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Solar wind conditions are predominantly predicted via three-dimensional numerical 
magnetohydrodynamic (MHD) models. Despite their ability to produce highly accurate 
predictions, MHD models require computationally intensive high-dimensional simulations. 
This renders them inadequate for making time-sensitive predictions and for large-ensemble 
analysis required in uncertainty quantification. This paper presents a new data-driven 
reduced-order model (ROM) capability for forecasting heliospheric solar wind speeds. 
Traditional model reduction methods based on Galerkin projection have difficulties with 
advection-dominated systems—such as solar winds—since they require a large number of 
basis functions and can become unstable. A core contribution of this work addresses this 
challenge by extending the non-intrusive operator inference ROM framework to exploit 
the translational symmetries present in the solar wind caused by the Sun’s rotation. The 
numerical results show that our method can adequately emulate the MHD simulations 
and is more accurate than a reduced-physics surrogate model, the Heliospheric Upwind 
Extrapolation model.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Magnetohydrodynamic (MHD) modeling of coronal and interplanetary solar wind can significantly improve the prediction 
of catastrophic space weather events. Such space weather geomagnetic storms can have detrimental effects on spacecrafts, 
cause electric power outage, satellite collisions, telecommunication interruption, and expose astronauts to harmful radiation. 
Very recently, 40 out of 49 of SpaceX’s starlink satellites failed to reach their low-Earth orbits presumably due to the effects 
of a geomagnetic storm around Feb. 2, 2022; the geomagnetic storm increased Earth’s upper atmosphere density causing 
orbital drag [6]. This event further emphasizes the need for real-time modeling of solar storms. The most substantial source 
of space weather events are coronal mass ejections, corotating interaction regions, and high-speed solar wind streams that 
reach the Earth’s magnetosphere. Three-dimensional MHD solar wind models, such as the Magnetohydrodynamics Around a 
Sphere [55] model, Enlil [40], and the Space Weather Modeling Framework [63], can provide high-fidelity predictions. Apart 
from providing a global assessment of coronal and heliospheric properties, MHD modeling can connect in situ magnetic and 
plasma observations from one spacecraft to the other, providing crucial support to interplanetary missions [57]. Although 
MHD models are an important tool in understanding observed coronal and heliospheric dynamics, they require computation-
ally intensive high-dimensional simulations. This renders them infeasible for time-sensitive predictions and large-ensemble 
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methods such as quantifying forecast uncertainty and performing parameter sensitivity analysis. Thus, there is a need for 
computationally efficient surrogate models that are capable of reproducing MHD results with sufficient fidelity.

The present work addresses this challenge by proposing a new method to derive a data-driven reduced-order model 
(ROM) for solar wind predictions that particularly focuses on issues that arise from the advection-dominated nature of the 
problem. The proposed method efficiently learns predictive ROMs from high-fidelity simulations (or other data) of solar 
wind models, while simultaneously producing an interpretable model and physical model form. We subsequently review 
the related literature, both focusing on the mathematical aspects of surrogate modeling for advection-dominated systems 
and the application domain of efficient heliospheric modeling.

Solar wind predictions are produced by a chain of coupled models in different parts of the Sun-Earth domain, i.e., 
the solar surface, corona, and heliosphere. In the heliospheric domain, there are mainly two classes of surrogate solar 
wind models: reduced-physics (white-box) and data-driven (black-box) models. The first approach is based on physical 
simplifications of the MHD equations. The simplest reduced-physics model is the ballistic approximation which assumes 
that each solar wind parcel maintains a constant radial speed as it propagates in the heliosphere. This approximation is 
mainly used to map solar wind streams for short radial distances [61]. An improved kinematic model that bridges the gap 
between the ballistic mapping and global three-dimensional MHD modeling is the Heliospheric Upwind Extrapolation model, 
where each parcel speed is dependent on its adjacent parcel speed [56,52,42,51]. A second approach is to build surrogate 
solar wind models via data-driven and statistical techniques [12]. Such methods mainly aim to forecast the solar wind 
at Earth’s vicinity without computing the solar wind dynamics on the full heliospheric domain. Examples of data-driven 
models include an artificial neural network model [67], a gradient-boosting regression-based model [9], and a probability 
distribution function model based on past rotation solar wind observations [11]. As we will see later, our proposed reduced-
order modeling methodology is data-driven, yet accounts for the physical properties of the solar wind rotation. It therefore 
serves as a hybrid gray-box approach that leverages available physical information while remaining computationally efficient.

From a methodological perspective, several ROM strategies have targeted advection-dominated scenarios. For background, 
traditional ROMs are derived via (Petrov-) Galerkin projection, where the full-order model (FOM) is projected onto a low-
dimensional subspace, see [23,7,22]. This class of ROMs aims to identify a small set of basis functions that minimize a certain 
error metric. However, a well-reported issue with linear-subspace ROMs is that they fail to model advection-dominated 
problems due to poorly decaying Kolmogorov N-width [19,41,65] which results in a slow decay of the singular values, see, 
e.g., [59,24,39,50,34]. An accurate ROM would require a large number of basis functions, rendering it inefficient from a 
computational perspective. Additionally, a large number of global basis functions can lead to numerical instabilities. The 
efforts to address the challenge posed by advection-dominated systems can be roughly categorized into Lagrangian-based 
approaches and methods that leverage a transport-invariant coordinate frame. The first line of research leverages Lagrangian 
coordinate grids to build a ROM that propagates both the wave physics and the coordinate grid in time [39,34,33]. These 
methods work extremely well, yet require knowledge of the underlying equations to solve for the Lagrangian grid, limiting 
their range of applicability. The second line of research, which our work builds upon, is based on transforming the dynamics 
to a moving coordinate frame via a time-dependent shift that is added to the spatial coordinates. In the moving frame, the 
system dynamics are absent of advection. The shift function can be numerically learned in various ways. For instance, 
the shifted proper orthogonal decomposition method [50] proposes to detect the shift either through tracking peaks of 
the solution, or through an expansive SVD algorithm, where different candidate shifts are applied to the data matrix and 
then the SVD is computed. The shifts leading to the best singular value decay are then selected and a corresponding 
ROM is built via Galerkin projection. This strategy is computationally quite expensive due to the need for many SVDs of 
a large (yet rectangular) data matrix. The authors in [38] propose an implicit feature-tracking algorithm that is based on 
a minimal-residual ROM. This algorithm works well on complex geometries, however, finding the domain mapping can 
be quite expensive, too. Very recent work by [43] builds on the trend of machine learning to derive two separate neural 
networks, one for detecting nonlinear shifts in the transport velocity, and a second for interpolating a shifted solution 
back to the reference frame. The method is fully data-driven, yet does not propose a predictive ROM that integrates the 
shift detection with a projection framework. Most closely related to our work is [37], which proposes an unsupervised 
learning method to aid the identification and low-dimensional modeling of systems with translational symmetries. The 
data-based method uses sparse regression and ridge detection to identify models with non-constant wave speeds inherent 
to the data. The method performs well on several examples, including multiple waves traveling in opposite directions. 
While the examples all demonstrate interesting wave phenomena, the governing equations were always known, allowing 
to derive solid intuition about the wave-speed library. Other approaches that have been developed that do not fit precisely 
into these categories include the work by [44] that updates the ROM basis online to avoid slowly decaying Kolmogorov 
N-width, and the work by [24] that applies two separate mechanisms to deal with advection-diffusion systems, namely a 
representation of translational features via advection modes, and then the subsequent residual (features that are not purely 
advective) via global modes. Building on the philosophy of inducing time-dependent shifts into the ROM framework, we 
extend the non-intrusive projection-based operator inference ROM framework [46] towards advection-dominated systems 
by transforming the dynamics to a moving coordinate frame. Standard operator inference has successfully been applied to 
diverse applications such as combustion [62,36], chemical reactors [10], ocean flows [68], Hamiltonian systems [60], and 
general reaction systems in the presence of incomplete data [64]. Since operator inference learns the operators that would 
be obtained through intrusive Galerkin projection (which can be done exactly with additional data pre-processing, see [45]) 
it inherits problems that intrusive Galerkin ROMs face in the presence of strong advection.
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We propose a new strategy for efficient data-driven heliospheric solar wind modeling. The method, shifted operator infer-
ence (sOpInf), builds on standard operator inference and extends it towards the challenges faced in solar wind predictions. 
Our proposed method first determines a moving coordinate frame where the dynamics are absent of translation and ro-
tation and subsequently transforms the system into the new time-dependent coordinates. Two methods for predicting the 
shift are proposed. It then performs model learning in the shifted coordinate systems and subsequently makes predictions 
with the sOpInf-ROM via interpretable ODE simulation. Our hypothesis aligns with the previously cited references, in that 
simple translational patterns in the data and model can (and should) be exploited in the ROM approach. Our proposed 
approach (1) speeds up the MHD simulation by several orders of magnitude, (2) preserves the solar wind spiral pattern 
created by the Sun’s rotation, and (3) uncovers macroscopic coherent structures present in the evolution of solar wind 
streams by analyzing the velocity field modal decomposition. We present computationally-efficient data-driven ROMs for 
two heliospheric solar wind models: the MAS (Magnetohydrodynamics Around a Sphere) model and the HUX (Heliospheric 
Upwinding eXtrapolation) model.

This paper is organized as follows. Section 2 describes the MAS and HUX heliospheric solar wind models and in Section 3
we present the proposed method, shifted operator inference. In Section 4 we demonstrate the performance of sOpInf on the 
MAS and HUX solar wind speed simulated data. Section 5 then offers conclusions and an outlook to future work.

2. Solar wind models

This section introduces the solar wind models considered in this study. Section 2.1 presents the MAS model. Section 2.2
discusses an approximation to that model with similar physical attributes, the HUX model.

2.1. Spherical magnetohydrodynamics: the MAS model

The MAS (Magnetohydrodynamics Around a Sphere) model is the primary MHD model in the CORHEL (CORona-
HELiosphere) software and is publicly available at NASA’s community-coordinated modeling center [3]. The MAS model 
solves the time-dependent resistive MHD equations and has been used to study coronal mass ejections [31], coronal dynam-
ics [55], solar wind structure [54], and connect in-situ spacecraft observations [57]. Herein, we focus our effort on analyzing 
the MAS solar wind radial velocity results and therefore exclude the discussion of other plasma components such as the 
magnetic field, plasma temperature, density, pressure, etc. This is because many space weather operational forecast models 
for satellite control and Earth-based infrastructure are particularly interested in near-Earth solar wind speed. Predicting the 
solar wind speed is pivotal for assessing the risk of geomagnetic storms because (1) coronal mass ejections, which are the 
most fundamental source of space weather events, are modeled as perturbations to the ambient solar wind; (2) interaction 
regions between fast and slow solar wind, known as co-rotating interaction regions, mainly present during solar minimum, 
are a driver of moderate geomagnetic activity [54]; and (3) high-speed solar wind streams cause an additional acceleration 
of energetic electrons in the radiation belts [16].

