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Abstract

Operator inference learns low-dimensional dynamical-system models with polynomial nonlinear terms from trajectories of
igh-dimensional physical systems (non-intrusive model reduction). This work focuses on the large class of physical systems
hat can be well described by models with quadratic and cubic nonlinear terms and proposes a regularizer for operator inference
hat induces a stability bias onto learned models. The proposed regularizer is physics informed in the sense that it penalizes
igher-order terms with large norms and so explicitly leverages the polynomial model form that is given by the underlying
hysics. This means that the proposed approach judiciously learns from data and physical insights combined, rather than from
ither data or physics alone. Additionally, a formulation of operator inference is proposed that enforces model constraints for
reserving structure such as symmetry and definiteness in linear terms. Numerical results demonstrate that models learned with
perator inference and the proposed regularizer and structure preservation are accurate and stable even in cases where using
o regularization and Tikhonov regularization leads to models that are unstable.
2022 Elsevier B.V. All rights reserved.
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1. Introduction

With a lack of models and a deluge of data in science and engineering, methods for inferring models from data
ecome ever more important. At the same time, it is increasingly recognized that relying on data alone is insufficient
o learn accurate, interpretable, and robust models of science and engineering systems. Instead, a combination of
ata and physical insights is necessary for learning predictive models [1,2], which has led to a surge of interest
n physics-informed machine learning and scientific machine learning; see, e.g., [3–7]. In this spirit, we propose a
earning method that infers low-dimensional dynamical-system models from data and induces a stability bias via a
egularizer that explicitly exploits the polynomial model form given by the underlying physics.

There is a large body of literature on learning dynamical-system models from data. We only review those that are
losest to our work. First, there is system identification that originated in the systems and control community [8].
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Antoulas and collaborators introduced the Loewner approach [9–11], which has been extended from linear time-
invariant systems to parameterized [12], switched [13], structured [14], delayed [15], bilinear [16], quadratic [17],
quadratic bilinear [18], polynomial [19], and parameter-varying [20] systems as well as to learning from time-domain
data [21,22] and noisy data [23–25]. There is also dynamic mode decomposition (DMD) [26–29] that best-fits linear
operators to state trajectories in the L2 norm. Methods based on Koopman operators have been developed to extend
DMD to nonlinear systems [30–32]. Finally, there are sparse identification methods such as SINDy [3] and the
works [33–35]. The authors of [36] develop a stability regularizer for SINDy that focuses on quadratic models and
is motivated by Lyapunov theory; see also [37]. Similarly, the work [38] adds a loss term to encourage stability of
an equilibrium and so learns deep-network models that show stable behavior. Closure modeling is another research
direction that recently has seen a surge of interest in data-driven methods [6,39–42] and where stabilization plays
an important role [43–46].

Our goal is to learn low-dimensional nonlinear dynamical-system models and to penalize unstable models as well
as preserve structure and invariances of the dynamical systems from which data are sampled. We build on operator
inference [47] that infers reduced models with polynomial nonlinear terms from snapshots data. Operator inference
comes with recovery guarantees under certain assumptions [48–50] and it is a building block of more general
learning methods that go far beyond polynomial nonlinear terms and exploit additional physical insights [7,51–57].
In [58], operator inference is used together with a physics-informed lifting approach to learn a model of a large-
scale combustion system, where it has been shown that regularization is important for obtaining stable models.
A Tikhonov regularizer is proposed in [58], which has been further investigated in, e.g., [59,60]. In contrast, we
propose a regularizer that goes beyond Tikohnov regularization and that is explicitly motivated by the nature of the
polynomial—in particular, quadratic and cubic polynomials—model form, which in turn is given by the underlying
physics. Building on the insights from [61–63], we penalize quadratic and cubic terms with large norms, which
critically and provably influences the stability radius of the learned models and which is also in agreement with the
findings in, e.g., [64,65]. To formulate the corresponding regularizers for operator inference, we derive novel upper
bounds for the stability radii of cubic and quadratic–cubic models. We present numerical results that demonstrate
improved stability of models learned with the proposed regularization compared to no regularization and Tikhonov
regularization. We expect that similar regularization approaches can be used when learning reduced models using
different non-intrusive model reduction techniques for the same type of polynomial nonlinear systems.

Section 2 briefly describes learning low-dimensional models with operator inference and motivates this work
with a synthetic example. Section 3 proposes the physics-informed regularizer based on new upper bounds of
stability radii of polynomial models and structure preservation for operator inference. The computational procedure
is discussed in Section 4. Numerical results in Section 5 demonstrate that operator inference with the proposed
regularizer learns stable models even when Tikhonov regularization and models learned without regularization are
unstable. Concluding remarks are in Section 6.

2. Non-intrusive model reduction with operator inference

Section 2.1 introduces the dynamical systems of interest and Section 2.2 discusses sampling high-dimensional
state trajectories. Classical, intrusive model reduction [66–69] requires the availability of a model of the high-
dimensional dynamical system to construct a reduced model and is recapitulated in Section 2.3. In Section 2.4,
non-intrusive model reduction with operator inference is summarized, which learns reduced models from state
trajectories. The problem formulation and a motivating example are given in Section 2.5.

2.1. Dynamical system with high-dimensional states

Consider a parameterized dynamical system with quadratic and cubic nonlinear terms
d
dt

x(t; µ) = A(µ)x(t; µ) + B(µ)u(t; µ) + F(µ)x(t; µ)2
+ G(µ)x(t; µ)3 , (1)

here A(µ) ∈ RN×N is the linear operator, and F(µ) ∈ RN×N (N+1)/2 and G(µ) ∈ RN×N (N+1)(N+2)/6 are the
onlinear operators. There are p ∈ N inputs that enter linearly via the input matrix B(µ) ∈ RN×p. The system
perators depend on a parameter µ ∈ D ⊂ Rd that is independent of time. The state dimension is N ∈ N and the

N p
tate at time t ∈ [0, T ] is x(t; µ) ∈ R . The p-dimensional input at time t is u(t; µ) ∈ R . The initial condition

2
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is denoted as x0(µ) ∈ RN . To each state x(t; µ) = [x1(t; µ), . . . , xN (t; µ)]T , we have a corresponding vector
x(t; µ)2

∈ RN (N+1)/2 defined as

x(t; µ)2
= [x(1)

2 (t; µ)T , . . . , x(N )
2 (t; µ)T ]T (2)

here x(i)
2 (t; µ) = xi (t; µ)[x1(t; µ), . . . , xi (t; µ)]T for i = 1, . . . , N . The vector x(t; µ)2 contains all pairwise

roducts of components of the state vector x(t; µ) up to duplicates; see, e.g., [47]. The vector x(t; µ)3
∈

N (N+1)(N+2)/6 is defined as

x(t; µ)3
= [x(1)

3 (t; µ)T , . . . , x(N )
3 (t; µ)T ]T (3)

here x(i)
3 (t; µ) = [x (i,i)

3 (t; µ)T , . . . , x (i,N )
3 (t; µ)T ]T for i = 1, . . . , N , with

x (i, j)
3 (t; µ) = xi (t; µ)x j (t; µ)[xi (t; µ), . . . , x j (t; µ)]T for j = i, . . . , N .

.2. Collecting data

Discretize the time domain into 0 = t0 < t1 < · · · < tK = T and consider the state trajectory

X(µ) = [x0(µ), . . . , xK (µ)] ∈ RN×K+1

or a given parameter µ ∈ D, initial condition x0(µ), and for a given input trajectory

U(µ) = [u(t1; µ), . . . , u(tK ; µ)] ∈ Rp×K .

or example, a trajectory X(µ) can be obtained by numerically integrating the model (1) of a dynamical system in
ime. The trajectories

X2(µ) = [x2
0(µ), . . . , x2

K (µ)] ∈ RN (N+1)/2×K+1

X3(µ) = [x3
0(µ), . . . , x3

K (µ)] ∈ RN (N+1)(N+2)/6×K+1

an be generated from the state trajectory X(µ) following definitions (2) and (3), respectively.

.3. Classical, intrusive model reduction

For each parameter µ ∈ {µ1, . . . , µM} in a set of M ∈ N parameters, consider Mb ∈ N input tra-
ectories Ub

1(µ), . . . , Ub
Mb

(µ), initial conditions xb
1,0(µ), . . . , xb

Mb,0(µ), and the corresponding state trajectories
Xb

1(µ), . . . , Xb
Mb

(µ). The state trajectories for all parameters are concatenated into the snapshot matrix

Xb
= [Xb

1(µ1), . . . , Xb
Mb

(µ1), . . . , Xb
1(µM ), . . . , Xb

Mb
(µM )] ∈ RN×K M Mb . (4)

proper orthogonal decomposition (POD) basis of dimension n ≪ N is constructed from the snapshot matrix Xb.
e do not scale and center the snapshots before applying POD. The basis vectors are the columns of the matrix

V = [v1, . . . , vn] ∈ RN×n . (5)

To construct a projection-based reduced model via Galerkin projection, the reduced operators Ã(µ) ∈ Rn×n and
B̃(µ) ∈ Rn×p are obtained via

Ã(µ) = V T A(µ)V , B̃ = V T B(µ) . (6)

he reduced nonlinear operators F̃(µ) ∈ Rn×n(n+1)/2 and G̃(µ) ∈ Rn×n(n+1)(n+2)/6 are constructed in a similar fashion
ia projection as described in, e.g., [48]. Thus, for each parameter µ ∈ {µ1, . . . , µM}, one obtains a reduced model

d
dt

x̃(t, µ) = Ã(µ)x̃(t; µ) + B̃(µ)u(t; µ) + F̃(µ)x̃2(t; µ) + G̃(µ)x̃3(t; µ) , (7)

ith reduced state x̃(t; µ) ∈ Rn . We refer to [66,67,69] for more details about classical, intrusive model reduction.
3
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2.4. Learning low-dimensional models from data with operator inference

Constructing the reduced operators Ã(µ), B̃(µ), F̃(µ), G̃(µ) via (6) is an intrusive process because it requires
ccess to high-dimensional operators A(µ), B(µ), F(µ), G(µ) in either implicit or explicit form. In contrast,
perator inference [47] aims to learn reduced operators from trajectories of dynamical system (1), without requiring
ccess to the high-dimensional operators.

