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This paper develops a multifidelity method that enables estimation of failure proba-
bilities for expensive-to-evaluate models via information fusion and importance sam-
pling. The presented general fusion method combines multiple probability estima-
tors with the goal of variance reduction. We use low-fidelity models to derive biasing
densities for importance sampling and then fuse the importance sampling estima-
tors such that the fused multifidelity estimator is unbiased and has mean-squared
error lower than or equal to that of any of the importance sampling estimators
alone. By fusing all available estimators, the method circumvents the challenging
problem of selecting the best biasing density and using only that density for sam-
pling. A rigorous analysis shows that the fused estimator is optimal in the sense
that it has minimal variance amongst all possible combinations of the estimators.
The asymptotic behavior of the proposed method is demonstrated on a convection-
diffusion-reaction partial differential equation model for which 105 samples can be
afforded. To illustrate the proposed method at scale, we consider a model of a free
plane jet and quantify how uncertainties at the flow inlet propagate to a quantity of
interest related to turbulent mixing. Compared to an importance sampling estima-
tor that uses the high-fidelity model alone, our multifidelity estimator reduces the
required CPU time by 65% while achieving a similar coefficient of variation.
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1 Introduction

This paper considers multifidelity estimation of failure probabilities for large-scale ap-
plications with expensive-to-evaluate models. Failure probabilities are required in, e.g.,
reliable engineering design and risk analysis. Yet failure probability estimation with
expensive-to-evaluate nonlinear models is computationally challenging due to the large
number of Monte Carlo samples needed for low-variance estimates.

Efficient failure probability estimation methods aim to reduce the number of samples
at which the expensive model is evaluated, e.g., by exploiting variance-reducing sam-
pling strategies, multifidelity/multilevel estimation methods, or sequential sampling ap-
proaches. Variance reduction can be obtained through importance sampling [33], which
allows for order-of-magnitude reductions in the number of samples needed to reliably
estimate a small probability. However, importance sampling relies on having a good bi-
asing distribution which in turn requires insight into the system. Surrogate models can
provide such insight at much lower computational cost. Multifidelity approaches (see
[38] for a review) that use surrogates for failure probability estimation via sampling have
seen great interest recently [26, 8, 27, 13, 42, 35, 14], but require that the user selects a
good importance sampling density. Multifidelity methods that avoid the selection of a
single biasing density and instead use a suite of surrogate models to generate importance
sampling densities were proposed in [36, 37, 32]. Nevertheless, this framework requires
all knowledge about the small probability event to be available in the form of biasing
densities, and is therefore only applicable to importance sampling estimators. Multilevel
Monte Carlo [15, 2] methods use a hierarchy of approximations to the high-fidelity model
in the sampling scheme. However, those model hierarchies have to satisfy certain error
decay criteria, an assumption we do not make here. Subset simulation [3, 34] and line
search [40, 11] can be used directly on the high-fidelity models, and therefore are of a
black-box nature.

In this work, in addition to the computationally expensive model, we also have in-
formation about the system in form of surrogate models, analytical models, expert elic-
itation, and reduced models. In other settings where such a variety of information is
available, information fusion has been used to combine multi-source probabilistic infor-
mation into a single estimator, see [9, 31, 28]. Moreover, combining information from
multiple models and sources via a weighted multifidelity method can lead to efficient
data assimilation strategies [30].

Here, we propose a new approach to enable small probability estimation for large-scale,
computationally expensive models that draws from prior work in information fusion, im-
portance sampling, and multifidelity modeling. We use information fusion in combina-
tion with multifidelity importance-sampling-based failure probability estimators, where
in addition to the variance reduction from importance sampling, we obtain further vari-
ance reduction through information fusion. The proposed multifidelity framework uses
the available surrogates to compute multiple unbiased failure probability estimators. We
then combine them optimally into a new unbiased estimator that has minimal variance
amongst all possible linear combinations of those estimators. The method therefore
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avoids the selection of the lowest variance biasing density to be used for sampling. Se-
lecting the density that leads to the lowest variance in the failure probability estimator
would require additional information, and not even error estimates on the surrogate
model would suffice. Thus, we circumvent this step and optimally use all information
available to us in form of probability estimators.