2.1.1. Governing equation
The MAS model solves a system of three-dimensional time-dependent resistive MHD equations in spherical coordinates 

(r, θ, φ), where r is the radial distance from the Sun, θ is Carrington latitude in heliographic (rotating) coordinate system 
(HG), φ is the Carrington longitude in the HG coordinate system. The governing equations are

∇ × B = 4π

c
J, (1)

∇ × E = −1

c

∂B

∂t
, (2)

E + 1

c
v × B = ηJ, (3)

∂ρ

∂t
+ ∇ · (ρv) = 0, (4)

ρ

(
∂ v

∂t
+ v · ∇v

)
= 1

c
J × B − ∇p − ∇pw + ρg + ∇ · (νρ∇v), (5)

1

γ − 1

(
∂T

∂t
+ v · ∇T

)
= −T ∇ · v + S, (6)

and the initial and boundary condition are described in [54,30,53]. Here, B(r, θ, φ, t) is the magnetic field, J(r, θ, φ, t) is the 
current density, E(r, θ, φ, t) is the electric field, v(r, θ, φ, t) is the plasma velocity, T (r, θ, φ, t) is the plasma temperature, 
ρ(r, θ, φ, t) is the plasma mass density, and p(r, θ, φ, t) is the plasma pressure, and pw (r, θ, φ, t) is the Alfvén wave pres-
sure. The constant c denotes the speed of light in a vacuum and g(r) = − GMs

r2 êr is the gravitational acceleration, where 
êr is the unit vector in the radial direction, G is the universal gravitational constant, and Ms = 1.99 × 1030 kg is the solar 
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mass. For the simulations used in this study, the constant resistivity is set to η = 4.6779 × 10−5 s and the kinematic vis-
cosity ν = 3.3503 × 1016 m2s−1 . In the energy equation described in Eq. (6), the thermodynamic approximation sets the 
ratio of specific heats to γ = 5/3. Moreover, the energy source terms are denoted by S = S(T ); for more details about 
the thermodynamic energy source term see the MAS user guide [53]. The MAS boundary conditions exploit photospheric 
magnetic field observations (e.g. data from the Wilcox Solar Observatory, the Global Oscillation Network Group, and the 
Solar Dynamics Observatory spacecraft), see [1,53]. Here, we choose to analyze the scenario where the thermodynamic MAS 
results are driven by a synoptic map of the photospheric magnetic field as it reaches a dynamic steady state [55]. Most 
MHD models, e.g. MAS, solve for the ambient solar wind via time-dependent simulations and allow the solution to relax to 
steady state. While customary, this results in a large run time to compute the steady state. There are other MHD models, 
such as [47], that solve directly for the steady solar wind, yet they have their own set of numerical challenges as it is no 
longer straightforward to extract the physical variables from the flux variables.

2.1.2. Numerical solver
The MAS model equations are numerically solved on a nonuniform logically-rectangular staggered grid using finite differ-

ences. The nonuniform mesh allows for adjustment of the grid point concentration based on transition and active regions. 
For more details about the numerical methods and their stability, see [32,14]. The MAS model divides its computational 
domain to two distinct regions: the corona and heliosphere. The corona is the region between 1R S to 30R S and the he-
liosphere is the region between 30R S to 1.1 AU. The value R S denotes solar radii unit of distance which is 695,700 km, 
and 1/215th of an astronomical unit (AU), which is equal to the distance from the Sun to Earth. Numerical results and 
implementation details are discussed in Section 4.2.

2.2. Solar wind speed: the HUX model

The HUX (Heliospheric Upwinding eXtrapolation) model developed by [56,52] is a two-dimensional time-stationary 
model that predicts the heliospheric solar wind speed. The HUX model has been incorporated into operational and 
ensemble-based space weather programs [29,5] as an MHD surrogate model to study retrospective time periods as well 
as real-time predictions. It has also been used to map streams directly from in-situ spacecraft observations (e.g. Helios A/B) 
to Earth [25]. The HUX model is based on simplified physical assumptions of the fluid momentum equation. In contrast to 
the MAS model, where the velocity field is solved via the MHD equations, the HUX model constructs a kinematic mapping 
where each plasma parcel speed is governed by its adjacent parcel’s speed.

We introduce the HUX model as a reduced-physics surrogate solar wind model that is capable of capturing the solar wind 
speed as it propagates away from the Sun. The HUX model shares many similarities with the MAS model, such as advection-
dominated solutions, and can therefore be used to test our proposed method, shifted operator inference. Moreover, since 
both sOpInf and HUX are surrogate models to the MAS model, we will compare their capability to approximate the MAS 
results. This section describes the HUX governing equations along with their spatial discretization and implementation.

2.2.1. Reduced-physics equation
The HUX model [56,61] is derived from the fluid momentum equation in the corotating frame of reference with the Sun 

by considering Eq. (5) in the absence of magnetic and viscous effects describing steady flow by replacing the time derivative 
( ∂
∂t ) with a spatial derivative (−
rot

∂
∂φ

), i.e. the governing equations are

−
rot(θ)
∂ v(r, θ,φ)

∂φ
+ [v(r, θ,φ) · ∇] v(r, θ,φ) = − 1

ρ(r, θ,φ)
∇p(r, θ,φ) + g(r), (7)

where v = [vr(r, θ, φ), vθ (r, θ, φ), vφ(r, θ, φ)] is the solar wind proton velocity, ρ(r, θ, φ) is the plasma density, and g(r) is 
the gravitational acceleration specified in Section 2.1.1. The term 
rot(θ) = 2π

25.38 − 2.77π
180 cos(θ − π

2 )2 is the angular frequency 
of the Sun’s rotation, i.e., a function of latitude [52]. The analysis in [56,52,25] justifies neglecting the pressure gradient and 
gravity terms in Eq. (7) and only taking into account variations of the velocity in the radial direction. As a result, Eq. (7)
reduces to the two-dimensional nonlinear scalar homogeneous time-stationary equation

−
rot(θ = θ̂ )
∂vr(r, φ)

∂φ
+ vr(r, φ)

∂vr(r, φ)

∂r
= 0, (8)

where the independent variables are r and φ and the dependent variable is the velocity in the radial direction vr(r, φ). 
The angular frequency of the Sun’s rotation is evaluated at a constant Carrington latitude θ̂ ; here we consider the Sun’s 
equatorial plane (θ̂ = 0) so that 
rot(0) = 2π

25.38 1/days at the solar equator. The initial-boundary value problem (IBVP) is 
subject to the initial condition vr(r0, φ) = vr0 (φ) and is defined on the periodic domain 0 ≤ φ ≤ 2π and r ≥ 30R S , where 
beyond 30R S , the solar wind travels along roughly radial trajectories, justifying the assumption of only considering the 
velocity in the radial direction. Additionally, to account for the residual acceleration present in the inner heliosphere, the 
authors in [56] suggested adding an acceleration boost to the initial velocity profile described by

vacc(r0, vr0(φ)) = α[vr0(φ)](1 − e−r0/rh ), (9)
4
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where vr0(φ) is the initial radial velocity, α = 0.15 is the acceleration factor, and rh = 50R S is the radial location at which 
the acceleration ends. Hence, the acceleration boost, vacc(r0, vr0(φ)), is added to the initial velocity profile vr0(φ) prior to 
solving the HUX equation.

2.2.2. Discretization via the upwind scheme
This section describes the semi-discretization of Eq. (8) in longitude, which then results in a set of ODEs. To begin, we 

rewrite Eq. (8) in the hyperbolic conservation form

∂

∂r
vr(r, φ) + ∂

∂φ
f [vr(r, φ)] = 0, (10)

where the physical flux function is f [vr(r, φ)] = −
rot(θ̂) ln[vr(r, φ)]. We use the first-order conservative upwind method 
from [25], so to approximate the partial derivative of the flux function f with respect to φ by

∂

∂φ
f [vr(r, φ

( j))] ≈ −
rot(θ̂)

�φ

(
ln[vr(r, φ

( j+1))] − ln[vr(r, φ
( j))]

)
, (11)

where nφ is the number of mesh points in longitude and j = 1, 2, . . . , nφ denotes the longitude grid index. We dis-
cretize the longitudinal direction uniformly with �φ mesh spacing and denote the discretized state vector as v(r) =
[vr(r, φ(1)), vr(r, φ(2)), . . . , vr(r, φ(nφ))]� ∈Rnφ . From here, we obtain the semi-discrete system of ordinary differential equa-
tions

d

dr
v(r) = D ln[v(r)] (12)

with the sparse matrix

D = 
rot(θ̂ )

�φ

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0
0 −1 1

. . .
. . .

. . .
. . .

−1 1 0
−1 1

1 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
∈Rnφ×nφ . (13)

The initial condition v(r0) ∈Rnφ is set as the MAS coronal solution, vMAS ∈Rnφ , evaluated at r0 = 30R S along with adding 
the ad hoc acceleration boost described in Eq. (9), i.e.,

v(r0) = vMAS(r0)
[
1 + α(1 − e−r0/rh )

]
. (14)

3. Shifted operator inference: a non-intrusive reduced-order model approach for advection-dominated systems

This section proposes shifted operator inference (sOpInf), a non-intrusive data-driven modeling framework that expands 
standard operator inference [44] towards the challenge of modeling solar wind, and more generally, advection-dominated 
systems. The proposed method ensures that the learned ROM is able to (i) capture the dynamics of the translational sys-
tems with only a few modes, (ii) retain the translation and rotation properties of the physical system, and (iii) accurately 
predict the shift velocity in the testing regime. This is done by transforming the original coordinates to a moving coordinate 
frame where the dynamics are absent of translation and rotation. Section 3.1 describes the new method that leverages a 
coordinate shift to first transform the data and subsequently learn in the transformed coordinates. Section 3.2 proposes two 
alternative strategies for deriving this coordinate transformation. Lastly, Section 3.3 illustrates the sOpInf methodology on 
an introductory example: the one-dimensional inviscid Burgers’ equation.

3.1. Shifted operator inference for advection-dominated systems

To illustrate the proposed methodology, we consider a generic k-dimensional time-dependent partial differential equation 
(PDE) for the scalar function u(x1, x2, . . . , xk, t) of the form

F

(
u, x1, . . . , xk,

∂u

∂t
,

∂u

∂x1
, . . . ,

∂u

∂xk
, t

)
= 0, (15)

where x1, x2, . . . , xk ∈ R denote the spatial coordinates and t ∈ R+ . One may think of t as time, or, as described in the 
previous section, we will also consider the independent variable to be the radial distance from the Sun, r. The function F
defines the equations of motion of the system which include advective terms. For simplicity, we focused the illustration 
5
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on a purely convective case, but our method can account for higher derivatives (e.g. diffusion terms) as well, see Section 4
where we consider a model with viscous forces.