Let V be a basis matrix. Notice that such a basis matrix V can be constructed purely from the snapshot matrix (4)
n many situations, without having available the high-dimensional operators. Then, the intrusive projection step (6) is
eplaced with a non-intrusive least-squares regression problem. First, for each training parameter µ ∈ {µ1, . . . , µM},
onsider Mt training input trajectories U1(µ), . . . , U Mt (µ) with initial conditions x1,0(µ), . . . , xMt ,0(µ) and the
orresponding training state trajectories X1(µ), . . . , X Mt (µ). Second, the training trajectories are projected onto the

reduced space via

X̄ i (µ) = V T X i (µ)

o obtain the projected training trajectories X̄ i (µ) = [x̄i,1(µ), . . . , x̄i,K (µ)] ∈ Rn×K for i = 1, . . . , Mt . Third, the
perators Â(µ), B̂(µ), F̂(µ) and Ĝ(µ) are fitted via least-squares regression to the projected training trajectories

min
Â(µ),B̂(µ),F̂(µ),Ĝ(µ)

J ( Â(µ), B̂(µ), F̂(µ), Ĝ(µ))

ith objective function

J ( Â(µ), B̂(µ), F̂(µ), Ĝ(µ))

=

Mt∑
i=1

K∑
k=1

x̄′

i,k(µ) − Â(µ)x̄i,k(µ) − B̂(µ)ui,k(µ) − F̂(µ)x̄2
i,k(µ) − Ĝ(µ)x̄3

i,k(µ)
2

2
, (8)

here ui,k(µ) is the input at time step k of the i th training trajectory U i = [ui,1(µ), . . . , ui,K ] for i = 1, . . . , Mt .
he quantity x̄′

i,k ∈ Rn denotes a numerical approximation of the time derivative of the projected state at time k of
he i th trajectory, such as a first-order finite difference approximation

x̄′

i,k =
x̄i,k − x̄i,k−1

δt
, (9)

with time-step size δt > 0. The inferred operators Â(µ), B̂(µ), F̂(µ), Ĝ(µ) are then used to assemble a
low-dimensional model

d
dt

x̂(t; µ) = Â(µ)x̂(t; µ) + B̂(µ)u(µ) + F̂(µ)x̂2(t; µ) + Ĝ(µ)x̂3(t; µ), (10)

here x̂(t; µ) ∈ Rn is the state at time t .
The operator inference process is repeated for each parameter in the training set {µ1, . . . , µM} to compute the

orresponding inferred operators. For a new parameter µ ∈ D\{µ1, . . . , µM}, the operators Â(µ), B̂(µ), F̂(µ), Ĝ(µ)
re obtained via interpolation. We refer to [47] for details and to [70] for interpolating between reduced operators
n model reduction in general.

.5. Motivating numerical example: Stability of inferred models

We demonstrate operator inference on a toy example. Consider the quadratic dynamical system
d
dt

x(t) = A(µ)x(t) + Bu(t) + Fx2(t) , (11)

where B ∈ RN×1 and F ∈ RN×N (N+1)/2 have entries that are realizations of the uniform distribution in [0, 1]. The
dimension is N = 128. The linear operator in (11) is A(µ) = −µ(As + AT

s + 2N I), where I is the identity matrix
and As ∈ RN×N is a matrix that has as entries realizations of the uniform distribution in [0, 1]. The matrix A(µ) is
symmetric negative definite with probability 1. The parameter domain is D = [0.1, 1] and end time is T = 1. We
discretize (11) with time-step size δt = 10−3 and explicit Euler. For each training parameter µ ∈ {0.1, . . . , 1.0},
we generate a single (M = 1) input trajectory Ub(µ), whose entries are random with a uniform distribution
b 1

4
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Fig. 1. Synthetic example: (a) The training error for the model learned via operator inference (OpInf) matches the error of the model
obtained with intrusive model reduction. (b) When tested for a different input and initial condition at the same parameter, the model learned
via operator inference (without regularization) is inaccurate and unstable in this example.

in [0, 2], and an initial condition xb
1,0, whose entries follow a uniform distribution in [0, 1]. The corresponding

state trajectories are Xb
1(µ1), . . . , Xb

1(µM ). A basis matrix V ∈ RN×n is then constructed from the corresponding
snapshots as described in Section 2.3. The reduced basis is generated for dimension n = 2, . . . , 10. For parameter
µ = 0.7, we then construct Mt = 3 training inputs U1, . . . , U Mt with training initial conditions x1,0, . . . , xMt ,0,
which are sampled from the same distributions as the inputs and initial conditions for the basis construction. The
corresponding training state trajectories are X1, . . . , X Mt , to which we apply operator inference as described in
Section 2.4. We use a first-order forward difference scheme to approximate the time derivative as in (9). Additionally,
for benchmarking purposes, we also construct a reduced model (7) via the intrusive process described in Section 2.3.

Fig. 1(a) shows the training error of the operator-inference model

etrain =

Mt∑
i=1

∥V X̂ i − X i∥F

∥X i∥F
, (12)

hich indicates that the operator-inference model achieves a comparable error decay as the reduced model obtained
rom intrusive model reduction. However, if we simulate the operator-inference model at a test input trajectory U test,
hose entries are sampled uniformly in [0, 10], and test initial condition xtest

0 , with entries sampled uniformly in
0, 1], and plot the error

etest =
∥V X̂

test
− X test

∥F

∥X test
∥F

, (13)

n Fig. 1(b), then an instability can be observed, compared to the reduced model from intrusive model reduction.
he results indicate that operator inference is prone to overfitting, which can result in unstable behavior at test

nputs as in this motivating example.

. A physics-informed regularizer for operator inference

We propose a physics-informed regularizer for operator inference that penalizes unstable dynamical-system
odels. In Sections 3.1–3.3, we recapitulate the definition of the stability radius of quadratic models and derive new

ounds for stability radii of cubic and quadratic–cubic dynamical-system models with Lyapunov stability criteria. We
hen propose a regularizer that penalizes models with small stability radii in Section 3.4. Additionally, in Section 3.5,
e propose to combine the physics-informed regularizer with structure preservation. In the following, for each
arameter µ ∈ {µ1, . . . , µM} in the training set, an operator-inference model is learned separately as discussed in

ection 2.4. Thus, in this section, the parameter dependence of quantities is not explicitly denoted.

5
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3.1. Stability radius of quadratic models of dynamical systems

We closely follow [63] to define the concept of stability radius for quadratic models of dynamical systems. In
act, the work [63] is the motivation for the proposed physics-informed regularizer.

.1.1. Stability domain of quadratic models
Consider the autonomous quadratic reduced model

d
dt

x̂(t) = Âx̂(t) + Ĥ(x̂(t) ⊗ x̂(t)) (14)

where ⊗ denotes the Kronecker product. Notice that the quadratic term in (14) is denoted with Ĥ instead of F̂ as
in the reduced model (7) and the operator-inference model (10). The term Ĥ is of dimension n × n2 and acts on
he Kronecker product x̂(t) ⊗ x̂(t), whereas the quadratic operator F̂ is of dimension n × n(n + 1)/2 and acts on
x̂2(t) without duplicates due to the commutativity of the multiplication operators, see Section 2.1. However, one
an transform between the two different representations. Thus, the model given in (14) is a different representation
f an autonomous version of the reduced model (7) and the operator-inference model (10) without a cubic term;
f. Section 3.2. See Section 3.3 for models with cubic terms. Similarly, we can represent a full model with only a
uadratic term given in the form of (1) as (14).

Let now without loss of generality x̂e = 0 be an equilibrium point of (14), i.e., Âx̂e + Ĥ(x̂e ⊗ x̂e) = 0. The
omain of attraction A(x̂e) of the equilibrium x̂e is then defined as the set of initial conditions that lead to the
quilibrium point x̂e as a steady state, i.e.,

A(x̂e) = {x̂0 : lim
t→∞

x̂(t) = x̂e},

here x̂(t) is the state at time t of (14) with initial condition x̂0. Directly working with the stability domain is
hallenging from an analytic and computational point of view and thus one typically resorts to deriving subsets

D ⊆ A(x̂e). To measure a subset D, we build on the Lyapunov theory to derive a stability radius.
If there exists a Lyapunov function ν : RN

→ R+ that is continuously differentiable and that satisfies

ν(x̂) > 0, ν̇(x̂) < 0, ∀x̂ ∈ A(x̂e),

hen model (14) is locally asymptotically stable about x̂e. Here, ν̇(x̂) means ν̇(x̂) =
dν
dx̂ f̂ (x̂), where f̂ (x̂) =

Âx̂ + Ĥ(x̂ ⊗ x̂) is the right-hand side function of the corresponding dynamical system. As shown in [61–63],
given a Lyapunov function ν, an estimate D(ρ) ⊆ A(x̂e) of the domain of attraction A(x̂e) is given by

D(ρ) = {x̂ : ν(x̂) ≤ ρ2, ν̇(x̂) < 0},

where we refer to ρ as the stability radius.

3.1.2. Estimating stability radius
Consider an autonomous quadratic model (14) with Lyapunov function ν(x̂) = x̂T P x̂, where P ∈ Rn×n is a

ymmetric positive definite matrix that satisfies

LLT
= − Â

T
P − P Â , (15)

or an arbitrary matrix L ∈ Rn×n . The derivative of the Lyapunov function along a trajectory is

ν̇(x̂) = ˙̂xT P x̂ + x̂T P ˙̂x.

uilding on [63, Proposition 3.1], we obtain the radius

ρ̂ =
σ 2

min(L)

2
√

∥P∥F∥Ĥ∥F
(16)

nd that D(ρ̂) ⊆ A(x̂e) is a subset of A(x̂e), if Â is Hurwitz, i.e., the real parts of all eigenvalues of Â are negative.
otice that in contrast to the 2-norm ∥ · ∥2 used in [63, Proposition 3.1], we state the radius (16) with respect to

he Frobenius norm ∥ · ∥F , which leads to an operator inference problem that can be solved more efficiently than

hen working with the ∥ · ∥2 norm.

6
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We comment on the bound ρ̂ defined in (16) of the stability radius ρ. The same comments apply to the bounds
that are derived in the following sections. We will use the bound ρ̂ to formulate a regularization term. Thus, what
is important for our approach is that penalizing models with a small ρ̂ encourages stabler models that have a
larger stability radius ρ, and our numerical experiments provide empirical evidence of this. This means that for our
approach, it is less critical how close ρ̂ is to ρ in absolute terms and more important that ρ̂ and ρ follow the same
trend in the sense that penalizing a small bound ρ̂ leads to a penalization of small ρ.

3.2. Stability radius of cubic models of dynamical systems

Consider the autonomous cubic reduced model
d
dt

x̂(t) = Âx̂(t) + K̂ (x̂(t) ⊗ x̂(t) ⊗ x̂(t)) (17)

which is an equivalent representation of an autonomous version of the reduced model (7) and the operator-inference
model (10) with no input and no quadratic term.