This paper is structured as follows: In Section 2 we illustrate the challenges in small
failure probability computation and cover the necessary background material for mul-
tifidelity importance sampling used herein. Section 3 details our proposed approach of
information fusion, importance sampling and multifidelity modeling. We then present
in Section 4 a moderately expensive convection-diffusion-reaction test case, where we
illustrate the asymptotic behavior of our approach. Section 5 discusses a turbulent jet
model and demonstrates the computational efficiency of our proposed methods for this
computationally expensive model. We close with conclusions in Section 6.

2 Small probability events and importance sampling estimators

We are interested in computing events with small probabilities, e.g., failure events, where
the system fails to meet critical constraints. Section 2.1 describes small probability
events, Section 2.2 introduces importance sampling and Section 2.3 briefly summarizes
multifidelity importance sampling.

2.1 Small probability events

Let Ω be a sample space which, together with a sigma algebra and probability measure,
defines a probability space. Define a d-dimensional random variable Z : Ω 7→ D ⊆ Rd
with probability density p, and let z be a realization of Z. Let f : D ⊆ Rd 7→ Rd′ be an
expensive-to-evaluate model of high fidelity with corresponding d′-dimensional quantity
of interest f(z) ∈ Rd′ . Let g : Rd′ 7→ R denote a limit state function that defines failure
of the system. If g(f(z)) < 0, then z ∈ D is a configuration where the system fails. This
defines a failure set

G := {z ∈ D | g(f(z)) < 0}.
Define the indicator function IG : D 7→ {0, 1} via

IG(z) =

{
1 , z ∈ G ,
0 , otherwise .

The standard Monte Carlo estimator of the failure probability

P = Ep[IG [Z]] =

∫
D
IG(z)p(z)dz

uses n realizations z1, . . . , zn of the random variable Z and estimates

Pn =
1

n

n∑
i=1

IG(zi). (1)
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In the special case of small probabilities, standard Monte Carlo may be unfeasible due
to the large number of samples needed to obtain good estimators. Since failure prob-
abilities are generally small, most realizations zi will be outside the failure domain G,
and conversely, only a small fraction of the n samples lies in the failure region. The
coefficient of variation (also called relative root-mean-squared error) of the estimator Pn
is given by

eCV(Pn) =

√
V[Pn]

(E[Pn])2
=

√
P (1− P )

nP 2
=

√
1− P
nP

. (2)

Thus, to obtain estimators with a small coefficient of variation, a large number of samples
is necessary. For instance, if the small probability is P = 10−4 and if we want eCV = 10−1

we would need n = O(106) samples via standard Monte Carlo approaches. This challenge
is amplified by the presence of an expensive-to-evaluate model, such as the model of a
free plane jet in Section 5.

2.2 Importance sampling

Importance sampling achieves variance reduction by using realizations of a random vari-
able Z ′ : Ω 7→ D with probability density q. This random variable Z ′ is chosen such
that its probability density function q has higher mass (compared to the nominal den-
sity p) in the region of the event of interest. For a general introduction to importance
sampling, see [33, Sec.9]. Define the support supp(p) = {z ∈ D | p(z) > 0}, and let
supp(p) ⊆ supp(q). Then

P =

∫
D
IG(z)p(z)dz =

∫
D
IG(z)

p(z)

q(z)
q(z)dz (3)

is well defined, where p(z)/q(z) is the likelihood ratio—in the context of importance
sampling also called importance weight. The importance-sampling estimate of the failure
probability P then draws n realizations z′1, . . . , z

′
n of the random variable Z ′ with density

q and evaluates

P IS
n =

1

n

n∑
i=1

IG(z′i)
p(z′i)

q(z′i)
. (4)

The variance of the importance sampling estimator is

V[P IS
n ] =

σ2
q

n
, (5)

where

σ2
q =

∫
D

(
IG(z′)p(z′)

q(z′)
− P

)2

q(z′)dz′. (6)

If supp(p) ⊆ supp(q), and by using (3), one can show that the importance sampling
estimator P IS

n is an unbiased estimator of the failure probability, i.e.,

Eq[P IS
n ] = Ep[IG(Z)] = P.
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The importance sampling estimator P IS
n has mean P and variance σ2

q/n, and by the cen-
tral limit theorem converges in distribution to the normal random variable N (P, σ2

q/n).
Constructing a good biasing density that leads to small σ2

q is challenging [33]. We next
introduce low-fidelity surrogate models, which are then used to construct biasing densi-
ties.