Our goal is to derive a data-driven ROM that can accurately predict the solutions to advection-dominated systems, i.e., 
that uses data of a semi-discretization of (15) and produces a predictive and efficient low-dimensional model. The proposed 
method proceeds in four steps as outlined next.

(I) Data collection and translation. The system (15) is in k dimensions and is typically solved via a spatial discretization 
scheme at fixed spatial locations xi = [x(1)

i , x(2)
i , . . . , x(ni)

i ] ∈Rni , i = 1, 2, . . . , k, which we refer to as the original coordinates. 
These are assembled into the following spatial grid

X =

⎡⎢⎢⎣
x(1)

1 . . . x(nx)
1

...
. . .

...

x(1)

k . . . x(nx)

k

⎤⎥⎥⎦ ∈Rk×nx and x = vec(X) ∈Rn,

where nx = k
i=1ni is the number of spatial grid points and n = k · nx . Depending on the context, using X in matrix form or 

x in vector form may be more preferred. We collect data (for instance, solar wind speed data) from the numerical solver in 
the original coordinates at instances ti , i.e., ui ≈ u(x, ti) ∈Rn with 0 = t0 < t1 < · · · < tK = T . To account for the translational 
element in the data, we next shift each snapshot to a moving coordinate frame

ui ≈ u(x, ti) 	→ ũ(x̃(x, ti), ti) ≈ ũi with x̃(x, t) = x + c(t) (16)

where x̃(x, ti) denotes the moving coordinate frame and c(t) ∈ Rn represents the traveling wave speed. We evaluate ũi via 
piecewise linear interpolation, i.e.,

ũi = Pk
i

[
ui,x, x̃(x, ti)

]
where Pk

i denotes the k > 1 dimensional piecewise linear interpolant of ui in the original grid x evaluated on the moving 
coordinate frame grid x̃(x, ti). The piecewise linear interpolation is implemented in the Python package scipy under the 
function scipy.interpolate.LinearNDInterpolator(). Our method is not restricted to the type of interpolation, 
so higher order interpolation methods can be used as well (e.g. piecewise cubic interpolation). In the moving coordinate 
frame, the system no longer exhibits translational properties. Section 3.2 proposes two techniques to determine c(t). We 
then store the transformed data in the matrix

Ũ = [ũ1 . . . ũK ] ∈Rn×K ,

where in the applications that we consider, n � K , so the matrix Ũ is tall and skinny.

(II) Data reduction via projection. Given high-dimensional data, we first identify the low-dimensional subspace in which to 
learn a ROM. In this work, we use the subspace spanned by the proper orthogonal decomposition (POD) modes [23], which 
is obtained by computing the economy-sized singular value decomposition of the snapshot matrix, i.e.,

Ũ = V�W�, (17)

where V ∈ Rn×K , � ∈ RK×K and W ∈ RK×K . The � � n dimensional POD basis, V� = [v1, . . . , v�], is given by the first �
columns of V. The basis dimensions can be chosen based on the cumulative energy criteria, e.g.,

� = arg min
�̂

∑�̂
i=1 σi∑K
i=1 σi

> εtol, (18)

where σi = �ii are the singular values, and εtol is commonly chosen to be εtol = 0.95 or εtol = 0.99 which encapsulate 95% 
and 99% of the energy in the data, respectively. Next, we project the state snapshot data onto the POD subspace spanned 
by the columns of V� and obtain the reduced snapshot matrices

Û = V�
� Ũ = [̂u1 . . . ûK ] ∈R�×K , and ˙̂U = [ ˙̂u1 . . . ˙̂uK ] ∈R�×K , (19)

where the columns of ˙̂U are computed from Û using any time derivative approximation (see, e.g., [35,27,15]), or can be 
obtained—if available—by evaluating the right-hand-side of the governing equation (the residual) and projecting the resulting 
data.
6
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(III) Model learning and prediction via operator inference. In this section we start with the assumption that the finite-
dimensional data-generating model (a spatial discretization of Eq. (15) in the moving coordinate frame) is of the form 
of a polynomial nonlinear system of ODEs, written as

dũ

dt
= Aũ + H(ũ ⊗ ũ) + C(ũ ⊗ ũ ⊗ ũ) + B + HOT, ũ ∈Rn (20)

with matrices A ∈ Rn×n , H ∈Rn×n2
and C ∈ Rn×n3

. The column-wise Kronecker product is denoted by ⊗. Boundary condi-
tions can either be represented via the constant B ∈Rn or time-dependent BCs as Bη(t). The abbreviation “HOT” in Eq. (20)
denotes higher-order terms, and represents terms that are quartic and higher order. For example, in the case of Burgers’ 
equation in Section 3.3 the term u ∂u

∂x is quadratic in the PDE state u(x, t) and would therefore yield a discretized component 
H(ũ ⊗ ũ).

Approximating the high-dimensional state ũ in a low-dimensional basis V� ∈Rn×� , with � � n, we write ũ ≈ V�û. Using 
a Galerkin projection, this yields the ROM of Eq. (20) as

dû

dt
= Âû + Ĥ(û ⊗′ û) + Ĉ(û ⊗′ û ⊗′ û) + B̂ + HOT, û ∈R� (21)

where ⊗′ is the compact Kronecker product, which removes redundant terms in the standard Kronecker product ⊗. For 
example, for û = [û1, ̂u2]� the standard Kronecker product yields û ⊗ û = [û2

1, ̂u1û2, ̂u2û1, ̂u2
2]� and the compact Kronecker 

product yields û ⊗′ û = [û2
1, ̂u1û2, ̂u2

2]� , which uses only unique terms. For here on, we only use the compact Kronecker 
product for learned sOpInf ROMs. Consequently, the ROM operators and their dimensions are Â = V�

� AV� ∈ R�×� , Ĥ =
V�

� H(V� ⊗′ V�) ∈ R�× 1
2 �(�+1) , Ĉ = V�

� C(V� ⊗′ V� ⊗′ V�) ∈ R�× 1
6 �(�+1)(�+2) , and B̂ = V�

� B ∈ R� is the reduced constant vector 
B. We note again that projection preserves polynomial structure, that is, Eq. (21) has the same polynomial form as Eq. (20), 
but in the reduced subspace defined by V� .

To simplify notation, we continue from now on with a quadratic system, but note that all results carry over directly to 
cubic, quartic and all higher-order polynomial terms. Nevertheless, we note that the number of elements in the ROM oper-
ators scales with �4 for the cubic operator, �5 for the quartic operator, etc., yet higher-order terms often exhibit significant 
block-sparsity that can be exploited in numerical implementations which limits the growth of computational cost to solve 
the ROM. For terms in the governing equations that are not in polynomial form, the introduction of variable transformations 
and auxiliary variables via the process of lifting [20,28,62,48] can convert these terms to polynomial form.

The goal at this stage is to learn a ROM that evolves the shifted and projected snapshots in time. Operator inference 
solves a least-squares problem to find the reduced operators that yield the ROM that best matches the projected snapshot 
data in a minimum residual sense. For a quadratic ROM (with Ĉ and HOT set to zero in Eq. (21)) operator inference solves 
the least-squares problem

min
Â∈R�×�,Ĥ∈R�× 1

2 �(�+1)
,̂B∈R�

∥∥∥∥[
ÂÛ + Ĥ(Û ⊗′ Û) + B̂ 1K − ˙̂U

]�∥∥∥∥2

F
,

where 1K ∈ RK is the length K row vector with all entries set to one. Note that this least-squares problem is linear in 
the coefficients of the unknown ROM operators Â, Ĥ, and B̂. The appeal of the operator inference approach comes from 
the ability to compute the ROM operators Â, Ĥ, and B̂ directly from data without needing explicit access to the original 
high-dimensional operators A, H, and B. The unknown operators and known low-dimensional data are combined in the 
matrices

O = [̂A Ĥ B̂] ∈R�×(�+ 1
2 �(�+1)+1) and D = [

Û� (Û ⊗′ Û)� 1K
] ∈ RK×(�+ 1

2 �(�+1)+1),

respectively. The unknown operators are then obtained as a solution to the minimization problem

min
O∈R�×(�+ 1

2 �(�+1)+1)

∥∥∥∥DO� − ˙̂U�∥∥∥∥2

F
. (22)

For K > � + 1
2 �(� + 1) + 1 this overdetermined linear least-squares problem has a unique solution [18, Sec. 5.3]. It follows 

from linear algebra (and is noted in [46]) that Eq. (22) can be written as � independent least-squares problems, each of the 
form

min
oi∈R�+ 1

2 �(�+1)+1
‖Doi − ri‖2

2 ,

for i = 1, . . . , �, where oi is a column of O� (row of O) and ri is a column of ˙̂U�
. This makes the operator inference approach 

efficient and scalable.
7
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To avoid overfitting and prevent potential instability of the learned ROMs, regularization becomes necessary, see [36] for 
a detailed regularization study of operator inference. In this work, we use an Tikhonov regularization penalty so that the 
least-squares problem becomes

min
O∈R�×(�+ 1

2 �(�+1)+1)

∥∥∥∥DO� − ˙̂U�∥∥∥∥2

F
+

∥∥∥�O�
∥∥∥2

F
(23)

where � = diag(λ1I(�), λ2I( 1
2 �(�+1)), λ1) ∈ R(�+ 1

2 �(�+1)+1)×(�+ 1
2 �(�+1)+1) is the diagonal matrix used for regularization. The 

parameter λ1 is the regularization parameter of the operators B̂ ∈ R� and Â ∈ R�×� and λ2 regularizes the operator Ĥ ∈
R�× 1

2 �(�+1) . The regularization parameters λ1 and λ2 are problem specific and should be chosen accordingly. We provide 
details in Section 4 and refer to [62, Sec. IV.B] for more implementation details of operator inference.

Having learned the ROM in Eq. (21) from the shifted data, we can make efficient predictions in that low-dimensional 
subspace that go beyond the training data into the fully predictive regime. We thus simulate Eq. (21) to obtain a solution 
û(t), which we then lift to n dimensions to get the approximate ROM solution ũROM(t) = V�û(t) ≈ ũ(t). We use the Operator 
Inference Python Package version 1.2.1 [4] to implement the model learning and prediction step of sOpInf.

(IV) Re-shifting predicted ROM data. The predicted ROM solutions ũROM(t) will be in the moving coordinate frame and require 
reverse translation to the original coordinates. We shift the ROM-predicted solutions back to the original coordinate system 
via interpolation

uROM
i (x, ti) = Pk

i

[
ũROM

i , x̃(x, ti),x
]

where Pk
i denotes the k > 1 dimensional (here: piecewise linear) interpolant of ũROM

i in the moving coordinate frame grid 
x̃(x, ti) evaluated on the original grid x; see part (I) in Section 3.1 for more details about the interpolation implementa-
tion. After shifting back to the original coordinates, the predicted and reconstructed sOpInf snapshots are columns of the 
matrix UROM ∈ Rn×(K+m) , such that tK+m > tK , which is the final output of the algorithm.