Proposition 3.2.1. Let ν(x̂) = x̂T P x̂ be a Lyapunov function, where P ∈ Rn×n is a symmetric positive definite
matrix that satisfies (15). Then an estimate of the domain of attraction A(x̂e), of the equilibrium point x̂e of (17),
s given by D(ρ̂) ⊆ A(x̂e), where

ρ̂ =
σmin(L)√
2∥K̂∥F

. (18)

roof. A bound of the derivative for the Lyapunov function ν(x̂) along a trajectory is given as

ν̇(x̂) = ˙̂xT P x̂ + x̂T P ˙̂x

=
[

Âx̂ + K̂ (x̂ ⊗ x̂ ⊗ x̂)
]T P x̂ + x̂T P

[
Âx̂ + K̂ (x̂ ⊗ x̂ ⊗ x̂)

]
= x̂T [ Â

T
P + P Â]x̂ + (x̂ ⊗ x̂ ⊗ x̂)T K̂

T
P x̂ + x̂T P K̂ (x̂ ⊗ x̂ ⊗ x̂)

= −x̂T LLT x̂ + 2x̂T P K̂ (x̂ ⊗ x̂ ⊗ x̂)

≤ −σ 2
min(L)∥x̂∥

2
F + 2∥x̂∥

4
F∥P∥F∥K̂∥F .

e consider the region where the Lyapunov function gradient is negative, which gives us

ν̇(x̂) < 0 ⇐ ∥x̂∥
2
F <

σ 2
min(L)

2∥P∥F∥K̂∥F
.

hus, for the Lyapunov function, the inequality

ν(x̂) = x̂T P x̂ ≤ ∥x̂∥
2
F∥P∥F <

σ 2
min(L)

2∥K̂∥F
= ρ̂2

holds, and thus the stability radius of the cubic system is

ρ̂ =
σmin(L)√
2∥K̂∥F

. □

.3. Stability radius of quadratic–cubic models of dynamical systems

Consider the autonomous quadratic–cubic reduced model

d
dt

x̂(t) = Âx̂(t) + Ĥ(x̂(t) ⊗ x̂(t)) + K̂ (x̂(t) ⊗ x̂(t) ⊗ x̂(t)) (19)

hich is a different representation of an autonomous version of the reduced model (7) and the operator-inference

odel (10).

7
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Proposition 3.3.1. Let ν(x̂) = x̂T P x̂ be a Lyapunov function, where P ∈ Rn×n is a symmetric positive definite
atrix that satisfies (15). Then an estimate of the domain of attraction A(x̂e), of the equilibrium point x̂e of (19),

s given by D(ρ̂) ⊆ A(x̂e), where

ρ̂ =

√
∥P∥F∥Ĥ∥

2
F + 2σ 2

min(L)∥K̂∥F

2∥K̂∥F
−

√
∥P∥F∥Ĥ∥F

2∥K̂∥F
. (20)

roof. A bound of the derivative of the Lyapunov function along a trajectory is given as

ν̇(x̂) = ˙̂xT P x̂ + x̂T P ˙̂x

=
[

Âx̂ + Ĥ(x̂ ⊗ x̂) + K̂ (x̂ ⊗ x̂ ⊗ x̂)
]T P x̂ + x̂T P

[
Âx̂ + Ĥ(x̂ ⊗ x̂) + K̂ (x̂ ⊗ x̂ ⊗ x̂)

]
= x̂T [ Â

T
P + P Â]x̂ + (x̂ ⊗ x̂)T Ĥ

T
P x̂ + (x̂ ⊗ x̂ ⊗ x̂)T K̂

T
P x̂+

x̂T P Ĥ(x̂ ⊗ x̂) + x̂T P K̂ (x̂ ⊗ x̂ ⊗ x̂)

= − x̂T LLT x̂ + 2x̂T P Ĥ(x̂ ⊗ x̂) + 2x̂T P K̂ (x̂ ⊗ x̂ ⊗ x̂)

≤ − σ 2
min(L)∥x̂∥

2
F + 2∥x̂∥

3
F∥P∥F∥Ĥ∥F + 2∥x̂∥

4
F∥P∥F∥K̂∥F .

here the matrix L is as defined in (15). We consider the region where the Lyapunov function gradient satisfies
˙(x̂) < 0, which gives us,

−σ 2
min(L) + 2∥x̂∥F∥P∥F∥Ĥ∥F + 2∥x̂∥

2
F∥P∥F∥K̂∥F < 0 . (21)

oots of the quadratic equation in (21) in ∥x̂∥F are

R1 =

−∥P∥F∥Ĥ∥F −

√
∥P∥

2
F∥Ĥ∥

2
F + 2σ 2

min(L)∥P∥F∥K̂∥F

2∥P∥F∥K̂∥F
,

R2 =

−∥P∥F∥Ĥ∥F +

√
∥P∥

2
F∥Ĥ∥

2
F + 2σ 2

min(L)∥P∥F∥K̂∥F

2∥P∥F∥K̂∥F
.

Both R1 and R2 are non-complex as ∥P∥
2
F∥Ĥ∥

2
F + 2σ 2

min(L)∥P∥F∥K̂∥F ≥ 0.
For x̂ with R1 < ∥x̂∥F < R2, we get

(∥x̂∥F − R1)(∥x̂∥F − R2) < 0

H⇒ −σ 2
min(L) + 2∥x̂∥F∥P∥F∥Ĥ∥F + 2∥x̂∥

2
F∥P∥F∥K̂∥F < 0

H⇒ ν̇(x̂) < 0

Because ∥x̂∥F ≥ 0 and R1 ≤ 0, we get,

0 ≤ ∥x̂∥F < R2

as the set of x̂ for which the condition ν̇(x̂) < 0 is satisfied. Thus, for the Lyapunov function, the inequality

ν(x̂) = x̂T P x̂ ≤ ∥x̂∥
2
F∥P∥F < R2

2∥P∥F = ρ̂2

holds, and thus the stability radius of the quadratic–cubic system is

ρ̂ =

√
R2

2∥P∥F =

√
∥P∥F∥Ĥ∥

2
F + 2σ 2

min(L)∥K̂∥F

2∥K̂∥F
−

√
∥P∥F∥Ĥ∥F

2∥K̂∥F
. □

.4. Operator inference with physics-informed regularizer

We now formulate a physics-informed regularizer for learning quadratic, cubic, and quadratic–cubic models with
perator inference.
8



N. Sawant, B. Kramer and B. Peherstorfer Computer Methods in Applied Mechanics and Engineering 404 (2023) 115836

s

t
a

w
r
l

t
o
e
i
a
σ

c

w
t
o

b
i
w
i
m
l

3

∥

a
b
a
o
c
t

w
i

3.4.1. Physics-informed regularizer for quadratic models
For a quadratic nonlinear model, the stability radius ρ̂, which is derived in (16), grows inversely proportional to

the norm ∥Ĥ∥F of the quadratic term Ĥ ∈ Rn×n2
in (14). Notice that other results on stability analysis for quadratic

ystems, e.g., [64,65], also show that a small norm of the quadratic term can increase the stability radius.
The models that we infer with operator inference have the form (10) and thus the quadratic term F̂ is of dimension

n×n(n+1)/2. However, models of the form (14) with Ĥ can be transformed into models with the quadratic operator
F̂ such that F̂ x̂2

= Ĥ(x̂ ⊗ x̂) holds for any x̂ ∈ Rn and ∥Ĥ∥F ≤ ∥F̂∥F holds as well. We can construct Ĥ such
that ∥Ĥ∥F = ∥F̂∥F , by filling the additional columns of Ĥ with zeros. Thus, we obtain that if we regularize the
norm ∥F̂∥F , we also regularize the norm ∥Ĥ∥F of a corresponding Ĥ , which in turn means that the denominator of
he radius ρ̂ is regularized. This leads to the optimization problem for inferring model (10) with operator inference
nd the proposed physics-informed regularizer (PIR-OpInf)

min
Â,B̂,F̂

J ( Â, B̂, F̂, 0, λ) + λ∥F̂∥
2
F , (22)

ith J defined in (8), with Ĝ set to the zero matrix because we only infer a quadratic model, and λ > 0 being a
egularization parameter. Notice that increasing λ means more severely penalizing the norm ∥F̂∥F , which in turn
eads to a potential increase of the radius ρ̂ and thus a more stable inferred model in the sense of Lyapunov.

The PIR-OpInf problem (22) imposes no constraints on the linear operator Â. In particular, there is no guarantee
hat the inferred Â is Hurwitz and thus there can exist eigenvalues with non-negative real parts. To ensure a linear
perator that is Hurwitz, we apply an eigenvalue reflection as a post-processing step. Let Â = Q AΣ A Q−1

A be the
igendecomposition of Â. If Â is not diagonalizable, we reduce the dimension n until a matrix Â is inferred that
s diagonalizable. Notice that this process stops in a finite number of steps because Â is diagonalizable if n = 1
nd Â is non-zero. Without loss of generality, let σ1, . . . , σr be eigenvalues with non-negative real parts and let
r+1, . . . , σn be all other eigenvalues. Denote with R(σ ) and I(σ ) the real and imaginary part, respectively, for a
omplex number σ ∈ C. Then, we replace Â with the matrix

Q A diag(−ϵ + I(σ1), . . . ,−ϵ + I(σr ), σr+1, . . . , σn) Q−1
A ,

hich replaces the positive real parts of the eigenvalues with a negative real number given by the small positive
hreshold ϵ > 0. Note that the post-processing also needs to be applied after interpolating at a new parameter µ ∈ D
utside of the training set; cf. Section 2.4.

In our numerical experiments, when eigenvalues have positive real parts, then they typically have small magnitude
ecause the underlying systems from which data are sampled are stable and thus the instability in the learned model
s due to, e.g., insufficient data and other shortcomings of the learning. Because we encounter unstable eigenvalues
ith small magnitude only, the reflection described in the previous paragraph is sufficient in our experiments. This

s in contrast to other settings where the underlying systems are unstable and then eigenvalues of learned system
atrices have real parts with large magnitudes. In these cases, other post-processing strategies to obtain Hurwitz

inear operators are warranted and we refer to, e.g., [71–74] for additional details.

.4.2. Physics-informed regularizer for cubic models
For a cubic nonlinear model, the stability radius ρ̂, which is derived in (18), grows inversely proportional to

K̂∥
1/2
F of the cubic term K̂ ∈ Rn×n3

in (17). The models that we infer with operator inference have the form (10)
nd thus the cubic term Ĝ is of dimension n × n(n + 1)(n + 2)/6. Similar to the quadratic model, (17) with K̂ can
e transformed into models with cubic operator Ĝ, such that Ĝ x̂3

= K̂ (x̂(t) ⊗ x̂(t) ⊗ x̂(t)) holds for any x̂ ∈ Rn

nd ∥K̂∥F ≤ ∥Ĝ∥F holds as well. We can construct K̂ such that ∥K̂∥F = ∥Ĝ∥F by filling the additional columns
f K̂ with zeros. Thus, we obtain that if we regularize the norm ∥Ĝ∥F , we also regularize the norm ∥K̂∥F of a
orresponding K̂ , which in turn means that the denominator of the radius ρ̂ is regularized. For the cubic model,
his leads to the optimization problem for inferring model (10) with PIR-OpInf

min
Â,B̂,Ĝ

J ( Â, B̂, 0, Ĝ, λ) + λ∥Ĝ∥F , (23)

ith F̂ set to the zero matrix because there is no quadratic term. The same post-processing as for quadratic models
ˆ
n Section 3.4.1 is applied to ensure an A that is Hurwitz.