2.3 Multifidelity Importance Sampling (MFIS)

Recall that by f : D 7→ Rd′ we denote an expensive-to-evaluate model of high fidelity
with corresponding quantity of interest f(z) ∈ Rd′ . Let k surrogates

f (i) : D 7→ Rd
′
, i = 1, . . . , k

of lower fidelities be available, which are cheaper to evaluate than the high-fidelity model
f(·). We do not assume any information about the accuracy of the f (i)(·) with respect
to the high-fidelity model f(·). Sections 4.2 and 5.4 detail the specific surrogate models
used for the respective applications.

We use the MFIS method (see [35] for details) to obtain k estimators of the failure
probability. First, MFIS evaluates the surrogate models f (i) at mi samples to obtain a
surrogate-model specific failure set G(i). Second, MFIS computes a biasing density qi
by fitting a distribution in form of a Gaussian mixture model to the parameters in the
failure set. If no failed samples are found by the surrogate model, i.e., if G(i) = ∅, then
we set the biasing density to be the nominal density. This leads to k biasing densities
q1, . . . , qk from which we get importance sampling estimators

P IS
ni =

1

ni

ni∑
j=1

IG(zi,j)
p(zi,j)

qi(zi,j)
, zi,j ∼ qi, j = 1, . . . , ni, (7)

for i = 1, . . . , k. The variance of the importance sampling estimator is given by (5) with
n = ni and σq = σqi , with σ2

qi being the asymptotic variance from (6) with q = qi.

3 Fusion of multifidelity estimators

In many practical situations, a range of probability estimators are available, for instance
in form of MFIS estimators derived from different biasing densities, in form of analytical
models, or estimators derived from expert elicitation [31]. If one a priori knew which
was the lowest variance estimator then a good strategy would be to sample only from
that estimator. However, knowing a priori which estimator has the lowest variance
is a formidable task, and one has to draw samples to assess which estimator has the
lowest variance. In this section, we present our new approach that combines all available
estimators in an optimal fashion by solving the following problem.
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Problem 1. Given k unbiased estimators, P1, . . . , Pk with expected value P , i.e. E[Pi] =
P, i = 1, . . . , k, find an estimator with expected value P of the form

Pα =

k∑
i=1

αiPi, (8)

such that it attains minimal variance amongst all estimators of the form (8). That is,
find the optimal weights αi ∈ R, i = 1, . . . , k such that

min
α

V[Pα] s.t. E[Pα] = P. (9)

The fused estimator approach allows to still use information coming from the other (high-
variance) estimators, whose samples would have otherwise gone to waste. Moreover,
with the proposed method we can estimate small-probabilities for expensive-to-evaluate
models by exploiting a variety of surrogates. We derive expressions for the mean and
variance of the fused estimator in Section 3.1. In Section 3.2, we derive the optimal
weights for the fused estimator. Section 3.3 then discusses the special case of uncorrelated
estimators. Our proposed algorithm is discussed in Section 3.4, followed by a brief
Section 3.5 that discusses measures of convergence of the estimators.

3.1 Mean and variance of fused estimator

We start with the observation that if the weights αi of the fused estimator Pα sum to
one, then the fused estimator is unbiased:

k∑
i=1

αi = 1 ⇔ E[Pα] =

k∑
i=1

αiE[Pi] = P

k∑
i=1

αi = P.

Let the estimators Pi have corresponding variances 0 < σ2
i < ∞, i = 1, . . . k. To

compute the variance of the fused estimator Pα we have to consider covariances between
the individual estimators. Define the Pearson product-moment correlation coefficient as

ρi,j =
Cov(Pi, Pj)

σiσj
, (10)

where Cov(Pi, Pj) = E[(Pi − E[Pi])(Pj − E[Pj ])] = E[PiPj ] − P 2. We also define the
symmetric, positive semi-definite covariance matrix Σij = Cov(Pi, Pj) as:

Σ =


σ2

1 σ1σ2ρ1,2 . . . . . . σ1σkρ1,k

σ2σ1ρ2,1 σ2
2 σ2σ3ρ2,3 . . . σ2σkρ2,k

...
. . .