The previous steps (I)–(IV) are summarized in Algorithm 1, which is written for a quadratic system; yet extensions to 
cubic, quartic, and other polynomial systems are straightforward.

Algorithm 1 Shifted operator inference (sOpInf).
Input: U = [u1, u2, . . . , uK ] ∈Rn×K such that each column, ui ∈Rn , is a snapshot observed at ti , SVD cumulative energy threshold εtol > 0, and regulariza-
tion coefficients {λ1, λ2}.
Output: UROM ∈Rn×(K+m) sOpInf reconstructed and predicted snapshots, where tK+m > tK .
Begin:

1: Learn shift function c(t). � Section 3.2
2: Shift snapshots to moving coordinate system

U(x, ti) 	→ Ũ(x̃(x, ti), ti) with x̃(x, t) = x + c(t). � Section 3.1(I)
3: Determine low-dimensional subspace matrix V� by using threshold εtol . � Section 3.1(II)

4: Project to low-dimensional subspace ̂U = V�
� Ũ and compute ˙̂U. � Section 3.1(II)

5: Solve the linear least-squares problem in Eq. (23) with regularization coefficients {λ1, λ2} to obtain the sought ROM operators; here ̂B, ̂A, ̂H. �
Section 3.1(III)

6: Simulate the ROM in Eq. (21) to get û(t) and lift to ũROM(t) = V�û(t). � Section 3.1(III)
7: Shift ROM results to original coordinates ũROM(x̃(x, ti), ti) 	→ uROM(x, ti). � Section 3.1(IV)

3.2. Determination of spatial shift velocity

There are various ways in which the traveling wave speed, c(t), can be discovered. For instance, the authors in [37]
use sparse regression and spectral clustering to uncover the function c(t). We present two methods: the method of char-
acteristics discussed in Section 3.2.1, an analytic approach that requires knowledge of the underlying equations (but not 
the discretization or computer code), and the cross-correlation extrapolation method described in Section 3.2.2, a purely 
data-driven approach. In both cases, the shift function c(t) is learned from the batch of training data and extrapolated in 
the testing regime.

3.2.1. Method of characteristics
The method of characteristics can be applied to quasi-linear PDEs, in which along the characteristic curves the PDE can 

be transformed to a set of coupled ODEs. We exploit the method of characteristics to find the scalar shift function c(t) for 
first-order PDEs describing the scalar quantity u(x1, x2, . . . , xk, t) : [a1, b1] × . . . × [ak, bk] × [t0, t f ] 	→R+ , whose dynamics 
are described by the following quasi-linear PDE:

∂u(x1, . . . , xk, t)

∂t
+

k∑
f i [u(x1, . . . , xk, t), t]

∂u(x1, . . . , xk, t)

∂xi
= g [u(x1, . . . , xk, t), t] , (24)
i=1

8
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subject to the initial condition u(x1, . . . , xk, t = 0) = u0(x1, . . . , xk) with periodic boundary conditions at each spatial coordi-
nate boundaries xi = ai and xi = bi for i = 1, 2, . . . , k. The transport speed f i [u(x1, . . . , xk, t), t] ∈R must be strictly positive 
or negative ∀t ∈ [t0, t f ] and ∀xi ∈ [ai, bi] to enforce uni-directional characteristics. The function g [u(x1, . . . , xk, t), t] ∈ R is 
the source term. Then, by the method of characteristics, Eq. (24) can be written as a system of k + 1 ODEs, i.e.

du(x1(t), . . . , xk(t), t)

dt
= g [u(x1(t), . . . , xk(t), t), t] , (25a)

dxi(t)

dt
= f i [u(x1(t), . . . , xk(t), t), t] , i = 1, . . . ,k. (25b)

We solve Eq. (25a) first, which results in

u(x1(t), . . . , xk(t), t) = G [u0(x1(0), . . . , xk(0)), t] , (26)

where G [u0(x1(0), . . . , xk(0)), t] ∈ R describes the scalar quantity u along the characteristic curves. Given this ansatz, we 
proceed to obtain the characteristic curves by solving Eq. (25b) via separation of variables, such that

xi(t) = xi(0) +
t∫

t0

f i [G [u0(x1(0), . . . , xk(0)), t] , t] dt. (27)

For most equations that arise from conservation laws, the ODEs in Eq. (25a)–(25b) can be solved analytically via 
Eq. (26)–(27). In the case when Eq. (25a) can not be solved analytically, the coupled system of ODEs in Eq. (25a)–(25b)
can be solved numerically on a discrete grid; or in the case when f i[G, t] is a nonelementary antiderivative, we can approx-
imate the function f i using Taylor series, and integrate term-by-term.

By following the characteristic curves described in Eq. (27) we are able to discover a moving coordinate frame absent 
of advection. In fluid dynamics, the characteristic paths are referred to as the Lagrangian specification of the flow field, 
whereby the fluid motion is observed following an individual fluid parcel. We construct a moving coordinate frame, x + c(t), 
that resembles the main direction of the Lagrangian frame of reference. The shift function ci(t) corresponding to the spatial 
coordinate xi can be obtained by computing the mean characteristic emerging from a certain spatial domain. Let the spatial 
domain of xi , for i = 1, 2, . . . , k be discretized on a grid with ni points such that xi = [x(1)

i , x(2)
i , . . . , x(ni)

i ] ∈ Rni . The mean 
characteristic (and hence the shift function ci(t) ∈R for i = 1, 2, . . .k) emerging in the interval [x(p)

i , x(q)

i ] with 1 ≤ p < q ≤ ni

is given as

ci(t) = 1

|x(p)

i − x(q)

i |

x(q)

i∫
x(p)

i

t∫
t0

f i [G [u0(x1(0), . . . , xk(0)), t] , t] dt dxi (28)

≈ 1

(q − p)

q∑
j=p

t∫
t0

f i

[
G

[
u0(x1(0), . . . , x( j)

i (0), . . . , xk(0)), t
]
, t

]
dt. (29)

The spatial interval [x(p)

i , x(q)

i ] can be set to the entire spatial domain, yet it is usually set to be a specific region of interest.
For problems with shock formation, the shift function c(t) is computed via the mean characteristic curve only before 

shock formation, i.e. before the characteristic lines first intersect, and approximated via the shock curve after shock forma-
tion, i.e.

ci(t) =
⎧⎨⎩ 1

|x(p)

i −x(q)

i |
∫ x(q)

i

x(p)

i

∫ t
t0

f i [G [u0(x1(0), . . . , xk(0)), t] , t] dt dxi if t0 < t < ts

si(t) − si(ts) + a if t > ts

⎫⎬⎭ (30)

where a = 1
|x(p)

i −x(q)

i |
∫ x(q)

i

x(p)
i

∫ ts
t0

f i [G [u0(x1(0), . . . , xk(0)), t] , t] dt dxi . The time of shock formation is denoted by ts , and si(t)

is the shock trajectory in xi coordinate, see Section 3.3 for a one-dimensional inviscid Burgers’ equation example. For one-
dimensional problems where g = 0, the shock trajectory can be computed via the entropy (Rankine-Hugoniot) condition or 
the Whitham’s geometric equal area rule in which multi-valued regions of the solution are replaced with a discontinuity 
that satisfies conservation [66]. The shock location is approximated by locating a vertical line that splits the multi-valued 
curve into two regions with equal area.

In problems where there are multiple shock curves, such as shown in Section 4.3, we suggest to approximate c(t) by 
tracking only one shock curve. The selection of the shock is problem dependent, e.g. in Section 4.3 we choose to follow 
the first shock emerging. Although, if the choice of shock curve or spatial interval [x(p), x(q)] is ambiguous, computing the 
9
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shock curve is unfeasible or computationally expensive, or the initial condition is noisy, we recommend to use the cross-
correlation extrapolation technique (Section 3.2.2) to find c(t). Additionally, it can be non-trivial to find such characteristics 
in the case of more complex hyperbolic PDEs that are not in the form of Eq. (24), e.g. coupled systems such as Eqs. (1)–(6)
with multiple dependent variables resulting in more than one characteristic curve emanating from a single spatial point, in 
which we recommend employing the data-driven cross-correlation extrapolation technique, which we present next.

3.2.2. Cross-correlation extrapolation method
Cross-correlation is a mathematical operation that is commonly used in signal processing and pattern recognition to 

measure similarity of two signals. For two finite discrete signals f, g ∈Cn , the univariate discrete circular cross-correlation is 
defined as

(f � g)[τ ] :=
n∑

j=1

f[ j]g[( j + τ )modn ], (31)

where f denotes the complex conjugate of f, the bracket [ j] denotes the jth element of the signal, and τ ∈Z is the discrete 
displacement. The discrete circular cross-correlation can be extended to the multi-variate case, for snapshots with k ∈ Z
variables and tensor-valued f, g ∈Cn1×n2×...×nk :

(f �
k· · · � g)[τ ] :=

n1∑
j1=1

. . .

nk∑
jk=1

f[ j1, . . . , jk]g[( j1 + τ1)modn1
, . . . , ( jk + τk)modnk

], (32)

where τ = [τ1, τ2, . . . , τk] ∈ Zk is the multi-variate discrete displacement. When the signals correlate, the value of f � g is 
maximized.

We propose to find the optimal discrete displacement, τ ∗ ∈ Zk , by maximizing the cross-correlation between the two 
discrete signals (or snapshots), which amounts to solving

τ ∗ := arg max
τ∈Zk

(f �
k· · · � g)[τ ]. (33)

Once the shift is computed for all training snapshots by applying the circular discrete cross-correlation between each snap-
shot ui ∈Rn and the initial condition u0 ∈Rn , we obtain the multivariate discrete displacement for each time-step, i.e.,

τ ∗(ti) := arg max
τ∈Zk

{u0 �
k· · · � ui}[τ ]. (34)

Then, the shift function c j(t), ∀ j ∈ {1, 2, . . . , k} is found via least squares polynomial curve fitting to the data points between 
the time increments and corresponding spatial location of the shift, such that the shift function is of the form

c j(t) =
d∑

m=0

amtm

where d is the degree of the polynomial approximation. To find the vector of real coefficients a = [a0, a1, . . . , ad] ∈ Rd+1, 
we solve the minimization problem

min
a∈Rd

‖Ta − b‖2
2

where b = [x j,τ �
j (t1), . . . , x j,τ �

j (tK )] ∈ RK is the vector of corresponding spatial location of the shift, and the Vandermonde 
matrix T is defined as

T =

⎡⎢⎢⎢⎣
1 t1 . . . td

1
1 t2 . . . td

2
...