9
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3.4.3. Physics-informed regularizer for quadratic–cubic models
For a quadratic–cubic nonlinear model, by taking derivatives of the stability radius ρ̂, derived in (20), with respect

o ∥Ĥ∥F and ∥K̂∥F we get,

∂ρ̂

∂∥Ĥ∥F
=

∥P∥F∥Ĥ∥F −

√
∥P∥

2
F∥Ĥ∥

2
F + 2σ 2

min(L)∥P∥F∥K̂∥F

2∥K̂∥F

√
∥P∥F∥Ĥ∥

2
F + 2σ 2

min(L)∥K̂∥F

,

∂ρ̂

∂∥K̂∥F
=

√
∥P∥F∥Ĥ∥

2
F

√
∥P∥F∥Ĥ∥

2
F + 2σ 2

min(L)∥K̂∥F − (∥P∥F∥Ĥ∥
2
F + σ 2

min(L)∥K̂∥F )

2∥K̂∥
2
F

√
∥P∥F∥Ĥ∥

2
F + 2σ 2

min(L)∥K̂∥F

.

or ∂ρ̂/∂∥Ĥ∥F we get

∥P∥
2
F∥Ĥ∥

2
F + 2σ 2

min(L)∥P∥F∥K̂∥F > ∥P∥
2
F∥Ĥ∥

2
F

H⇒

√
∥P∥

2
F∥Ĥ∥

2
F + 2σ 2

min(L)∥P∥F∥K̂∥F > ∥P∥F∥Ĥ∥F

H⇒ ∥P∥F∥Ĥ∥F −

√
∥P∥

2
F∥Ĥ∥

2
F + 2σ 2

min(L)∥P∥F∥K̂∥F < 0

H⇒
∂ρ̂

∂∥Ĥ∥F
< 0 .

or ∂ρ̂/∂∥K̂∥F , squaring the two terms in the numerator gives us(√
∥P∥F∥Ĥ∥

2
F

√
∥P∥F∥Ĥ∥

2
F + 2σ 2

min(L)∥K̂∥F

)2

= ∥P∥
2
F∥Ĥ∥

4
F + 2∥P∥F∥Ĥ∥

2
Fσ 2

min(L)∥K̂∥F ,(
∥P∥F∥Ĥ∥

2
F + σ 2

min(L)∥K̂∥F

)2

= ∥P∥
2
F∥Ĥ∥

4
F + 2∥P∥F∥Ĥ∥

2
Fσ 2

min(L)∥K̂∥F

+ σ 4
min(L)∥K̂∥

2
F .

Comparing the two terms, and using the fact that σ 4
min(L)∥K̂∥

2
F and all other terms are non-negative, leads to the

inequality(
∥P∥F∥Ĥ∥

2
F + σ 2

min(L)∥K̂∥F

)2

>

(√
∥P∥F∥Ĥ∥

2
F

√
∥P∥F∥Ĥ∥

2
F + 2σ 2

min(L)∥K̂∥F

)2

H⇒ ∥P∥F∥Ĥ∥
2
F + σ 2

min(L)∥K̂∥F >

√
∥P∥F∥Ĥ∥

2
F

√
∥P∥F∥Ĥ∥

2
F + 2σ 2

min(L)∥K̂∥F

H⇒

√
∥P∥F∥Ĥ∥

2
F

√
∥P∥F∥Ĥ∥

2
F + 2σ 2

min(L)∥K̂∥F − (∥P∥F∥Ĥ∥
2
F + σ 2

min(L)∥K̂∥F ) < 0

H⇒
∂ρ̂

∂∥K̂∥F
< 0 .

hat the partial derivatives are negative, ∂ρ̂/∂∥Ĥ∥F < 0 and ∂ρ̂/∂∥K̂∥F < 0, motivates that decreasing ∥Ĥ∥F and
∥K̂∥F can increase ρ̂, which in turn motivates regularizing with respect to both ∥Ĥ∥F and ∥K̂∥F . As described in
Sections 3.4.1 and 3.4.2, by regularizing ∥F̂∥F and ∥Ĝ∥F , we also regularize ∥Ĥ∥F and ∥K̂∥F respectively. For
the quadratic–cubic model, this leads to the optimization problem for inferring model (10) with PIR-OpInf

min
Â,B̂,F̂,Ĝ

J ( Â, B̂, F̂, Ĝ, λ) + λ(∥F̂∥
2
F + ∥Ĝ∥F ) . (24)

The same post-processing as for quadratic models in Section 3.4.1 is applied to ensure an Â that is Hurwitz.
A similar approach as described in Sections 3.1–3.3 can be used for models with higher order nonlinear terms,

to derive the expression for the estimated stability radius and to use it for regularization.

3.5. Operator inference with structure preservation

Structure can be imposed on the linear operator by adding hard constraints to the operator inference problem. We

focus on problems that lead to symmetric negative definite linear operators, which are present in, e.g., Hamiltonian

10
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systems [54]. We consider the constrained problem

min
Â,B̂,F̂,Ĝ

J ( Â, B̂, F̂, Ĝ) + λ(∥F̂∥
2
F + ∥Ĝ∥F ) ,

such that Â + ϵ I ⪯ 0 ,

(25)

where Â + ϵ I ⪯ 0 means that Â + ϵ I is symmetric negative semi-definite. The matrix I is the identity and
> 0 is a margin that guarantees that Â is definite, rather than semi-definite. We refer to (25) as the SPIR-OpInf

roblem, where the S stands for “structure”. Problem (25) is in the class of semi-definite programs, which typically
re computationally more expensive to solve than linear least-squares problems as (22) with the same number
f unknowns. However, efficient numerical algorithms and software exist for solving semi-definite programs [75].
dditionally, we are seeking low-dimensional models that have few degrees of freedom, which means that we focus
ostly on optimization problems with a manageable number of unknowns.
Instead of imposing a margin ϵ to guarantee definiteness of Â in (25), one can solve problem (25) with the

onstraint Â ⪯ 0 and subsequently apply an analogous post-processing step as in Section 3.4. The post-processing
escribed in Section 3.4 preserves symmetry and thus the result is a symmetric negative definite matrix after the
ost-processing; see also [71]. However, in the following, we will impose a margin ϵ and therefore do not need a
ost-processing step.

Other structures in the linear operator can be preserved in an analogous way. For example, another common
tructure is skew-symmetry of Â which can be formulated as a linear constraint; we leave such other constraints
o future work. Recall that it is required to interpolate between inferred operators when a model at a parameter

outside of the training set is required; cf. Section 2.4. In case of structure-preserving operator inference,
he corresponding operator interpolation schemes have to preserve the operator structure. We discuss such an
nterpolation scheme for symmetric negative definite matrices in Section 4.1.

. Computational procedure of physics-informed operator inference

In Section 4.1, we briefly recapitulate an interpolation scheme that preserves symmetric definiteness of matrices,
hich is critical for constructing operators at new parameters outside of the training set in SPIR-OpInf. To select a

egularization parameter for PIR-OpInf (22)–(24) and SPIR-OpInf (25), we propose a parameter-selection scheme
n Sections 4.2 and 4.3. Section 4.4 presents Algorithm 1 that summarizes the computational procedure for operator
nference with physics-informed regularization and structure preservation.

.1. Interpolation of structure-preserving operator-inference models

In SPIR-OpInf introduced in Section 3.5, the definiteness and symmetry constraints in the optimization problem
25) ensure that for each training parameter µ1, . . . , µM a model is obtained with a linear operator that is symmetric
egative definite. When we interpolate the trained models at a new parameter µ ∈ D \ {µ1, . . . , µM} outside of the
raining set, however, we have to ensure that the interpolated linear operator is symmetric negative definite as well.
here are various interpolation schemes in model reduction that preserve such structure, see, e.g., [76,77]. We build
n the Log-Cholesky averaging method presented in [70].

Given are M symmetric negative definite matrices Â(µ1), . . . , Â(µM ) at parameters µ1, . . . , µM . We compute
he Cholesky factors L̂(µi ) such that Â(µi ) = −L̂(µi )L̂(µi )T for i = 1, . . . , M . The Cholesky factors L̂(µi ) are
hen split into

L̂(µi ) = ⌊L̂(µi )⌋ + diag(L̂(µi )) , i = 1, . . . , M,

here diag(L̂(µi )) is the diagonal matrix with the same the diagonal as L̂(µi ) and ⌊L̂(µi )⌋ is its remaining strictly
lower triangular part. The interpolated matrix Â(µ) at a new parameter µ is

Â(µ) = −L̂(µ)L̂(µ)T ,

where the Cholesky factor L̂(µ) is obtained as

L̂(µ) = I(µ; ⌊L̂(µ1)⌋, . . . , ⌊L̂(µM )⌋) + exp
(
I

(
µ; log

(
diag

(
L̂(µ1)

))
, . . . , log

(
diag

(
L̂(µM )

))))
.

The operator I denotes linear interpolation of the matrix entries at µ and exp(·) and log(·) are the matrix exponential

nd logarithm, respectively.