... σ2
k−1 σk−1σkρk−1,k

σkσ1ρk,1 σkσ2ρk,2 . . . σkσk−1ρk,k−1 σ2
k

 . (11)
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It is worth noticing that if the estimators P1, . . . , Pk are independent, then Σ is diagonal.
The variance of the fused estimator from (8) is

V[Pα] = V

[
k∑
i=1

αiPi

]
=

k∑
i=1

α2
iV[Pi] + 2Cov

 k∑
i=1

αiPi,

k∑
j=1

αjPj


=

k∑
i=1

α2
i σ

2
i + 2

k∑
i=1

k∑
j>i

αiαjσiσjρi,j ,

which can be written in vector form as

V[Pα] = αTΣα. (12)

In the following section, we provide an explicit formula to find the optimal weights α
for the general case of (possibly)-correlated estimators P1, . . . , Pk; while in Section 3.3
we discuss the case of independent estimators, such as those constructed with the MFIS
method.

3.2 Optimizing the weights for minimum-variance estimate

Problem (9) seeks the optimal α such that the variance in (12) is minimized and Pα

remains unbiased. In this section, we show that such weights exist, are unique, and
present a closed-form solution, provided that the covariance matrix Σ is invertible. This
is summarized in the following result.

Proposition 1. Let P = [P1, . . . , Pk]
T be the vector of probability estimators and assume

that Σ is not singular. Define 1k = [1, . . . , 1]T as a column-vector of length k. The
optimization problem (9) has the unique solution

α =
Σ−11k

1TkΣ−1 1k
.

That is, the minimal variance unbiased estimator Pα is such that

Pα =
1TkΣ−1 P

1TkΣ−1 1k
, V[Pα] =

1

1TkΣ−1 1k
.

Proof. We have seen above that
∑k

i=1 αi = 1 if and only if E[Pα] = P . Define the cost
function J(α) := V[Pα] = αTΣα by using equation (12). Therefore, the optimization
problem (9) can be written as the quadratic program

min
α
J(α) = αTΣα, s.t. αT1 = 1. (13)

Letting L(α, λ) := αTΣα+ λ(αT1− 1) denote the Lagrangian cost function associated
to (13), the optimality conditions are ∇αL(α, λ) = 0 and dL

dλ (α, λ) = 0. This optimality
system is written as [

Σ 1k
1Tk 0

] [
α
λ

]
=

[
0k
1

]
. (14)
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For invertible Σ, the unique weights to this quadratic program are then obtained by

α =
Σ−11

1TkΣ−1 1k
, (15)

and the expression for the variance follows by inserting these weights into (13). The
estimator is obtained by inserting the weights into (8).

The weights can be expressed explicitly in terms of the components of the covariance
matrix as

αi =
1

σ2
i

 1∑k
l=1

1
σ2
l

1 +
k∑
l=1

1

σ2
l

k∑
j>l

αjσlσjρl,j

− k∑
j>i

αjσiσjρi,j

 . (16)

Note, that the weights are inversely proportional to the variance of the individual esti-
mators and the weight αi depends on the covariance between the estimators Pi and Pj .
Also, note that if Pi are correlated some weights may be negative, while for a diagonal
Σ all weights αi are strictly positive. In the next section, we have a closer look at the
uncorrelated case.

3.3 The special case of uncorrelated estimators

In the situation where all estimators are uncorrelated, we recover the classical result of
the inverse variance-weighted mean [29]. As a corollary from Proposition 1 we get the
following result.

Corollary 1. Consider the setting from Proposition 1, and let Σ = diag(σ2
1, . . . , σ

2
k) be

diagonal. Then the unique solution to the optimization problem (9) is given by

αi =
1

σ2
i

∑k
i=1

1
σ2
i

, V[Pα] =
1∑k
i=1

1
σ2
i

. (17)

A few observations about this special case are in order:

1. The optimal coefficients αi of the combined estimator Pα are inversely proportional
to the asymptotic variance σi of the corresponding estimator Pi. To reduce the
variance via a weighted combination of estimators, smaller weights are assigned to
estimators with larger variance.