...
...

1 tK . . . td
K

⎤⎥⎥⎥⎦ ∈RK×(d+1).

To make predictions outside the training interval, we approximate the shift by polynomial extrapolation of c(t) =
[c1(t), c2(t), . . . , ck(t)] ∈ Rk . As an illustration, Fig. 1 shows the bi-variate discrete circular cross-correlation applied to the 
MAS CR2210 snapshot at 30R S (the initial condition) and at 1 AU. Here, since the flow is steady, the independent variable 
is the radial distance from the Sun, r, (instead of time t). For this case, the convective shift is 45◦ in longitude and 0◦ in 
latitude. Figure 1 confirms that the translation in the solar wind is purely longitudinal due to the rotation of the Sun. The 
main idea behind the cross-correlation extrapolation technique is similar to the template-fitting technique studied in [59,58]
where the data is periodic and the template is set to be the initial condition.
10
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Fig. 1. An illustration of discrete circular cross-correlation between the MAS CR2210 velocity results at (a) the initial condition (30R S ) and (b) at Earth 
(1 AU). The bi-variate zero-normalized (circular) cross-correlation (ZNCC) between the two MAS velocity results at 30R S and 1 AU is shown in Graphic (c). 
The ZNCC is described by Eq. (32) along with normalizing the two signals by subtracting their mean and dividing by their standard deviations. The shift is 
found by the maximum of V 30R S

2
� V 1 AU, which is 45◦ in longitude and 0◦ in latitude (purely longitudinal translation). (For interpretation of the colors in 

the figure(s), the reader is referred to the web version of this article.)

3.3. Illustrative example: shifted operator inference for the inviscid Burgers’ equation

The one-dimensional inviscid Burgers’ equation is of the form of Eq. (24) describing the scalar quantity u(x, t) : [a, b] ×
[0, T ] 	→R+ with f [u(x, t), t] = u(x, t) and g[u(x, t), t] = 0, such that

∂u(x, t)

∂t
+ u(x, t)

∂u(x, t)

∂x
= 0 (35)

subject to the initial condition u(x, t = 0) = u0(x) with appropriate boundary conditions at x = a and x = b. In the moving 
coordinate frame defined by

x̃(x, t) = x + c(t) and u(x, t) = ũ(x̃(x, t), t) (36)

Burgers’ equation (35) becomes

∂ ũ(x̃, t)

∂t
+

(
ũ(x̃, t) + dc

dt

)
∂ ũ(x̃, t)

∂ x̃
= 0. (37)

This can be written in conservative form as

∂ ũ(x̃, t)

∂t
+ ∂

∂ x̃

(
1

2
ũ(x̃, t)2 + dc

dt
ũ(x̃, t)

)
= 0. (38)

Then, by the conservative first-order upwind scheme, we approximate the spatial derivative by

∂

∂ x̃

(
1

2
ũ(x̃( j), t)2 + dc

dt
ũ(x̃( j), t)

)
= 1

2�x̃

[
ũ(x̃( j), t)2 − ũ(x̃( j−1), t)2

]
+ 1

�x̃

dc

dt

[
ũ(x̃( j), t) − ũ(x̃( j−1), t)

]
, (39)

where j = 1, 2, . . . , n denotes the grid index in x̃. Based on the discretization scheme in Eq. (39), we can write the dynamics 
of Eq. (38) in vector form as

dũ(t)

dt
= A(t)ũ(t) + H

[
ũ(t) ⊗ ũ(t)

]
(40)

where ⊗ denotes the Kronecker product and ũ(t) = [ũ(x̃(1), t), ̃u(x̃(2), t), . . . , ̃u(x̃(n), t)]� ∈ Rn denotes the state vector dis-
cretized over n spatial points at time t . Here, H ∈ Rn×n2

is the quadratic operator that corresponds to the discrete term 
1

2�x̃

[
ũ(x̃( j), t)2 − ũ(x̃( j−1), t)2

]
from Eq. (39). Moreover, A(t) ∈ Rn×n is the linear time-dependent operator corresponding 

to the discrete term 1
�x̃

dc
dt

[
ũ(x̃( j), t) − ũ(x̃( j−1), t)

]
in the moving coordinate frame. In the case where c(t) ∈ R is a linear 

function (so dc
dt =const.), meaning the wave is traveling at constant speed, the linear operator is time independent, i.e., 

A(t) ≡ A.
The traveling wave speed c(t) can be estimated by the method of characteristics (see Section 3.2.1), where we can rewrite 

Eq. (35) as the two coupled ODEs

dx(t)

dt
= u(x(t), t) and

du(x(t), t)

dt
= 0. (41)

Hence, along the characteristic lines the quantity u(x(t), t) remains constant, which can be verified by

d
u(x(t), t) = ∂

u(x(t), t) + dx(t) ∂
u(x(t), t) = ∂

u(x(t), t) + u(x(t), t)
∂

u(x(t), t) = 0. (42)

dt ∂t dt ∂x ∂t ∂x

11
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Fig. 2. One-dimensional inviscid Burgers’ equation with Gaussian initial condition and periodic boundary conditions. The numerical solutions are shown 
in the (a) original coordinates (x, t) and the (b) shifted coordinates x̃(x, t). Graphic (c) presents a comparison between finding the wave speed function 
c(t) using the method of characteristics (MoC) and the cross-correlation extrapolation method (CCE). The results are visually indistinguishable. Graphic (d) 
shows the cumulative energy computed via the SVD of U (original coordinates) vs. Ũ (shifted coordinates), illustrating that the data can be much better 
approximated in the shifted than in the original coordinates. The characteristic curves including the shock trajectory are shown in Graphic (e).

Then, by integrating Eq. (41) the characteristic curves are linear before shock formation. Let the spatial domain of x be 
discretized on a uniform grid with n points such that x = [x(1), x(2), . . . , x(n)] ∈Rn . From here, we can approximate the shift 
function via Eq. (30) as a piecewise continuous function:

c(t) =
{

1
q−p

∑q
j=p u(x( j), t = 0)t if 0 < t < ts

s(t) − s(ts) + a if t > ts
(43)

where ts ∈R is the time of shock formation, a = 1
q−p

∑q
j=p u(x( j), t = 0)ts , and s(t) ∈R is the shock trajectory.

To demonstrate the sOpInf method, we now consider a specific spatial domain x ∈ [0, 3] and time domain t ∈ [0, 2] along 
with a Gaussian initial condition u0(x) = 0.8 + 0.5 exp (−(x − 1)2/0.1) and periodic boundary conditions. Equation (35) in 
the regular coordinates is solved numerically via the forward Euler method in time and the conservative upwind scheme 
in space on an equidistant computational grid with 500 discretization points in space, and 1000 points in time. With this 
choice, the CFL condition u(x, t) �t

�x ≤ 1 is satisfied, where �x and �t denote the grid spacing in x and t , respectively. The 
training dataset consists of 80% of the snapshots and the testing dataset consists of 20% of the snapshots. The shock is 
formed at ts = min

x
(−du0(x)/dx)−1 ≈ 0.737 and the shock trajectory s(t) is computed by Whitham’s equal-area rule [66], in 

which the area of each lobe in the multi-valued solution is numerically approximated via the trapezoidal rule.
The cross-correlation extrapolation method (Section 3.2.2) approximated c(t) by least-squares linear fitting to the cross-

correlation between the training snapshots and the initial condition u0(x), resulting in c(t) = 1.05t . Whereas, via the method 
of characteristics (Section 3.2.1) the shift function, c(t) described in Eq. (43), is linear only before shock formation, where 
we compute the mean of characteristics emanating from the spatial interval [1.15, 1.4] before shock formation, see the 
green characteristic curves in Fig. 2e. By the Rankine-Hugoniot jump condition [66], the shock curve s(t), and hence the 
shift function after shock formation, is non-linear, see the red curve in Fig. 2e. However, the absolute difference between 
the shift function c(t) obtained by the method of characteristics vs. the cross-correlation extrapolation is less than 10−2 for 
all t ∈ [0, 2], indicating there is not a significant difference between the two methods, see Fig. 2c for a visual comparison. 
With that, we found that using the method of characteristics to find c(t) resulted in up to 2% more accurate ROM results 
in comparison to the results obtained by the cross-correlation extrapolation linear shift function. By aligning the wave 
discontinuity at one spatial point, the ROM modes can better approximate the shock. We continue the Burgers’ ROM analysis 
using the shift function computed by the method of characteristics.
12
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Fig. 3. Solutions from the sOpInf model of the form ˙̂u = Âû + Ĥ(û ⊗′ û) with � = 9 modes show very good agreement with the high-fidelity solutions for 
the one-dimensional inviscid Burgers’ equation with Gaussian initial condition and periodic boundary conditions.

Fig. 4. The sensitivity of sOpInf ROM to the amount of training data with 50%, 60%, 70%, and 80% of the total snapshots used for training. The relative error 
in the L2-norm is shown as a function of time. The numerical results show that the sOpInf methodology is able to learn adequate ROMs with as low as 
50% of the total snapshots utilized for training.

Fig. 2a shows the inviscid Burgers’ equation results on the original coordinate system (x, t) while Fig. 2b shows the 
inviscid Burgers’ equation results on the shifted coordinates (x̃, t). It is apparent from Fig. 2b that the dynamics are largely 
absent of translation in the shifted coordinate frame. The evolution of the initial wave depends solely on shock formation 
as the discontinuity in the wave sharpens. Fig. 2d compares the singular value decay of the solution data matrix U on 
the original coordinates and of Ũ on the shifted coordinates. For the former, the singular value decay is very slow due to 
the translation properties in the system; a ROM in those coordinates would require a large number of basis functions. In 
contrast, once the dynamics are absent of translation on the shifted coordinates the system can be approximated using only 
a few modes.

Fig. 3 illustrates the predicted solutions from sOpInf compared to the FOM results for the inviscid Burgers’ equation. 
The sOpInf model is of the form ˙̂u = Âû + Ĥ(û ⊗′ û) with � = 9 modes. The regularization coefficients of the operators 
Â ∈ R�×� and Ĥ ∈ R�× 1

2 �(�+1) are λ1 = 1 and λ2 = 1, respectively. The sOpInf results in 0.9999958 Pearson correlation 
coefficient (PCC) and 1.204 × 10−4 mean relative error (MRE) in comparison to the inviscid Burgers’ results, indicating that 
the sOpInf model is able to capture well the evolution of the high-fidelity Burgers’ simulation with only a few modes. On the 
shifted coordinates we are able to construct a ROM with only 9 modes, meanwhile, in the original coordinates, we would 
need 89 modes to achieve the same projection error. This demonstrates that the shifting procedure produces significant 
computational speedups.