11
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4.2. A regularization parameter-selection scheme for PIR-OpInf and SPIR-OpInf

Let µ1, . . . , µM be the training parameters and recall that X1(µi ), . . . , X Mt (µi ) are the training trajectories with
input trajectories U1(µi ), . . . , U Mt (µi ), respectively, for i = 1, . . . , M ; cf. Section 2.3. Define the minimum λmin
and maximum λmax of the regularization parameter and discretize the interval [λmin, λmax] ⊂ R with m points

λmin = λ1 < · · · < λm = λmax. (26)

For each λi , we learn a model Σ̂i j with PIR-OpInf (22) for µ j , with i = 1, . . . , m and j = 1, . . . , M . In our
case, when Σ̂ refers to a model, then we mean the corresponding matrices that define the model. For example, in
the case of a cubic model as in (10), the notation Σ̂ refers to the matrices Â, B̂, F̂ and Ĝ, which is different from
the way the symbol Σ is typically used in system and control literature where it refers to the system rather than a
realization (model) of the system. Then, for j = 2, . . . , M −1 and for i = 1, . . . , m, we derive Π̂i j by interpolating
between models

Σ̂i,1, . . . , Σ̂i, j−1, Σ̂i, j+1, . . . , Σ̂i,M (27)

corresponding to parameters µ1, . . . , µ j−1, µ j+1, . . . , µM , i.e., the parameter µ j corresponding to model Σ̂i j is left
out from the interpolation process. The interpolation is structure preserving if necessary; cf. Section 4.1. Notice that
all models in (27) are trained with the same regularization parameter λi . The interpolated model Π̂i j is integrated
in time with the input trajectories U1(µ j ), . . . , U Mt (µ j ) corresponding to parameter µ j to obtain the trajectories
X̂

(i)
1 (µ j ), . . . , X̂

(i)
Mt

(µ j ) and the error

eval
i j =

Mt∑
ℓ=1

∥V X̂
(i)
ℓ (µ j ) − Xℓ(µ j )∥F

∥Xℓ(µ j )∥F
(28)

s assigned to the pair of regularization parameter λi and parameter µ j , where V is the basis matrix. We then pick
∗ by solving

arg min
i=1,...,m

1
M − 2

M−1∑
j=2

eval
i j . (29)

he same procedure is applied in case of SPIR-OpInf (25).
Notice that the error due to interpolating between models enters the validation error (28) and thus the selection

riterion (29) for λ∗. This is in contrast to other parameter-selection schemes for operator inference that are either
ormulated in parameter-independent settings or ignore the parameter dependency in the selection process [58,59].

.3. Selecting regularization parameters based on initial conditions

In case the operators are independent of a parameter µ, we select the regularization parameter based on
rajectories generated with multiple initial conditions. For initial conditions x1

0, . . . , xMt
0 , and inputs U1, . . . , U Mt ,

he training trajectories are X1, . . . , X Mt . Define the minimum λmin and maximum λmax of the regularization
arameter and discretize the interval [λmin, λmax] ⊂ R with m points

λmin = λ1 < · · · < λm = λmax.

e split the training data into L different folds, with the data in each fold being

X f
l =

{
[X (l−1) fl+1 . . . X l fl ], for l = 1, . . . , L − 1
[X (l−1) fl+1 . . . X Mt ], for l = L

(30)

ith the rounded value fl =

⌊
Mt
L

⌉
. For fold l, define the validation data as

X̄ f
l =

⎧⎪⎨⎪⎩
[X fl+1 . . . X Mt ], for l = 1
[X1 . . . X (l−1) fl X l fl+1 . . . X Mt ], for l = 2, . . . , L − 1

[X1 . . . X (l−1) fl ], for l = L .

12
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Algorithm 1: Operator inference with physics-informed regularizer and structure preservation
Input: basis V , inputs U1(µ j ), . . . , U Mt (µ j ) and trajectories X1(µ j ), . . . , X Mt (µ j ) for j = 1, . . . , M
Output: inferred operators Â(µ j ), B̂(µ j ), F̂(µ j ), Ĝ(µ j ) for j = 1, . . . , M

1 for i = 1, . . . , m do
2 for j = 1, . . . , M do
3 Infer operators Â

(i)
(µ j ), B̂

(i)
(µ j ), F̂

(i)
(µ j ), Ĝ

(i)
(µ j ) with either PIR-OpInf (22) or SPIR-OpInf (25)

and regularization parameter λi defined in (26) and training parameter µ j

4 Compute validation error (28) for i = 1, . . . , m and j = 2, . . . , M − 1
5 Pick λ∗

= λi∗ with index i∗ as in (29) that minimizes validation error

6 Set Â(µ j ) = Â
(i∗)

(µ j ), B̂(µ j ) = B̂
(i∗)

(µ j ), F̂(µ j ) = F̂
(i∗)

(µ j ), Ĝ(µ j ) = Ĝ
(i∗)

(µ j ) for j = 1, . . . , M
7 return Â(µ1), . . . , Â(µM ), B̂(µ1), . . . , B̂(µM ), F̂(µ1), . . . , F̂(µM ), Ĝ(µ1), . . . , Ĝ(µM )

For each λi , we learn the model Σ̂il with PIR-OpInf (22), using the data X̄ f
l , with i = 1, . . . , m and l = 1, . . . , L .

he learned model Σ̂il is integrated in time with input trajectories and initial conditions corresponding to X f
l , to

btain trajectories X̂
f
l (λi ), and the error

eval
il =

∥V X̂
f
l (λi ) − X f

l ∥F

∥X f
l ∥F

(31)

is assigned to the pair of regularization parameter λi and fold l, where V is the basis matrix. We then pick λ∗ by
solving

arg min
i=1,...,m

1
L

L∑
l=1

eval
il . (32)

.4. Algorithm of operator inference with physics-informed regularizer and structure preservation

Algorithm 1 summarizes the computational procedure of the proposed approach. Inputs are the basis matrix V ,
hich is constructed from trajectories as described in Section 2.3, and the training trajectories X1(µi ), . . . , X Mt (µi )

nd inputs U1(µi ), . . . , U Mt (µi ) for the training parameter µi with i = 1, . . . , M . In the nested for loop, models are
enerated with either PIR-OpInf (22) or SPIR-OpInf (25) for all pairwise combinations of regularization parameters
efined in (26) and training parameters µ1, . . . , µM . Then, the validation error (28) is computed and the index i∗

f the regularization parameter λi∗ that minimizes the validation error is determined. The corresponding inferred
odels are returned.

. Numerical experiments

In this section, we compare operator inference with the proposed physics-informed regularizer (PIR-OpInf)
nd structure preservation (SPIR-OpInf) to Tikhonov regularization and operator inference without regularization.
ection 5.1 revisits the synthetic example from Section 2.5. Sections 5.2–5.5 show experiments with the Burgers’
quation, a reaction–diffusion problem in a pipe, phase separation described by an Allen–Cahn model, and a
itzHugh–Nagumo model. The proposed approach depends on a small, positive threshold ϵ > 0, e.g., for the
ost-processing in PIR-OpInf (cf. Section 3.4) and for the margin in SPIR-OpInf (25), which we set to ϵ = 10−10

in all of the following experiments.

5.1. Synthetic example

Consider again the synthetic example introduced in Section 2.5. We now apply PIR-OpInf with the parameter
selection procedure discussed in Section 4.2. For each dimension n ∈ {2, 4, 6, 8, 10}, we sweep over m = 51
13
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Fig. 2. Synthetic example: The model obtained with the proposed PIR-OpInf shows stable behavior, in contrast to OpInf without regularization,
and achieves a comparable test error as intrusive model reduction. The estimated stability radius (16) of the PIR-OpInf model is orders of
magnitude larger than the estimated stability radius of the OpInf model without regularization, which is in agreement with the aim of the
proposed regularizer to penalize models with low stability radii.

regularization parameters that are log-uniformly distributed in the interval [10−15, 105]. The selected regularization
parameters are λ∗

= 10−10, 1.58 × 10−7, 10−8, 3.98 × 10−9, 1.58 × 10−9 for dimensions n = 2, 4, 6, 8, 10,
respectively. We choose the test parameter set {µtest

1 , . . . , µtest
Mtest

} of Mtest = 7 test parameters that are equidistantly
chosen in D, where for each test parameter a test input trajectory is constructed with entries sampled uniformly in
[0, 10] and a test initial condition with entries sampled uniformly in [0, 1], cf. Section 2.5.

Fig. 2(a) shows the test error

etest =

Mtest∑
i=1

∥V X̄ test
(µtest

i ) − X test(µtest
i )∥F

∥X test(µtest
i )∥F

, (33)

here X̄ test
(µtest

i ) is the trajectory obtained at test parameter µtest
i with the corresponding test input trajectory and

est initial condition with either PIR-OpInf, OpInf without regularization, or intrusive model reduction. In contrast to
pInf without regularization, PIR-OpInf shows stable behavior and yields accurate predictions even for dimensions
> 6 in this example. Fig. 2(b) shows the stability radius ρ̂ defined in (16) for PIR-OpInf, OpInf without

egularization, and intrusive model reduction. To compute the bound (16) of the stability radius, we draw matrices
L with entries uniformly distributed in [0, 1] and repeat the calculation 100 times. We then show the median and
he 25% and 75% quantile in Fig. 2(b). The median of the stability radius of the model obtained with PIR-OpInf is
arger than the median of the stability radius of OpInf without regularization, which numerically demonstrates that
he proposed physics-informed regularizer indeed induces a stability bias.

.2. Burgers’ equation

We consider the parameterized Burgers’ equation

∂x
∂t

(ω, t; µ) = µ
∂2x
∂2ω

(ω, t; µ) − x(ω, t; µ)
∂x
∂ω

(ω, t; µ)

ith spatial coordinate ω ∈ (0, 1), time t ∈ [0, 1], and viscosity µ ∈ [10, 100]. Dirichlet boundary conditions
x(0, t; µ) = u(t), x(1, t; µ) = 0 are imposed, with input u : [0, 1] → R. The equation is discretized in space with
finite differences on an equidistant grid in [0, 1] with N = 128 grid points. Time is discretized with the explicit
Euler method with time-step size δt = 10−4.

5.2.1. Problem setup
For each of the M = 10 training parameters µ = {10, 20, 30, . . . , 100}, we derive a single input trajectory Ub

1(µ),

with entries uniformly sampled in [0, 2], and an initial condition x1(µ) = 0. Thus, Mb = 1. The corresponding

14



N. Sawant, B. Kramer and B. Peherstorfer Computer Methods in Applied Mechanics and Engineering 404 (2023) 115836

i

d
w
b
(
F
t
r
m
r

p

state trajectories are Xb
1(µ1), . . . , Xb

1(µM ). A basis matrix V ∈ RN×n is then constructed from the corresponding
snapshots as described in Section 2.3. Furthermore, we sample Mt = 10 training inputs U1(µ), . . . , U Mt (µ) for
each training parameter µ ∈ {10, . . . , 100}. To generate the initial conditions x1,0(µ), . . . , xMt ,0(µ) for each training
parameter µ ∈ {10, . . . , 100}, we sample n-dimensional random vectors r1(µ), . . . , rMt (µ) with independent entries
uniformly distributed in [0, 1] and set xi,0(µ) = Vri (µ) for i = 1, . . . , Mt . We apply parameter selection as in
Section 4.2 to find regularization parameters for each dimension n ∈ {2, . . . , 10}. Furthermore, we construct an
operator-inference model obtained without regularization and a reduced model with intrusive model reduction.

For comparison purposes, we also construct from the same training data an operator-inference model with the
regularization proposed in [58,59], which is Tikhonov regularization that regularizes the Frobenius norms of linear,
quadratic, and input operators together, rather than only the norm of the quadratic operator as in the proposed
PIR-OpInf. We refer to this approach as T-OpInf in the following. The same regularization parameter-selection
procedure is applied as for PIR-OpInf.

5.2.2. Results for PIR-OpInf
We test the models at Mtest = 7 test parameters that are equidistantly distributed in the parameter domain D.