2. If one variance is small compared to all other ones, say σ2
1 � σ2

i , i = 2, . . . , k,

then
∑k

i=1
1
σ2
i
≈ 1

σ2
1

so that V[Pα] ≈ σ2
1. The estimators with large variance cannot

reduce the variance of the fused estimator much more.

3. If all estimators have equal variance, σ2
1 = . . . = σ2

k, then
∑k

i=1
1
σ2
i

= k
σ1

so that

V[Pα] =
σ2
1
k . Hence, combining the estimators reduces the variance by a factor of

k.
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4. Since 0 < αi < 1,∀i, it follows from both equations in (17) that

V[Pα] =
1∑k
i=1

1
σ2
i

= σ2
i αi < σ2

i ,∀i ⇒ V[Pα] < min
i=1,...,k

σ2
i . (18)

Consequently, we are guaranteed to reduce the variance in Pα by combining all
estimators in the optimal way described above.

3.4 Fused multifidelity importance sampling: Algorithm and Analysis

We now use the general fusion framework to obtain a failure probability estimator. Thus,
we solve Problem 1 in the context of importance-sampling-based failure probability esti-
mators so that Pi = P IS

ni . Our proposed method optimally fuses the k MFIS estimators
from (7), such that

Pα =
k∑
i=1

αiP
IS
ni , (19)

with the optimal weights chosen as in Proposition 1 and
∑k

i=1 ni = n. Since estimator

P IS
ni is computed from ni samples, Pα uses n =

∑k
i=1 ni samples.

We now discuss how Pα compares to a single importance sampling estimator with n
samples. Consider the estimator P IS

j′ that uses n samples drawn from a single biasing
density qj′ for j′ ∈ {1, . . . , k}. This estimator would require selection of the lowest
biasing density a priori, a formidable task. The next results compares Pα and P IS

j′ , and
gives a criterion for which the former has lower variance than the latter.

Proposition 2. Let k estimators P IS
ni with n1 = n2 = . . . = nk samples be given. Let

j′ ∈ {1, . . . , k}, and qj′ be a biasing density that is used to derive an IS estimator P IS
j′

with n = kn1 samples. If

σ2
q′j
>

k∑k
i=1

1
σ2
i

then the variance of the fused estimator Pα in (19) with n samples is smaller than the
variance of the estimator with biasing density qj′ with n samples, i.e.,

V[Pα] < V[P IS
j′ ].

Proof. Set ni = n/k, i = 1, . . . , k, so that all estimators use the same number of samples.
According to equation (17),

V[Pα] =
1∑k

i=1
ni
σ2
qi

=
k

n
∑k

i=1
1
σ2
qi

as well as V[P IS
j′ ] =

σ2
qj′
n , so that

V[Pα] =
k

n
∑k

i=1
1
σ2
qi

<
σ2
qj′

n
= V[P IS

j′ ] ⇔ k∑k
i=1

1
σ2
qi

< σ2
qj′
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The importance sampling estimate (7) requires evaluating the high-fidelity model at
ni samples from the biasing density. While not required, we use ni = n/k, i = 1, . . . , k to
distribute the computational load evenly. Extension of Proposition 2 is straightforward
to the case with different number of samples nj for each estimator Pj

The computational procedure is summarized in Algorithm 1. Here, we denote sampling-
based estimates as P̂ IS

ni , which are realizations of the estimator P IS
ni .

Algorithm 1 Computing failure probability estimate P̂α via fused importance sampling

Input: Nominal distribution p, biasing distributions {qi}ki=1, # of evaluations {ni}ki=1,
limit state function g(·).