We next assess how the amount of training data affects the accuracy of the resulting ROM by training sOpInf on 50%, 
60%, 70%, and 80% of the total snapshots, see Fig. 4. The numerical results show that—as anticipated—increasing the amount 
of training data improves the ROMs accuracy. Additionally, the relative error measured in the L2-norm is bounded by 10%
for all four simulations, resulting in an adequate ROM using as low as 50% of the total snapshots for training. To analyze 
the framework’s robustness to noise, we tested the sOpInf methodology on the inviscid Burgers’ simulated data with added 
noise. The results are presented in Appendix A and demonstrate that the method seems to be robust to the addition of 
moderate levels of Gaussian noise.

4. Numerical results for MAS and HUX solar wind models

We apply the sOpInf methodology to learn low-dimensional models for the ambient solar wind radial velocity predicted 
by the HUX and MAS models described in Section 2. We consider a specific event of interest and give some background 
13
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Fig. 5. The MAS solar wind radial velocity solution at heliocentric distance r = 30R S during CR2210 (a) ranging from θ ∈ [−30◦, 30◦] in latitude and (b) the 
equatorial (θe.p. = 0◦) velocity profile. The solar wind radial velocity at the equator has three main peaks, originating from coronal holes, which make this 
period a great candidate to study large-scale structure in the solar wind.

on that event in Section 4.1. In Section 4.2, we give details on the data and implementation. Section 4.3 and Section 4.4
present the sOpInf two-dimensional steady results trained on HUX and MAS equatorial plane data, respectively. Section 4.5
presents sOpInf three-dimensional steady results trained on the full-Sun MAS results. Section 4.6 compares sOpInf and 
HUX reconstruction of MAS equatorial plane streamlines. Lastly, Section 4.7 discusses the choice of ROM model form. The 
public repository https://github .com /opaliss /Space -Weather-ROM contains a collection of Jupyter notebooks in Python 3.9 
containing the code and data used in this study.

4.1. Physical relevance of data

We focus on Carrington Rotation (CR) 2210, which occurred from 26 October to 23 November 2018, during a solar 
minimum. Fig. 5a shows the heliospheric solar wind radial velocity MAS results for CR2210 in the latitude region of θ ∈
[−30◦, 30◦] and Fig. 5b presents the equatorial solar wind radial velocity profile. As observed in Fig. 5, during CR2210, the 
solar wind radial velocity at the equator has three main peaks, essentially making this period a great candidate to study 
large-scale structure in the solar wind. Although not shown here, the origin of the fast wind (ranging from 500 to 700 km/s) 
is from equatorial coronal holes located at approximately 180◦ − 210◦ , 280◦ − 300◦ , and 330◦ − 360◦ in longitude at the 
source surface (see [8, Fig. 8(a)] for a synoptic view at 2R S of the coronal hole regions). Although fast streams commonly 
originate in large coronal holes, slow streams come from various coronal sources (e.g., coronal hole boundaries, coronal 
loops, etc.). Another reason to consider this data is that this Carrington period is well-studied in literature due to Parker 
Solar Probe (PSP) reaching its first perihelion pass of 35.7R S after its first Venus gravity assist on 6 November 2018, as it 
broke records by becoming the closest spacecraft to the Sun. Moreover, the authors in [57] showed that the thermospheric 
MAS solar-wind speed results highly match the observations made by PSP during CR2210. Thus, while we do not present a 
comparison with in-situ solar-wind observations we can treat the MAS results as a physically meaningful representation of 
the solar wind.

4.2. Data and implementation details

4.2.1. MAS data
The MAS model is described in detail in Section 2.1. The MAS model solar wind velocity results are time-stationary in 

spherical coordinates. The data covers the entire domain in longitude 0◦ ≤ φ ≤ 360◦ , latitude −90◦ ≤ θ ≤ 90◦ , and radial 
axis (a.k.a. heliocentric distance) 0.14 AU ≤ r ≤ 1.1 AU. The MAS simulation results are on a rectangular grid with nφ = 128
uniformly spaced points in Carrington longitude, nθ = 111 uniformly spaced points in heliographic latitude, and nr = 140
points on a non-uniformly spaced grid in the radial axis. Hence, the snapshot data dimension is nx = nφ × nθ = 14, 208
where we treat r as the independent variable. A convergence check with a higher-resolution grid found that this resolution 
is sufficient for physical accuracy. The MAS coronal and heliospheric models (implemented in FORTRAN) were run with 
medium and high resolution by the authors of [1], which took approximately four and 28 hours of wall-clock time using 
four NVIDIA RTX 2080Ti GPUs, respectively [13]. We derive data-driven ROMs from the medium-resolution MAS heliospheric 
simulation which is publicly available at PSI’s web page [2]. The MAS training datasets contain 70% of the snapshots, with 
98 and 42 snapshots for training and testing, respectively. The training domain is from 0.14 to 0.82 AU and the testing 
domain is from 0.82 to 1.1 AU.

4.2.2. HUX data
The HUX model is described in detail in Section 2.2. To simulate the HUX model at the heliographic solar equatorial plane 

we numerically solve the ODE in Eq. (12) via the forward explicit Euler’s method in time and setting the initial condition 
to the MAS velocity profile results at 30R S ≈ 0.14 AU. The HUX dataset is two-dimensional with nφ = 128 and nr = 140
(satisfying the CFL condition) on the same domain as listed above for the MAS results. On the equatorial plane (θe.p = 0), the 
14
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angular frequency of the Sun is 
rot(θe.p) = 2π
25.38 1/days. The HUX dataset took 0.03 s to simulate on a MacBook Pro 2.3 GHz 

Quad-Core Intel Core i7 processor with 16 GB RAM. We note that the HUX model is already computationally efficient. We 
train a ROM for HUX merely as a introductory example since it produces the same physics (advection-dominated solutions) 
that we expect in much more expensive solvers, and not to show any computational improvements. The HUX training and 
testing domains are identical to the MAS equatorial training domain, see details in Section 4.2.1.

4.2.3. ROM implementation
The MAS and HUX numerical results are on a non-uniformly spaced grid in the radial axis, consequently, we approximate 

the derivatives of the training data with respect to r, i.e. d
dr û in Eq. (19), via a second-order accurate central difference in the 

interior points and a second-order accurate one-sided (forward and backward) difference at the boundaries. For the case of 
uniform grid meshing, e.g. Burgers’ equation ROM presented in Section 3.3, we used a sixth-order finite difference scheme. 
We simulate the ROM via an implicit multi-step variable method based on a backward differentiation formula using the
scipy.integrate.solve_ivp() Python function. The ROM regularization coefficients, λ1 and λ2, are chosen from the 
logarithmically spaced set, i.e. {100, 101, 102, . . . , 1010}, such that the best coefficients minimize the relative error measured 
via the L∞-norm over the training regime.

4.3. HUX equatorial plane numerical results

We apply the sOpInf framework to learn a ROM of the HUX CR2210 equatorial plane radial velocity. As derived in 
Section 2.2.1, the HUX underlying equation is

−
rot (0)
∂vr(r, φ)

∂φ
+ vr(r, φ)

∂vr(r, φ)

∂r
= 0,

where r, φ are the independent variables. To begin, we shift the HUX dynamics to a moving coordinate frame defined by

φ̃(r, φ) = φ + c(r) and vr(r, φ) = ṽr(φ̃(r, φ), r).

The shift function c(r) can be learned via either the method of characteristics (Section 3.2.1) or the cross-correlation ex-
trapolation method (Section 3.2.2), in particular, the circular uni-variate cross-correlation method described in Eq. (31). The 
linear-fit cross-correlation shift function resulted in c(r) = −51.711◦r + 7.032◦ . Our numerical studies found that there is 
no substantial differences between the numerical results of the two methods. Following the steps described in Section 3.2.1, 
the HUX characteristic curves are derived by the following two coupled ODEs:

d

dr
vr(φ(r), r) = 0 and

dφ(r)

dr
= − 
rot(0)

vr(φ(r), r)
. (44)

Then, by integration of Eq. (44), the characteristics before shock formation are straight lines described by

φ(r) = φ − 
rot(0)

vr0(φ)
(r − r0),

where r0 = 0.14 AU. The HUX characteristic curves are also called the ballistic approximation, which assumes that each 
spiral field line of plasma continues at a constant speed throughout the heliosphere [52]. After obtaining the characteristic 
curves, we are able to approximate the shift function by

c(r) =
{

1
q−p

∑q
j=p

−
rot(0)
v(φ j ,r0)

(r − r0) if r0 < r < rs

s(r) − s(rs) + a if r > rs

so that rs is the radial position where the characteristics first intersect, s(r) is the shock trajectory, and a= 1
q−p

∑q
j=p

−
rot(0)
v(φ j ,r0)

×
(rs −r0). The indices p, q can include the whole spatial domain or instead a bounded spatial interval to track specific regions 
of the initial wave. For CR2210, we limit p, q to include the characteristics emanating from a main equatorial high solar 
wind peak, originating from an equatorial coronal hole, on the longitudinal interval [180◦, 260◦]. There are three main shock 
curves, and we choose to follow the first shock curve that emerged at rs = 0.344 AU and φs = 211.737◦ . The learned sOpInf 
ROM is of the form

˙̂v = Ĥ(v̂ ⊗′ v̂), Ĥ ∈R�× 1
2 �(�+1)

and it is able to sufficiently model the dynamics of the HUX model with only � = 4 modes. A practical implementation 
of operator inference requires regularization, and for the least-squares fitting we found λ = 103 to give good results. The 
comparison between sOpInf and HUX velocity profiles is provided in Fig. 6. The figure shows that the advective solutions are 
well approximated both in the training regime until r = 0.82 AU and in the testing regime, where the ROM is fully predictive. 
This conclusion is also supported by Table 1 where we provide the mean/median/maximum relative error and the Pearson 
correlation coefficient comparing the HUX solutions with the ROM solutions, both in the testing and training regime. The 
error measures show that a sOpInf ROM can sufficiently predict the HUX dynamics while reducing the dimensionality of 
the problem from nφ = 128 to � = 4, i.e., a factor of 32 reduction of state-space dimension.
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Fig. 6. The HUX solar wind radial velocity results at the heliographic equatorial plane for CR2210 along with sOpInf quadratic ROM results. The sOpInf ROM 
aligns very well with the data past the training interval; the snapshots at r = 0.91 AU and r = 1.1 AU are testing data where the ROM is fully predictive.

Table 1
Comparison of the sOpInf ROM performance for the test case CR2210. Given are the mean/me-
dian/maximum relative error (RE) measured in percent and the Pearson correlation coefficient 
(PCC) comparing the ROM with the respective high-fidelity models (HUX, MAS-2D, MAS-3D) for 
both training and testing datasets.