For each test parameter µ ∈ {µtest
1 , . . . , µtest

Mtest
}, we generate M ′

test = 5 input trajectories U test
1 (µ), . . . , U test

M ′
test

(µ)
and the corresponding test state trajectories X test

1 (µ), . . . , X test
M ′

test
(µ). The test initial conditions are the same as the

training initial conditions, i.e, xtest
i,0 (µ) = xi,0(µ), for i = 1, . . . , M ′

test. The test error is then given by

etest =

Mtest∑
i=1

M ′
test∑

j=1

∥V X̄ test
j (µtest

i ) − X test
j (µtest

i )∥F

∥X test
j (µtest

i )∥F
, (34)

where the trajectories X̄ test
j (µtest

i ) for i = 1, . . . , Mtest and j = 1, . . . , M ′
test are obtained from either operator

nference without regularization, PIR-OpInf, T-OpInf, or intrusive model reduction.
Figs. 3(a), 3(c), and 3(e) show the test error (34) for test inputs with entries sampled uniform from the

omains [0, 2], [0, 3], and [0, 4], respectively. In all cases, PIR-OpInf shows stable behavior, whereas OpInf
ithout regularization leads to numerical instabilities. Even T-OpInf with Tikhonov regularization shows unstable
ehavior for many dimensions n. To separate the effect of the regularization from the effect of the post-processing
cf. Section 3.4), we apply the same post-processing as for PIR-OpInf to T-OpInf. The corresponding results in
igs. 3(b), 3(d), and 3(f) show that post-processing helps to stabilize T-OpInf as well; however, as the range of

he inputs increases, a similarly unstable behavior as in the case without post-processing is obtained. Thus, the
esults indicate that penalizing the quadratic term via the proposed regularizer is responsible for achieving stabler
odels, rather than the post processing or penalizing both the linear and the quadratic term together as in Tikhonov

egularization, which is in agreement with the theoretical motivation outlined in Section 3.1.
Consider now Fig. 4 that shows the validation error, i.e., the objective of (29), of the parameter-selection

rocedure versus the regularization parameter for dimension n = 8 for PIR-OpInf and T-OpInf. Independent of
whether post-processing is applied to T-OpInf (Fig. 4(b)) or not (Fig. 4(a)), the error of T-OpInf grows quickly as
the regularization parameter is increased. Thus, if a small regularization parameter is chosen, the validation error of
T-OpInf is small but it also means that no regularization is induced. If instead the regularization parameter is large,
then there might be a stability bias but at the same time it leads to a distinct increase of the model error. In contrast,
the curves corresponding to PIR-OpInf show that the validation error is small for moderately sized regularization
parameters, where a stability bias is induced without leading to a deterioration of the model accuracy.

Fig. 5(a) shows the estimated stability radius (16) for various models. The results indicate that PIR-OpInf achieves
a larger stability radius than the models obtained with T-OpInf and OpInf without regularization. At dimension
n = 2, the stability radius of PIR-OpInf is large because only large regularization parameters lead to stable behavior;
see Fig. 5(b). The regularization parameter is chosen so large that the norm of the quadratic term is close to zero,
which explains the high estimated stability radius.

5.2.3. Results for SPIR-OpInf
We now apply SPIR-OpInf to learn a symmetric and definite linear operator, which is in contrast to PIR-OpInf that

does not impose any structure on the linear operator; see Fig. 6(a). Fig. 7 shows the test error (34) corresponding to

SPIR-OpInf. Stable behavior is obtained in all cases; however, a leveling off of the error as the dimension increases
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Fig. 3. Burgers’ equation: The proposed PIR-OpInf leads to models that are stable for a large range of inputs, which is in contrast to OpInf
ithout regularization and OpInf with Tikhonov regularization (T-OpInf). The results also show that applying the same post-processing as

or PIR-OpInf (cf. Section 3.4) to T-OpInf has little effect on the stability of the learned models, which indicates that indeed the proposed
egularizer in PIR-OpInf is responsible for obtaining more stable models.

ndicates that restricting to symmetric operators in this example is limiting the accuracy. Operator inference,
ndependent of the used regularizer, is fitting operators to projected trajectories of the high-dimensional systems.
rojected trajectories are different from reduced trajectories that are generated with the corresponding reduced model
btained with intrusive model reduction; see [48]. The difference between the projected and reduced trajectories is
16
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Fig. 4. Burgers’ equation: The validation error (objective of (29)) of T-OpInf grows quickly with the regularization parameter, which means
hat the regularization has a negative effect on the model accuracy. In contrast, the validation error corresponding to the proposed PIR-OpInf
s less sensitive to the regularization parameter, which means that large regularization parameters can be chosen—imposing a stronger stability
ias—without deteriorating the model accuracy.

Fig. 5. Burgers’ equation: The models learned with the proposed PIR-OpInf have larger estimated stability radii than models obtained without
regularization and with Tikhonov regularization (T-OpInf). The stability radius for n = 2 is high for PIR-OpInf models because only large
regularization parameters λ∗

= 106 lead to stable behavior (see (b)), which forces the norm of the quadratic term to be close to zero and
hus increases the stability radius by a large amount. Notice that the PIR-OpInf model at n = 2 achieves a similar accuracy as intrusive

model reduction; cf. Fig. 3.

the closure error. This means that operator inference aims to find operators that well predict the projected trajectories,
and the best operators (in the sense of the objective of operator inference) do not necessarily have the same structure
as the intrusive operators. Thus, allowing operator inference to break structure can help in terms of accuracy, as can
be seen by comparing Fig. 3 with Fig. 7. Additional constraints such as symmetry that are imposed by SPIR-OpInf
on the linear operator mean that the optimization search space is smaller and thus SPIR-OpInf can lead to models
that have a larger error than having no structure as in PIR-OpInf. However, breaking structure also means that
predictions can become unphysical. Preventing such unphysical behavior is the motivation for structure preservation
with SPIR-OpInf.

The estimated stability radii of the SPIR-OpInf models are compared to the stability radii of T-OpInf models
in Fig. 8(a). For large dimensions n > 4, the estimated stability radii of the SPIR-OpInf models is larger than the
stability radii of the T-OpInf models. For small dimensions n ≤ 4, the stability radii of SPIR-OpInf and T-OpInf
models is large. This is reflected by the small regularization parameter selected by the proposed parameter selection

−7
procedure, which selects λ ≈ 3 × 10 for n = 2.
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Fig. 6. Structure such as symmetry in the matrix Â can be imposed via SPIR-OpInf.

Fig. 7. Burgers’ equation: Imposing symmetry and definiteness onto the linear operator with the proposed SPIR-OpInf (25) leads to stable
odels in this experiment; however, the additional constraints lead to a lower accuracy than PIR-OpInf that include the proposed regularizer

ut no constraints on the linear operator (cf. Fig. 3).

Fig. 8. Burgers’ equation: Models learned with SPIR-OpInf have a larger estimated stability radius than models learned with Tikhonov
regularization for dimensions n > 4 in this example. The stability radius of the SPIR-OpInf model is similar to the stability radius of the
T-OpInf model for n = 2 because a small regularization parameter is chosen as shown in plot (b).

5.3. Reaction–diffusion problem

Consider the parameterized reaction–diffusion equation

∂

∂t
x(ξ , t; µ) = ∆x(ξ , t; µ) + s(ξ )u(t) + g(x(ξ , t; µ)) , (35)

ith the spatial coordinate ξ = [ξ1 ξ2]T
∈ [0, 1]2. We impose homogeneous Neumann boundary conditions. The

arameter domain is D = [1, 1.5] and end time is T = 20. The source is s(ξ ) = 10−1 sin(2πξ ) sin(2πξ ). The
1 2
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Fig. 9. Reaction–diffusion problem: The PIR-OpInf model shows stable behavior in this experiment. In contrast to Tikhonov regularization
T-OpInf), the PIR-OpInf model achieves an accuracy close to intrusive model reduction even for larger n > 6 dimensions. The estimated

stability radius of the PIR-OpInf model is orders of magnitude higher than the stability radius of the T-OpInf model in this experiment.

nonlinear term is

g(x(ξ , t; µ)) = −(a sin(µ) + 2) exp(−µ2b)
(

1 + (µc)x +
(µc)2

2!
x2

)
hich is the second-order Taylor approximation of the source term used in [48], with a = 0.1, b = 2.7 and c = 1.8.
e discretize in space with a mesh width of h = 1/12 and finite difference and in time with explicit Euler with

ime-step size δt = 10−2. The dimension of the high-dimensional model is N = 144.
The training parameter set contains the M = 10 equidistant points in the parameter domain D. To construct the

educed space, we take a single Mb = 1 input trajectory for each training parameter, where the inputs are sampled
niformly in [0, 1]. The initial condition is zero. The corresponding trajectories Xb

1(µ1), . . . , Xb
1(µM ) are used to

onstruct a POD basis. For each of the M training parameters, we sample Mt = 10 input trajectories with entries
niformly in [0, 1]. The regularization parameters are selected via our selection procedure described in Section 4.2
y sweeping over the 51 logarithmically equidistant points in [10−10, 1010]. We test models for Mtest = 7 test
arameters that are equidistantly distributed in the parameter domain D. For every test parameter µtest

1 , . . . , µtest
Mtest

,
we generate a single input trajectory U test, whose entries are randomly selected via a uniform distribution in [0, 1],
and initial condition xtest

0 = 0. The test error is then

etest =

Mtest∑
i=1

∥V X̄ test
(µtest

i ) − X test(µtest
i )∥F

∥X test(µtest
i )∥F

, (36)

here X̄ test
(µtest

i ) is the predicted trajectory at parameter µtest
i by either the PIR-OpInf, T-OpInf, OpInf without

regularization, or intrusive model reduction.
Fig. 9(a) shows the test error (36). The results indicate that OpInf without any regularization becomes unstable

quickly. In contrast, T-OpInf and PIR-OpInf provide stable approximations. However, whereas the Tikhonov
regularization in T-OpInf leads to a loss of accuracy at higher dimensions, the proposed physics-informed regularizer
used by PIR-OpInf achieves errors that are comparable to intrusive model reduction. This is in agreement with the
estimated stability radius shown in Fig. 9(b), where PIR-OpInf achieves an orders of magnitude larger stability
radius at higher dimensions n than T-OpInf and OpInf without regularization. Similar results are obtained with
SPIR-OpInf, where symmetry and definiteness are imposed, as shown in Fig. 10; see also Fig. 6(b).