Output: Failure probability estimate P̂α and variance estimate V[P̂α]
1: for j = 1 : k do {Loop over all surrogates}
2: Draw zj,1, . . . , zj,nj independent realizations from Zj with density qj and compute

P̂ IS
nj =

1

nj

nj∑
i=1

IG(zj,i)
p(zj,i)

qj(zj,i)
(20)

3: Compute the sample variances

σ̂2
qj =

1

nj − 1

nj∑
i=1

(
IG(zj,i)

p(zj,i)

qj(zj,i)
− P̂ IS

nj

)2

(21)

4: end for
5: Define the vector P = [P̂ IS

n1
, . . . , P̂ IS

nk
]T

6: Let Σ̂ = diag(σ̂2
q1/n1, . . . , σ̂

2
qk
/nk)

7: Compute the fused estimate as in (13):

P̂α =
1Tk Σ̂

−1
P

1Tk Σ̂
−1

1k
, V[P̂α] =

1

1Tk Σ̂
−1

1k
(22)

3.5 Error measures and practical computation

The failure probability estimate P̂ IS
ni is computed as in (20) and the sample variance σ̂2

qi

as in (21). The root-mean-squared-error (RMSE) of the estimate P̂ni is

eRMSE(P̂ni) =

√
σ̂2
qi

ni
, (23)
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and the relative mean-squared-error, or coefficient of variation is computed as

eCV(P̂ni) =

√
σ̂2
qi

ni(P̂ IS
ni )

2
. (24)

4 Test case: Convection-diffusion-reaction

We first consider a PDE model whose solution can be numerically evaluated with mod-
erate computational cost. With this model, we demonstrate the asymptotic behavior
of our method because we can afford to sample the high-fidelity model n = 105 times,
which will be too costly for the model in Section 5. The test problem is the convection-
diffusion-reaction PDE introduced in Section 4.1. Its discretizations and reduced-order
models are described in Section 4.2. Numerical results are presented in Section 4.3.

4.1 Convection-diffusion-reaction PDE model

We consider a simplified model of a premixed combustion flame at constant and uniform
pressure, and follow the notation and set-up in [7, Sec.3]. The model includes a one-step
reaction of the species

2H2 +O2 → 2H2O

in the presence of an additional non-reactive species, nitrogen. The physical combustor
domain is 18mm in length (x-direction), and 9mm in height (y-direction), as shown in
Figure 1.

Ω

18mm

9mm

ΓN

3mm

3mmΓD,0

ΓD,iInflow

Figure 1: Set-up of combustor, with details of the boundary conditions in Table 1.

The velocity field U is set to be constant in the positive x direction, and divergence free.
The molecular diffusivity κ is modeled as constant, equal and uniform for all species and
temperature. The PDE model is given by

0 = κ∆s− U∇s+ F(s, z) ∈ Ω̃ (25)

where the state is comprised of the components s = [T, YH2 , YO2 , YH2O], with the Yi
being the mass fractions of the species (fuel, oxidizer, product), and T denoting the
temperature. Referring to Figure 1, we have that ΓD = ΓD,i ∪ ΓD,0 is the Dirichlet part
of the boundary and ΓN combines the top, bottom and right boundary, where Neumann
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Table 1: Boundary conditions for the combustion model from [7].

Boundary Temperature Species

ΓD,i T = 950K YH2 = 0.0282, YO2 = 0.2259, YH2O = 0
ΓD,0 T = 300K YH2 = 0, YO2 = 0, YH2O = 0
ΓN ∇T · n = 0 ∇Yi · n = 0

Table 2: Parameters for the combustion model from [7].

quantity physical meaning assumptions value

κ molecular diffusivity const., equal, uniform ∀i 2.0 cm2

s
U velocity const. 50 cm

s
WH2 molecular weight const. 2.016 g

mol
WO2 molecular weight const. 31.9 g

mol
WH2O molecular weight const. 18 g

mol
ρ density of mixture const. 1.39× 10−3 g

cm3

R univ. gas constant const. 8.314472 J
mol K

Q heat of reaction const. 9800K
νH2 stochiometric coefficient const. 2
νO2 stochiometric coefficient const. 1
νH2O stochiometric coefficient const. 2

conditions are prescribed. In sum, ∂Ω̃ = ΓD ∪ΓN ; the boundary conditions are imposed
as given in Table 1. The nonlinear reaction term F(s, z) = [FT ,FH2 ,FO2 ,FH2O](s, z) is
of Arrhenius type [10], and modeled as

Fi(s, z) = −νi
(
Wi

ρ

)(
ρYF
WF

)νF (ρYO
WO

)νO
A exp

(
− E

RT

)
, i = H2, O2, H2O (26)

FT (s, z) = Q FH2O(s, z). (27)

The parameters of the model are defined in Table 2. The uncertain parameters are
the pre-exponential factor A and the activation energy E of the Arrhenius model. The
domain for these parameters is denoted as D. In particular, we have that

z = [A,E] ∈ D = [5.5× 1011, 1.5× 1013]× [1.5× 103, 9.5× 103].