Model Regime RE mean RE median RE max. PCC

HUX Equatorial Plane (2D) Training 0.286 0.143 3.379 0.99991
Testing 0.526 0.385 4.114 0.99956

MAS Equatorial Plane (2D) Training 0.449 0.229 5.564 0.99980
Testing 1.264 0.849 8.235 0.99901

MAS Full Sun (3D) Training 0.451 0.334 7.731 0.99969
Testing 0.539 0.353 20.492 0.99964

Fig. 7. (a) The MAS solar wind radial velocity results at the equatorial plane for CR2210 from 0.14 AU to 1.1 AU. (b) The solar wind data in shifted 
coordinates eliminating the translational properties caused by the Sun’s rotation. (c) The Singular value cumulative energy of the data in the original and 
shifted coordinates. The singular values decay more rapidly in the shifted coordinates, indicating that the ROM will require less modes in the shifted 
coordinates.

4.4. MAS equatorial plane numerical results

We apply the sOpInf framework to learn a ROM for the MAS CR2210 equatorial plane velocity field. Since the MAS 
Eqs. (1)–(6) are not in the form of Eq. (24), the method of characteristics can not be applied to approximate the shift 
function c(r); instead, we use the cross-correlation extrapolation method, which resulted in c(r) = −54.98◦r + 7.39◦ , where 
r is measured in AU. Fig. 7 shows the MAS equatorial plane heliospheric results on the original and shifted polar coordinates 
along with the cumulative singular value energy criteria described in Eq. (18) in each coordinate system. Evidently, we see 
that shifting the snapshots to a moving coordinate frame creates a faster singular value decay, leading to an accurate 
representation of the shifted data with far fewer modes. This observation is in line with the results we showed for Burgers’ 
equation in Fig. 2d above.
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Fig. 8. The MAS solar wind radial velocity results at the heliographic equatorial plane for CR2210 along with sOpInf quadratic ROM results. The sOpInf ROM 
aligns very well with the data past the training interval; the snapshots at r = 0.91 AU and r = 1.1 AU are testing data where the ROM is fully predictive.

Fig. 9. A comparison between (a) the MAS solar wind radial velocity solution at the heliographic equatorial plane for CR2210 and (b) the learned quadratic 
sOpInf ROM results with � = 9 basis modes. The relative error between MAS and sOpInf results is illustrated in sub-figure (c).

The results shown in this section are for the ROM model form

˙̂v = Ĥ(v̂ ⊗′ v̂), Ĥ ∈R�× 1
2 �(�+1)

with � = 9 modes. This model form provided the best overall results in training and extrapolation, compared to other model 
combinations including linear and constant terms, see Section 4.7 for further discussion. The regularization coefficient for 
computing the operator Ĥ is λ = 105. Fig. 8 visually demonstrates that sOpInf is capable of accurately approximating the 
MAS equatorial results, where the snapshots at r = 0.91 AU and r = 1.1 AU are in the fully predictive regime of the ROM. 
We highlight that the MAS data contains more complex features than the HUX data, specifically in the region 0◦ ≤ φ � 120◦
where small localized wave structures exist. Nevertheless, sOpInf covers those equally well as the HUX data in the previous 
section. Fig. 9 presents are more qualitative assessment of the relative error between the sOpInf ROM and MAS velocity 
fields, which shows that the relative error is less than 8.3% in the entire domain. The mean/median/maximum relative error 
and PCC in the testing and training regime are again provided in Table 1 above.

4.5. 3-D full-Sun MAS numerical results

We showcase sOpInf trained on MAS three-dimensional steady-state velocity results. As mentioned previously, the MAS 
Eqs. (1)–(6) are not in the form of Eq. (24), hence, the method of characteristics is not a valid choice in approximating the 
shift function c(r) ∈ R2. Therefore, we turn to the cross-correlation extrapolation method described in Section 3.2.2. More 
specifically, the full-Sun MAS snapshots in matrix form, v(r) ∈ Rnφ×nθ , are bi-variate in Carrington longitude (φ) and latitude 
(θ ), with nφ, nθ mesh points in longitude and latitude, respectively. The shift function c(r) ∈ R2 is found via the bi-variate 
circular cross-correlation defined by Eqs. (32)–(33) with k = 2. The bi-variate circular cross-correlation is applied between 
each snapshot and the velocity profile at the initial condition (30R S ). Since the translation in the MAS solar wind results 
is due to the Sun’s rotation, the shift function can be expressed as c(r) = c(r)êφ , where êφ is the unit vector in longitude 
direction, and c(r) ∈ R is the shift in longitude, where we computed c(r) = −52.44◦r + 6.94◦ with r measured in AU. The 
results in this section are for a ROM of the form

˙̂v = Âv̂ + Ĥ(v̂ ⊗′ v̂) + B̂
17
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Fig. 10. Graphic (a) shows the MAS solar wind velocity results (right column) and sOpInf model of the form ˙̂v = Âv̂ + Ĥ(v̂ ⊗′ v̂) + B̂ results (left column) 
with � = 8 modes. The training ends at 0.82 AU, hence, the velocity profile at r = 1.1 AU (last row) is in the purely predictive regime. Graphic (b) presents 
the relative error of learned full-Sun sOpInf ROM vs. MAS. The sOpInf ROM results at r = 0.968 AU and r = 1.1 AU (last row) are in the purely predictive 
regime. The ROM shows good qualitative and quantitative agreement with the MAS solution, yet can be evaluated at a much lower cost.

where B̂ ∈ R� , Â ∈ R�×� , Ĥ ∈ R�× 1
2 �(�+1) with only � = 8 modes. The regularization coefficient for computing the operator 

B̂ and Â is λ1 = 104 and the regularization coefficient for Ĥ is λ2 = 108. Fig. 10a shows the relative error between the 
two velocity fields and the mean/median/max relative error in the testing and training regime is shown in Table 1. For a 
visual comparison, Fig. 10b shows a comparison between the sOpInf reconstructed and predicted two-dimensional full-Sun 
snapshots; the visual comparison and error estimates indicate that sOpInf can successfully reproduce the high fidelity full-
Sun MAS dataset, where nx = nφ × nθ = 14, 208 with only � = 8 modes, leading to a substantial reduction in the model’s 
dimensionality.

In practice, the sOpInf framework can be employed to speed up the MAS computational time by setting the MAS 
heliospheric outer boundary condition to 0.82 AU (which is 70% of the current computational domain) and run the time-
dependent MAS simulation until it relaxes to steady state. Then, the steady-state MAS snapshots are used as training data 
for sOpInf, which takes 0.355 seconds to simulate from 30Rs up to 1.1 AU on a MacBook Pro 2.3 GHz Quad-Core Intel Core 
i7 processor with 16 GB RAM (for 3-D full-Sun simulation). If we assume that running MAS on 70% of the computational 
domain would take 70% of the MAS current computational time, then we would be able to speed up the MAS computational 
time by approximately 1.2 hours and 8.4 hours for the medium and high resolution runs, respectively (i.e. save 30% of the 
MAS computational time). Another important sOpInf speed-up contribution can be in the case when one is interested in 
studying the solar wind dynamics much further in the heliosphere (e.g. conditions in the vicinity of Mars or Jupiter). In this 
case, one can use the MAS simulation up to 1.1 AU for training sOpInf and use the reduced model to predict up to 5 AU, 
resulting in a more significant speed up. It is important to mention that the MAS model solves for several plasma flow 
quantities, i.e. Eqs. (1)–(6), and sOpInf is currently only solving for the radial velocity component. Thus, a direct comparison 
of their run-time can be equivocal.

4.6. A comparison of surrogate model accuracy via equatorial plane streamlines

Given the two surrogate models of MAS, namely HUX (a reduced-physics approximation) and sOpInf (a data-driven ROM 
trained on MAS), we are interested in comparing their accuracy as surrogates of MAS. We do so by drawing the equatorial 
streamlines for each model. The streamlines of a flow field are curves that are tangential to the local velocity vector. In 
Fig. 11(a-c), the streamlines are mapped from the inner-heliosphere at 0.14 AU to 1.1 AU. The shape of the streamlines 
depends on the velocity field, such that the fast solar wind results in less tightly wound lines than the slow solar wind. At 
regions where the streamlines interact, a compression wave is formed, whereas, at regions where the streamlines are distant 
there is a rarefaction wave. At these regions of compression and rarefaction, the solar wind streams go through substantial 
changes in density and flow speed [26]. For a better understanding of the mapped streamline accuracy, Fig. 11(e-f) presents 
a histogram of the mapped streamlines longitude difference at 1.1 AU along with plotting the cumulative distribution func-
tion (CDF) in Fig. 11d of the streamlines longitude difference at 1.1 AU for each surrogate model: HUX and sOpInf. The MAS 
in comparison to HUX and sOpInf trained on MAS mean/median/maximum and standard deviation (SD) of the streamline 
longitude error are presented in Table 2. The streamline mean longitude absolute error at 1.1 AU of the HUX model is a 
factor of 12 larger than the ones associated with sOpInf. The numerical results show that the sOpInf model is a more accu-
rate approximation of the MAS model in comparison to the reduced-physics HUX model. Moreover, the sOpInf framework 
can account for the solar wind dynamics in three-dimensional space, whereas HUX is strictly two-dimensional.
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Fig. 11. The solar wind streamlines (or Parker spiral) for the CR2210 equatorial plane are shown using the velocity results of (a) MAS, (b) HUX, and 
(c) sOpInf trained on MAS. Sub-figure (d) shows the cumulative distribution function (CDF) of the streamlines longitude absolute difference at 1.1 AU, 
where sOpInf outperformed HUX in approximating the MAS solar wind streamlines. The longitude absolute difference between the streamlines is shown 
for (e) HUX vs. MAS and (f) sOpInf vs. MAS.

Table 2
Streamline longitude absolute error (AE), measured in degrees, at 1.1 AU
of the surrogate models HUX and sOpInf in comparison to MAS. That snap-
shot is in the fully predictive regime of the ROM, showing that the sOpInf 
ROM can predict well outside the training interval and provides a better 
surrogate model than the reduced-physics HUX model.