5.4. Phase separation described by Allen–Cahn equation

Consider the cubic nonlinear Allen–Cahn model that is used, for example, for describing phase transitions:

∂
x(ω, t) =

∂2

x(ω, t) − x(ω, t)3
+ u(t) , (37)
∂t ∂2ω
19
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Fig. 10. Reaction–diffusion problem: Constraining the linear inferred operator to be symmetric and definite with SPIR-OpInf leads to models
with comparable accuracy and stability radius as PIR-OpInf in this example.

with spatial coordinate ω ∈ (0, 1) and time t ∈ [0, 0.1]. The boundary conditions are

x(0, t) = u(t),
∂x
∂t

(1, t) = 0,

with input u(t) : [0, 1] → R. The equation is discretized in space with finite differences on an equidistant grid in
[0, 1] with N = 128 grid points. Time is discretized with the explicit Euler method with time-step size δt = 10−5.

To construct the basis of a reduced space, we take a single Mb = 1 input trajectory, where the inputs are
sampled uniformly in [0, 10]. The initial condition is zero. The corresponding trajectory Xb is used to construct
a POD basis. For training the model, we use Mt = 10 input trajectories, with entries uniformly sampled in [0,
10]. The regularization parameters are selected via our selection procedure described in Section 4.3 by sweeping
over the 51 logarithmically equidistant points in [10−10, 1010], where the validation data consists of the training
trajectories and the trajectory obtained with input Uval

= 10(sin(π t) + 1), t ∈ [0, 0.1]. We test models for the test
input trajectory U test

= 25(sin(π t) + 1), t ∈ [0, 0.1], which is motivated by the work [64]. The reduced model
is simulated for the test input and the generated state trajectory is compared against the corresponding full model
trajectory.

Fig. 11(a) shows the test error (36). The results indicate that OpInf without any regularization and T-OpInf are
unstable for most dimensions, whereas PIR-OpInf provides a stable solution for all dimensions. Our parameter
selection scheme for PIR-OpInf selects the regularization parameters λ∗

= 1012, 1.58 × 109, 1.58 × 1010, 3.98 ×

105, 3.98 × 106, 3.98 × 106, 2.51 × 105 for dimensions n = 2, 4, 6, 8, 10, 12, 14, respectively. The selected
regularization parameters show that a strong regularization is necessary in this example. At the same time, the
large values of the selected regularization parameter results in PIR-OpInf to have a higher test error compared to
the intrusive model. As seen in Fig. 11(b), PIR-OpInf achieves a larger stability radius at all dimensions n than
both T-OpInf and OpInf without regularization.

5.5. FitzHugh–Nagumo equation

Consider the FitzHugh–Nagumo equation with quadratic and cubic nonlinear terms:

ϵ
∂v

∂t
(ω, t) = ϵ2

∇
2v(ω, t) − v(ω, t)(v(ω, t) − R)(1 − v(ω, t)) − w(ω, t) + c,

∂w

∂t
(ω, t) = bv(ω, t) − γw(ω, t) + c

(38)

with spatial coordinate ω ∈ (0, 1), time t ∈ [0, 8]. The equation is discretized in space with finite differences on
an equidistant grid with N = 128 grid points for both v(ω, t) and w(ω, t). In time, we use as discretization the
emi-implicit Euler method with time-step size δt = 10−3. The parameter values for FitzHugh–Nagumo equation
re ϵ = 0.05, R = 1, c = 0.05, b = 5 and γ = 20. Parameter values are not varied when learning the model but
20
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Fig. 11. Allen–Cahn model: The PIR-OpInf model shows stable behavior in this experiment, whereas Tikhonov regularization is unstable
or all dimensions except 2. The estimated stability radius of the PIR-OpInf model is higher than the stability radius of the T-OpInf model.

ifferent initial conditions (see below) and different inputs are used that enter via the boundary conditions:

vω(0, t) = −i0t3 exp(−i1t), vω(1, t) = 0, t ≥ 0,

here i0 is uniformly sampled in [49500, 50500], and i1 is uniformly sampled in [14, 16], when generating data
rajectories for basis generation and training, while constant values i0 = 50 000, i1 = 15 is used for testing.

To construct the reduced space, we take Mb = 5 input trajectories, and zero initial condition. The corresponding
rajectory Xb is used to construct a POD basis. For training the model, we use Mt = 10 input trajectories, and initial
onditions with entries uniformly sampled in [−0.1, 0.1]. The regularization parameters are selected via our selection

procedure described in Section 4.3 by sweeping over the 51 logarithmically equidistant points in [10−10, 1010]. We
test models for the test input trajectory given above and zero initial condition, which is different from the training
initial conditions. The reduced model is simulated for the test input and the generated state trajectory is compared
against the corresponding full model trajectory. Fig. 12(a) shows the test error (36). The results indicate that OpInf
without any regularization is unstable for all dimensions >2. For PIR-OpInf, the solution is stable for all dimensions,
and the test error is close to the error of the intrusive model. T-OpInf is unstable for dimensions >4. Fig. 12(b) shows
that among all of the inferred models, PIR-OpInf gives the model with the largest stability radius. For dimensions 6
and 8, our parameter selection scheme selects regularization parameters λ∗

= 102 and λ∗
= 10 for PIR-OpInf and

λ∗
= 108 and λ∗

= 1.58×109 for T-OpInf. T-OpInf regularizes all parameters with a large regularization parameter,
which results in a model with a small ∥ Â∥F . As Eq. (15) computes the Lyapunov matrix P , a model with a small
∥ Â∥F , leads to a model with a large ∥P∥F . A large ∥P∥F results in a smaller ρ̂ (20), and consequently, a less
table model, which is in agreement with the numerical results shown in Fig. 12(b).

. Conclusions

Learning models from data is an ever more important task in science and engineering. It is increasingly
ecognized that physical insights need to be incorporated together with data to learn truly predictive models [1,2].
n this spirit, we proposed a regularizer that explicitly leverages the quadratic–cubic model form, which in turn is
mposed by the underlying physics, to penalize unstable models learned with operator inference. We also showed that
dditional physical insights in the form of structure of the linear dynamics can be imposed on the operator-inference
odels via constraints. In our experiments, operator inference with the proposed physics-informed regularizer and

tructure preservation outperforms operator inference without regularization and operator inference with Tikhonov
egularization in terms of stability and accuracy. Thus, our results provide evidence of the importance of combining
hysical insights and data for deriving predictive models in science and engineering. There are many avenues for
uture research. We highlight one immediate research direction, which is combining the physics-informed regularizer
roposed in this work with lifting maps that lift cubic, high-order polynomial, and more generally nonlinear systems
nto quadratic systems, see [7,64,78]. There typically are multiple lifting maps and we expect that the stability
roperties depend on the specific map that is used. It thus would be interesting to determine which maps are
avorable over other maps in terms of stability.
21
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Fig. 12. FitzHugh–Nagumo: PIR-OpInf learns stable models, while OpInf without regularization gives unstable models for dimensions >2,
and T-OpInf is unstable for dimensions >4. Of all the inferred models, PIR-OpInf learns the reduced model with the largest estimated
stability radius (ρ̂), and for dimensions 6 and 8, ρ̂ for PIR-OpInf is considerably larger compared to the models learned via T-OpInf.
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[30] I. Mezić, Spectral properties of dynamical systems, model reduction and decompositions, Nonlinear Dynam. 41 (1–3) (2005) 309–325.
[31] M.O. Williams, I.G. Kevrekidis, C.W. Rowley, A data–driven approximation of the Koopman operator: Extending dynamic mode

decomposition, J. Nonlinear Sci. 25 (6) (2015) 1307–1346.
[32] S.L. Brunton, B.W. Brunton, J.L. Proctor, J.N. Kutz, Koopman invariant subspaces and finite linear representations of nonlinear

dynamical systems for control, PLoS One 11 (2) (2016) e0150171.
[33] H. Schaeffer, R. Caflisch, C.D. Hauck, S. Osher, Sparse dynamics for partial differential equations, Proc. Natl. Acad. Sci. 110 (17)

(2013) 6634–6639.
[34] H. Schaeffer, Learning partial differential equations via data discovery and sparse optimization, Proc. R. Soc. A 473 (2197) (2017)

20160446.
[35] G. Tran, R. Ward, Exact recovery of chaotic systems from highly corrupted data, Multiscale Model. Simul. 15 (3) (2017) 1108–1129.
[36] A.A. Kaptanoglu, J.L. Callaham, A. Aravkin, C.J. Hansen, S.L. Brunton, Promoting global stability in data-driven models of quadratic

nonlinear dynamics, Phys. Rev. Fluids 6 (2021) 094401.
[37] S.L. Brunton, J.N. Kutz, Data-Driven Science and Engineering. Machine Learning, Dynamical Systems, and Control, Cambridge

University Press, 2022.
[38] N.B. Erichson, M. Muehlebach, M. Mahoney, Physics-informed autoencoders for Lyapunov-stable fluid flow prediction, in: Machine

Learning and the Physical Sciences Workshop, Conference on Neural Information Processing Systems, 2019, pp. 1–14.
[39] R.E. Morrison, T.A. Oliver, R.D. Moser, Representing model inadequacy: A stochastic operator approach, SIAM/ASA J. Uncertain.

Quantif. 6 (2) (2018) 457–496.
[40] B.D. Tracey, K. Duraisamy, J.J. Alonso, A machine learning strategy to assist turbulence model development, in: 53rd AIAA Aerospace

Sciences Meeting, AIAA, 2015, pp. 1–15.
[41] R. Maulik, O. San, A neural network approach for the blind deconvolution of turbulent flows, J. Fluid Mech. 831 (2017) 151–181.
[42] R. Maulik, O. San, A. Rasheed, P. Vedula, Subgrid modelling for two-dimensional turbulence using neural networks, J. Fluid Mech.

858 (2019) 122–144.
[43] M. Benosman, J. Borggaard, O. San, B. Kramer, Learning-based robust stabilization for reduced-order models of 2d and 3d Boussinesq

equations, Appl. Math. Model. 49 (2017) 162–181.
[44] X. Xie, M. Mohebujjaman, L.G. Rebholz, T. Iliescu, Data-driven filtered reduced order modeling of fluid flows, SIAM J. Sci. Comput.
40 (3) (2018) B834–B857.