4.2 Discretization and reduced-order models

The model is discretized using a finite difference approximation in two spatial dimensions,
with 72 nodes in x direction, and 36 nodes in y direction, leading to 10, 804 unknowns
in the model. The nonlinear system is solved with Newton’s method. Let T(z) be
the vector with components corresponding to the approximations of the temperature
T (x, y; z) at the grid points. The high-fidelity model (HFM) is f : D 7→ R and the
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quantity of interest is the maximum temperature over all grid points:

f(z) = max T(z).

Reduced-order models provide a powerful framework to obtain surrogates for expensive-
to-evaluate models. In the case of nonlinear systems, reduced-order models can be
obtained via reduced-basis methods [19], dynamic mode decomposition [24], proper or-
thogonal decomposition [5], and many others; for a survey, see [4]. Here, we compute
reduced-order models f (i) for our multifidelity approach via Proper Orthogonal De-
composition and the Discrete Empirical Interpolation Method (DEIM) for an efficient
evaluation of the nonlinear term. The training snapshots are generated from solutions
to the high-fidelity model on a parameter grid of 50 × 50 equally spaced values z ∈ D.
The three surrogate models are built from 2, 10, 15 POD basis vectors, and accordingly
2, 5, 10 DEIM interpolation points. The corresponding models are denoted as ROM1,

ROM2, ROM3, respectively. We denote by T
(i)
r (z) the approximation to the temperature

T (x, y; z) via the ith ROM. The surrogate models f (i) are the mappings f (i) : D 7→ R
with corresponding quantity of interest denoted as

f (i)(z) = max T(i)
r (z), i = 1, . . . , k.

We refer the reader to [7] for more details on the discretization and ROM construction
for this convection-diffusion-reaction model.

4.3 Results for multifidelity fusion of failure probabilities

We define a failure of the system when the maximum temperature in the combustor
exceeds 2430K, so that the limit state function is

g(f(z)) = 2430− f(z), (28)

and likewise for the reduced-order models g(f (i)(z)) = 2430− f (i)(z).
To compute the biasing densities, we draw m̂ = 20, 000 samples from the uniform

distribution on D, compute surrogate-based solutions, and evaluate the limit state func-
tion for those solutions. If the limit state function indicates failure of the system for a
solution obtained from the ith surrogate model, the corresponding parameter is added
to G(i), the failure set computed from the ith surrogate model. We compute the biasing
densities q1, q2, q3 via MFIS (see Section 2.3) as Gaussian mixture distributions with a
single component. Table 3 shows the computational cost in CPU time of computing the
biasing distributions from the various ROMs and the HFM. Computing a biasing density
using the high-fidelity model with m̂ = 20, 000 samples costs approximately 2.1 CPU-
hours. Constructing the biasing density via the low-fidelity models ROM2 and ROM3
reduces the computational time by a factor of 66 and 58, respectively. Note, that ROM1
is the reduced-order model that is cheapest to execute per model evaluation, but it is
also the least accurate. In our case, ROM1 did not produce any samples in the failure
region, even after m̂ = 105 samples. It is not unexpected that ROM1 is so inaccurate,
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since only two POD modes are not enough to resolve the important character of this
problem. ROM1 is included to demonstrate how the fusion approach can be effective
even in the presence of highly inaccurate surrogate models.

Table 3: CPU time to generate the biasing densities, and the number of samples in the
failure domain.

