even though the cost function
decreases quickly, the ES algorithm continues to fine-tune the
parameters µ̂e, µ̂nl in the following iterations. The optimal
values are then µ̂e ' 0.85, and µ̂nl ' 1.25× 10−6. We next
show the effect of closure-modeling on the accuracy of the
POD ROM solutions. Figures 3, 4 show the error of the POD
solution with respect to the finite element solution, which by

Fig. 1. ROM-G velocity error profile

Fig. 2. ROM-G temperature error profile

comparison with Figures 1, 2 show an improvement of the
POD ROM solutions with the MES tuning of the closure
models’ amplitudes.

V. CONCLUSION

We proposed a new closure model for robust stabilization
of reduced order models of PDEs based on a data-driven
extremum seeking algorithm to auto-tune the closure model
coefficients. We have validated the proposed method on
a challenging 3D Boussinesq equation in the form of a
modified Rayleigh-Bénard differential-heated cavity prob-
lem. The proposed closure model produced accurate and
stable reduced order models for the considered test problem.
However, future investigations will be conducted on more
challenging flows, e.g., turbulent flows, as well as on exper-
imental tests on a water-tank test-bed.
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