Model Comparison AE mean AE median AE max. AE SD

HUX vs. MAS 2.186◦ 1.977◦ 5.047◦ 1.463◦
sOpInf vs. MAS 0.172◦ 0.155◦ 0.457◦ 0.115◦

4.7. Additional considerations when choosing the operator model form

4.7.1. Comparing models with the same number of modes
The choice of polynomial ROM form for the HUX and MAS dataset is an approximation of the governing equations (unlike 

the inviscid Burgers’ example in Section 3.3) since both models have nonpolynomial terms. The above Sections 4.3–4.5
showcase the ROM model form that performed the best in the testing regime, i.e. purely-linear, purely-quadratic, or a 
combination thereof. Here, we present the results of a detailed investigation of how other polynomial ROM forms performed 
on each dataset. Fig. 12 compares the state error in the fully predictive (testing) regime for each model: (12a) shows the 
HUX-2D equatorial plane results, (12b) shows the MAS-2D equatorial plane results, and (12c) shows the MAS-3D full-Sun 
results. In each case, we consider strictly-linear, strictly-quadratic, and linear-quadratic plus a constant term model forms in 
our analysis. Fig. 12a shows a comparison of three different model forms for HUX dataset, in which strictly-quadratic and 
linear-quadratic plus constant term ROMs perform better than the strictly-linear ROM. There is not a significant difference 
between the two quadratic forms, yet since the strictly-quadratic ROM has fewer model parameters and resulted in a slightly 
better relative error in the testing regime, we choose to employ a strictly-quadratic ROM form. For the MAS-2D dataset, the 
results in Fig. 12b show that the strictly-quadratic model outperformed the other two model forms in the testing regime. 
Lastly, for the MAS-3D dataset, Fig. 12c shows that the quadratic model with linear and constant terms outperforms the 
strictly-linear and strictly-quadratic ROMs with the same amount of modes.

4.7.2. Comparing models with similar computational cost
The main question we seek to answer: Is it better to have a linear ROM with larger � or a quadratic ROM with smaller �?

The cost of simulating the sOpInf ROM depends on the number of ROM parameters in the matrices on the right-hand side 
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Fig. 12. A comparison of three ROM model forms, i.e. purely linear, purely quadratic, and quadratic with linear and constant term, relative error measured 
via the L2-norm in the testing regime. The three models are trained on 70% of the (a) HUX-2D equatorial data, (b) MAS-2D equatorial data, and (c) MAS-3D 
full-Sun data.

Fig. 13. A comparison of quadratic ROM forms, i.e. purely-quadratic and linear-quadratic plus constant term, to purely-linear ROM form via the testing 
relative error measured by the Frobenius norm. The numerical results for (a) HUX-2D, (b) MAS-2D, and (c) MAS-3D, show that the quadratic ROM forms 
are generally more accurate than the strictly-linear ROMs learned with a comparable number of model parameters.

of Eq. (21). That number of parameters is determined by both the model form and the reduced basis dimension � and 
determines the models computational cost. As mentioned in Section 3.1(III), we use the compact Kronecker product in the 
sOpInf ROM. Consequently, the number of model parameters d(�) (i.e., parameters in the system matrices) is

d(�) =

⎧⎪⎨⎪⎩
� × � if ˙̂v = Âv̂

� × 1
2 �(� + 1) if ˙̂v = Ĥ(v̂ ⊗′ v̂)

� × (� + 1
2 �(� + 1) + 1) if ˙̂v = Âv̂ + Ĥ(v̂ ⊗′ v̂) + B̂

(45)

for the different ROM forms we investigated. We thus compare the quadratic model forms chosen in Section 4.3–4.5 to a 
linear ROM with a comparable number of model parameters d(�) in Fig. 13. That figure shows results for (13a) HUX-2D ROM 
presented in Section 4.3, (13b) MAS-2D ROM presented in Section 4.4, and (13c) MAS-3D ROM presented in Section 4.5. 
As seen in all three examples, the chosen quadratic model forms perform better than the purely-linear model form in 
the testing regime using a comparable number of model parameters (and hence comparable computational cost), more 
specifically:

– For the HUX-2D example, we set � = 4 with a strictly-quadratic model, so a linear model with � ≈ 6 would have a 
comparable number of model parameters. The quadratic model performs better with approximately the same number 
of model parameters.

– For the MAS-2D example, we set � = 9 with a strictly-quadratic model, so a linear model with � ≈ 20 would have a 
comparable number of model parameters. The quadratic model is more accurate with approximately the same number 
of model parameters.
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– For the MAS-3D example, we set � = 8 with a linear-quadratic plus constant term model, so a linear model with � ≈ 19
would have a comparable number of model parameters. The quadratic model performs better with approximately the 
same number of model parameters.

The above numerical evidence highlights the importance of including quadratic nonlinearity in the sOpInf ROM. From an-
other perspective, adding a quadratic term to the model allows us to have a lower ROM dimension � than if only linear 
terms were present.

5. Conclusion

We proposed a reduced-order modeling strategy that uses simulated data to learn low-dimensional models for effi-
cient solar wind predictions. The method leverages physical knowledge in that it first seeks to detect a spatial shift in the 
data/model (arising from advection) either through the method of characteristics or the fully data-based cross-correlation 
method. Given that shift, the system is then transformed into a moving coordinate frame, where a ROM can efficiently 
be learned via operator inference. The numerical results showed that for the full-Sun MAS simulations, a ROM with � = 8
modes was sufficient to accurately predict the solar winds, yet produced significant computational speedup compared to 
the full-order model. From a surrogate modeling perspective, we investigated and compared the accuracy of two surrogates 
for the MAS model: a reduced-physics approximation (HUX) and the proposed sOpInf ROM approximation. We found that 
the latter is a much more accurate model than HUX; therefore, it is worth investigating ROM approaches for solar physics 
applications. Although we developed the sOpInf methodology to learn ROMs from simulated solar wind data, we found 
that the sOpInf framework is robust to moderate levels of noise, which is promising as one hopes to use sOpInf for noisy 
observational data. Additionally, when considering which sOpInf ROM model form should be chosen, we found that smaller 
quadratic ROMs perform better than larger, purely-linear ROMs in the testing regime (with comparable number of model 
parameters), highlighting the importance of quadratic terms in the ROM. While applied to use cases where solar wind ve-
locities are most relevant, our methodology is applicable to forecasting additional solar wind quantities such as the density, 
pressure, etc. These models are our focus of future work. Moreover, while most quadratic forms of the ROM were suffi-
cient to represent the physics with good accuracy, we expect more nonlinearly behaving systems to benefit from additional 
variable transformations (and lifting approaches similar to [28,49]).

A long-term goal of our project is to solve uncertainty quantification problems, by efficiently assessing the impact of 
model input uncertainties, such as uncertain model coefficients, boundary conditions, and initial conditions, for which we 
anticipate our ROMs to be very useful. The ROMs can substantially accelerate ensemble methods, e.g. the most direct 
approach of Monte Carlo simulations and Bayesian inference, which are highly valuable in space weather operational fore-
casting.
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Appendix A. Extending shifted operator inference to applications with noisy data

We developed the sOpInf methodology to predict the ambient solar wind from simulated data, yet the sOpInf framework 
extends to a wide class of advection-dominated systems described on a periodic domain and can be trained directly from 
observational data which is always noise-corrupted. We thus tested the sOpInf sensitivity to noise on the inviscid Burgers’ 
equation example described in Section 3.3 with Gaussian noise added to each snapshot entry. Following the work by [21], 
21
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Fig. A.14. Graphic (a) shows the slope d
dt c(t) of the linear shift function as the noise level ζ = 1, 2, . . . , 20% varies. The results show that the cross-correlation 

extrapolation technique is robust to noise as the shift function slope remains relatively close to 1.05 as we increase the noise level. Graphic (b) shows the 
singular value decay of the noisy (with ζ = 2%) and noiseless Burgers’ equation snapshots on the original and shifted coordinates. Graphic (c) shows the 
first eight POD modes normalized between [−1, 1] of the noisy (noise level ζ = 2%) and noiseless inviscid Burgers’ training snapshots. Of those, the first 
five POD modes of the noisy dataset are able to filter most of the noise, suggesting to learn a ROM with � = 5. Graphic (d) shows the first five temporal 
ROM coefficients (normalized to [−1, 1]) in the training regime for noisy and noiseless snapshots.

the noise is drawn from a N (0, ν2) with ν = ζ ·(maxx u(x, 0) −minx u(x, 0)) = ζ ·(1.3 −0.8) = ζ/2, where the coefficient ζ is 
the noise level. The same Gaussian initial condition, periodic boundary conditions, and first-order finite difference numerical 
solver described in Section 3.3 are used to generate the training and testing snapshots, where 80% of the total snapshots 
are used for training.

We generate noisy snapshots with various levels of noise ζ = 1, 2, . . . , 20%, and for each noise level compute the shift 
function c(t) via the cross-correlation extrapolation technique fitting a linear polynomial (see Section 3.2.2). Fig. A.14a shows 
the cross-correlation extrapolation linear shift function c(t) slope as we vary the level of noise ζ = 1, 2, . . . , 20%. We found 
that the cross-correlation technique is robust to noise as the shift function remained within c(t) = (1.05 ± 0.012)t for 
ζ = 1, 2, . . . , 20%. Note that c(t) = 1.05t is the linear shift function for the noiseless data as mentioned in Section 3.3.

Fig. A.14b shows the singular values of the noisy and noiseless Burgers’ training snapshots on the shifted and original 
coordinate frame for ζ = 2%. In agreement with Fig. 2d, we see in Fig. A.14b that the singular values decay faster in the 
shifted coordinates (in comparison to the original coordinates). Next, we compute the POD basis V� = [v1, . . . , v�] ∈ Rn×� , 
shown in Fig. A.14c. Inspecting the POD modes, we choose to keep � = 5 POD basis functions, since after the fifth mode 
the POD modes are polluted with noise. This choice of ROM dimension � = 5 is consistent with the singular values of 
the noisy data in the shifted coordinates, which plateau after � = 5. The projected snapshots Û = V�

� Ũ, where the rows 
of Û ∈ R�×K are denoted by Ûi,: ∈ RK for i = 1, 2, . . . , � are the temporal ROM coefficients and are shown in Fig. A.14d. 
Since the temporal coefficients are polluted with noise, using a uniform sixth-order finite difference scheme as we did in 
Section 3.3 will be highly inaccurate. Instead, the time derivative ˙̂U of the reduced states is computed via a simple factor 
method based on bimodal kernels of [17].
22
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Fig. A.15. The inviscid Burgers’ equation simulated snapshots with added Gaussian noise (noise level ζ = 2%).

Fig. A.16. Solutions from the sOpInf model of the form ˙̂u = Âû + Ĥ(û ⊗′ û) with � = 5 modes trained on noisy (noise level ζ = 2%) inviscid Burgers’ 
snapshots. The results show good agreement with the noiseless snapshots.

Fig. A.15 shows the noisy snapshots for noise level ζ = 2%. Correspondingly, the sOpInf ROM results with � = 5, λ1 = 1
and λ2 = 104 trained on noisy (noise level ζ = 2%) snapshots are shown in Fig. A.16. The numerical results illustrate that 
the sOpInf framework successfully reconstructs and predicts the dynamics of the inviscid Burgers’ equation from noisy 
snapshots. The results show small oscillations near the shock in the testing regime. We suspect this behavior is due to the 
low number of modes (� = 5). The mean relative error is 1.1416 × 10−3 and the Pearson correlation coefficient is 0.99987
in comparison to the noiseless snapshots. The numerical results show that the sOpInf methodology is robust to noise and 
can be potentially extended to applications with noisy observational data.
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