23

http://refhub.elsevier.com/S0045-7825(22)00792-7/sb12
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb12
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb12
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb13
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb13
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb13
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb14
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb15
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb16
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb16
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb16
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb17
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb17
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb17
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb18
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb18
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb18
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb19
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb20
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb20
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb20
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb21
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb21
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb21
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb22
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb22
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb22
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb23
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb23
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb23
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb23
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb23
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb24
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb24
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb24
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb24
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb24
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb25
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb25
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb25
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb25
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb25
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb25
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb25
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb26
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb27
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb27
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb27
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb28
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb28
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb28
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb29
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb29
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb29
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb30
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb31
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb31
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb31
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb32
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb32
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb32
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb33
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb33
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb33
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb34
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb34
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb34
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb35
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb36
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb36
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb36
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb37
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb37
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb37
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb38
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb38
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb38
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb39
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb39
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb39
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb40
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb40
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb40
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb41
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb42
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb42
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb42
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb43
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb43
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb43
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb44
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb44
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb44


N. Sawant, B. Kramer and B. Peherstorfer Computer Methods in Applied Mechanics and Engineering 404 (2023) 115836
[45] S. Pan, K. Duraisamy, Data-driven discovery of closure models, SIAM J. Appl. Dyn. Syst. 17 (4) (2018) 2381–2413.
[46] M. Benosman, J. Borggaard, B. Kramer, Robust POD model stabilization for the 3d Boussinesq equations based on Lyapunov theory

and extremum seeking, in: American Control Conference, ACC, IEEE, 2017, pp. 1827–1832.
[47] B. Peherstorfer, K. Willcox, Data-driven operator inference for nonintrusive projection-based model reduction, Comput. Methods Appl.

Mech. Engrg. 306 (2016) 196–215.
[48] B. Peherstorfer, Sampling low-dimensional Markovian dynamics for pre-asymptotically recovering reduced models from data with

operator inference, SIAM J. Sci. Comput. 42 (2020) A3489–A3515.
[49] W.I.T. Uy, B. Peherstorfer, Probabilistic error estimation for non-intrusive reduced models learned from data of systems governed by

linear parabolic partial differential equations, ESAIM: M2AN 55 (3) (2021) 735–761.
[50] W.I.T. Uy, B. Peherstorfer, Operator inference of non-Markovian terms for learning reduced models from partially observed state

trajectories, J. Sci. Comput. 88 (3) (2021) 91.
[51] E. Qian, B. Kramer, A. Marques, K. Willcox, Transform & learn: A data-driven approach to nonlinear model reduction, in: AIAA

Aviation 2019 Forum, AIAA, 2019, pp. 1–11.
[52] P. Benner, P. Goyal, B. Kramer, B. Peherstorfer, K. Willcox, Operator inference for non-intrusive model reduction of systems with

non-polynomial nonlinear terms, Comput. Methods Appl. Mech. Engrg. 372 (2020) 113433.
[53] P. Khodabakhshi, K.E. Willcox, Non-intrusive data-driven model reduction for differential–algebraic equations derived from lifting

transformations, Comput. Methods Appl. Mech. Engrg. 389 (2022) 114296.
[54] H. Sharma, Z. Wang, B. Kramer, Hamiltonian operator inference: Physics-preserving learning of reduced-order models for Hamiltonian

systems, Physica D 431 (2022) 133122.
[55] W.I.T. Uy, Y. Wang, Y. Wen, B. Peherstorfer, Active operator inference for learning low-dimensional dynamical-system models from

noisy data, arXiv:2107.09256.
[56] H. Sharma, B. Kramer, Preserving Lagrangian structure in data-driven reduced-order modeling of large-scale mechanical systems, arXiv

preprint arXiv:2203.06361.
[57] P. Benner, P. Goyal, J. Heiland, I.P. Duff, Operator inference and physics-informed learning of low-dimensional models for

incompressible flows, Electron. Trans. Numer. Anal. 56 (2022) 28–51.
[58] R. Swischuk, B. Kramer, C. Huang, K. Willcox, Learning physics-based reduced-order models for a single-injector combustion process,

AIAA J. 58 (6) (2020) 2658–2672.
[59] S.A. McQuarrie, C. Huang, K. Willcox, Data-driven reduced-order models via regularised operator inference for a single-injector

combustion process, J. R. Soc. N. Z. 51 (2) (2021) 194–211.
[60] E. Qian, A Scientific Machine Learning Approach To Learning Reduced Models for Nonlinear Partial Differential Equations (Ph.D.

thesis), Massachusetts Institute of Technology, 2021.
[61] A. Tesi, F. Villoresi, R. Genesio, On stability domain estimation via a quadratic Lyapunov function: convexity and optimality properties

for polynomial systems, in: Proceedings of 1994 33rd IEEE Conference on Decision and Control, Vol. 2, 1994, pp. 1907–1912.
[62] G. Chesi, Estimating the domain of attraction via union of continuous families of Lyapunov estimates, Systems Control Lett. 56 (4)

(2007) 326–333.
[63] B. Kramer, Stability domains for quadratic-bilinear reduced-order models, SIAM J. Appl. Dyn. Syst. 20 (2) (2021) 981–996.
[64] P. Benner, T. Breiten, Two-sided projection methods for nonlinear model order reduction, SIAM J. Sci. Comput. 37 (2) (2015)

B239–B260.
[65] R. Genesio, A. Tesi, Stability analysis of quadratic systems, IFAC Proc. Vol. 22 (3) (1989) 195–199.
[66] A.C. Antoulas, Approximation of Large-Scale Dynamical Systems, SIAM, 2005.
[67] G. Rozza, D.B.P. Huynh, A.T. Patera, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic

coercive partial differential equations, Arch. Comput. Methods Eng. 15 (3) (2007) 1.
[68] A.C. Antoulas, C.A. Beattie, S. Gugercin, Interpolatory model reduction of large-scale dynamical systems, in: Efficient Modeling and

Control of Large-Scale Systems, Springer, 2010, pp. 3–58.
[69] P. Benner, S. Gugercin, K. Willcox, A survey of projection-based model reduction methods for parametric dynamical systems, SIAM

Rev. 57 (4) (2015) 483–531.
[70] Z. Lin, Riemannian geometry of symmetric positive definite matrices via Cholesky decomposition, SIAM J. Matrix Anal. Appl. 40 (4)

(2019) 1353–1370.
[71] N.J. Higham, Computing a nearest symmetric positive semidefinite matrix, Linear Algebra Appl. 103 (1988) 103–118.
[72] I. Kalashnikova, B. van Bloemen Waanders, S. Arunajatesan, M. Barone, Stabilization of projection-based reduced order models

for linear time-invariant systems via optimization-based eigenvalue reassignment, Comput. Methods Appl. Mech. Engrg. 272 (2014)
251–270.

[73] I.V. Gosea, A.C. Antoulas, Stability preserving post-processing methods applied in the Loewner framework, in: 2016 IEEE 20th
Workshop on Signal and Power Integrity, SPI, 2016, pp. 1–4.

[74] M. Köhler, On the closest stable descriptor system in the respective spaces RH2 and RH∞, Linear Algebra Appl. 443 (2014) 34–49.
[75] S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge Press, 2009.
[76] J. Degroote, J. Vierendeels, K. Willcox, Interpolation among reduced-order matrices to obtain parameterized models for design,

optimization and probabilistic analysis, Internat. J. Numer. Methods Fluids 63 (2) (2010) 207–230.
[77] D. Amsallem, C. Farhat, Interpolation method for adapting reduced-order models and application to aeroelasticity, AIAA J. 46 (7)

(2008) 1803–1813.
[78] C. Gu, Qlmor: A projection-based nonlinear model order reduction approach using quadratic-linear representation of nonlinear systems,

IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 30 (9) (2011) 1307–1320.
24

http://refhub.elsevier.com/S0045-7825(22)00792-7/sb45
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb46
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb46
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb46
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb47
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb47
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb47
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb48
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb48
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb48
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb49
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb49
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb49
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb50
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb50
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb50
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb51
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb51
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb51
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb52
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb52
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb52
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb53
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb53
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb53
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb54
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb54
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb54
http://arxiv.org/abs/2107.09256
http://arxiv.org/abs/2107.09256
http://arxiv.org/abs/2107.09256
http://arxiv.org/abs/2107.09256
http://arxiv.org/abs/2107.09256
http://arxiv.org/abs/2107.09256
http://arxiv.org/abs/2107.09256
http://arxiv.org/abs/2107.09256
http://arxiv.org/abs/2107.09256
http://arxiv.org/abs/2107.09256
http://arxiv.org/abs/2107.09256
http://arxiv.org/abs/2107.09256
http://arxiv.org/abs/2107.09256
http://arxiv.org/abs/2107.09256
http://arxiv.org/abs/2107.09256
http://arxiv.org/abs/2107.09256
http://arxiv.org/abs/2203.06361
http://arxiv.org/abs/2203.06361
http://arxiv.org/abs/2203.06361
http://arxiv.org/abs/2203.06361
http://arxiv.org/abs/2203.06361
http://arxiv.org/abs/2203.06361
http://arxiv.org/abs/2203.06361
http://arxiv.org/abs/2203.06361
http://arxiv.org/abs/2203.06361
http://arxiv.org/abs/2203.06361
http://arxiv.org/abs/2203.06361
http://arxiv.org/abs/2203.06361
http://arxiv.org/abs/2203.06361
http://arxiv.org/abs/2203.06361
http://arxiv.org/abs/2203.06361
http://arxiv.org/abs/2203.06361
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb57
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb57
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb57
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb58
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb58
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb58
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb59
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb59
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb59
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb60
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb60
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb60
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb61
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb61
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb61
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb62
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb62
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb62
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb63
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb64
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb64
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb64
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb65
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb66
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb67
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb67
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb67
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb68
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb68
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb68
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb69
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb69
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb69
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb70
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb70
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb70
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb71
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb72
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb72
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb72
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb72
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb72
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb73
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb73
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb73
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb74
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb75
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb76
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb76
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb76
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb77
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb77
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb77
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb78
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb78
http://refhub.elsevier.com/S0045-7825(22)00792-7/sb78

	Physics-informed regularization and structure preservation for learning stable reduced models from data with operator inference
	Introduction
	Non-intrusive model reduction with operator inference
	Dynamical system with high-dimensional states
	Collecting data
	Classical, intrusive model reduction
	Learning low-dimensional models from data with operator inference
	Motivating numerical example: Stability of inferred models

	A physics-informed regularizer for operator inference
	Stability radius of quadratic models of dynamical systems
	Stability domain of quadratic models
	Estimating stability radius

	Stability radius of cubic models of dynamical systems
	Stability radius of quadratic–cubic models of dynamical systems
	Operator inference with physics-informed regularizer
	Physics-informed regularizer for quadratic models
	Physics-informed regularizer for cubic models
	Physics-informed regularizer for quadratic–cubic models

	Operator inference with structure preservation

	Computational procedure of physics-informed operator inference
	Interpolation of structure-preserving operator-inference models
	A regularization parameter-selection scheme for PIR-OpInf and SPIR-OpInf
	Selecting regularization parameters based on initial conditions
	Algorithm of operator inference with physics-informed regularizer and structure preservation

	Numerical experiments
	Synthetic example
	Burgers' equation
	Problem setup
	Results for PIR-OpInf
	Results for SPIR-OpInf

	Reaction–diffusion problem
	Phase separation described by Allen–Cahn equation
	FitzHugh–Nagumo equation

	Conclusions
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References