ROM1 ROM2 ROM3 HFM

# of samples drawn 105 2× 104 2× 104 2× 104

# of samples in failure domain G(i) 0 13 17 17
time needed N.A. 11.2[s] 12.7[s] 2.1[h]

In Figure 2 we show the quantity of interest, i.e., the maximum temperature. The
plots are obtained by generating m = 105 samples from the nominal distribution (left)
and the respective biasing distributions (right), and evaluating the HFM at those sam-
ples. Figure 2, left, shows that the typical range of the quantity of interest is between
approximately 1200K and 2440K. However, only the events where the quantity of inter-
est is above 2430K are relevant for the failure probability computation. By using the
biasing distributions in Figure 2, right, a large portion of the outputs leads to a failure
of the system. This indicates that the biasing distributions are successful in generating
samples at the failure region of the high-fidelity model.
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Figure 2: Quantity of interest f(z) in [K] of HFM ordered by magnitude versus # of
samples z, for m = 105 samples. Left: Samples are from the nominal (uniform)
distribution. Right: The parameter samples are drawn from different biasing
distributions (biased towards failure above 2430K). This demonstrates that the
biasing distributions are good since the outputs are largely above the failure
threshold. Here, ROM1 did not have any parameters in the failure domain,
and hence defaulted to being the nominal distribution and is therefore not
plotted.
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Next, we show results for the fused multifidelity estimator Pα with n samples and
compare it with importance sampling estimators P̂ IS

ni that only use a single biasing
density and also n samples. The fused estimator is obtained via Algorithm 1 with
ni = bn/3c, i = 1, 2, 3, samples by fusing the three surrogate-model-based importance
sampling estimators. For reference purposes, a biasing density is constructed as described
above using the HFM with m̂ = 20, 000 samples. Based on this density, we compute an
importance sampling estimate of the failure probability with n = 105 samples, resulting
in P̂ IS

105 = 8.42× 10−4.
To assess the quality of the fused estimator Pα, we consider the error measures in-

troduced in Section 3.5. In Figure 3, left, we show the root mean-squared error of the
importance sampling estimators P̂ IS

ni as well as the combined estimator P̂α. Figure 3,
right, shows the coefficient of variation defined in (24) for the estimators. The fused
estimator is competitive in RMSE and coefficient of variation with the estimator using
the high-fidelity biasing density, but comes at a much lower computational cost.

Note, that the fused estimator does not use any of the high-fidelity information. We
only plotted the high-fidelity estimator for comparison reasons, but the high-fidelity
density is not used in our algorithm. Heuristically, we could expect the fused estimator
to perform better than the MFIS estimator with high-fidelity-derived biasing density in
the following situation. Let the HFM be so expensive that the HF biasing density is built
only from a few failure samples, and assume the low-fidelity models are good surrogates,
hence able to cheaply explore the failure region. Then the low-fidelity biasing density
could be better than the high-fidelity biasing density.

102 103 104 105
10−6

10−5

10−4

10−3

number of samples n

eR
M
S
E
(P̂

n
)

z ∼ qHFM
z ∼ qROM1
z ∼ qROM2
z ∼ qROM3

P̂α

102 103 104 105

10−2

10−1

100

number of samples n

eC
V
(P̂

n
)

z ∼ qHFM
z ∼ qROM1
z ∼ qROM2
z ∼ qROM3

P̂α

Figure 3: Left: Root mean-squared error from (23); Right: Coefficient of variation as
defined in (24) for the convection-diffusion-reaction simulation.

In Table 4 we show the weights for the fused estimator P̂α. The fused estimator
assigns only a small weight α1 to the estimator P̂ IS

n1
which uses biasing density q1. This

was expected, as the estimator has large variance due to the fact that biasing density q1

is actually the nominal density, see Table 3 as the ROM1 evaluation did not yield any

15



samples in the failure domain.

Table 4: Weights of the fused estimator P̂α with n samples.

n = 102 n = 103 n = 104 n = 2× 104 n = 4× 104 n = 105

α1 0 0 0.005 0.001 0.002 0.005
α2 0.587 0.471 0.331 0.294 0.415 0.742
α3 0.413 0.529 0.664 0.705 0.583 0.253

4.4 Comparison to subset simulation methods

To demonstrate the efficiency of our proposed multifidelity method compared to state-
of-the-art existing methods in failure probability estimation, we compare our results to
subset simulation [3], a widely used method for reliability analysis and failure probability
estimation. The method defines intermediate failure events

Gj := {z ∈ D | g(f(z)) < bj}, j = 1, . . . , L,

for a sequence of threshold levels b1 > b2 > . . . > bL = 0 and L being the final level.
This ensures that the intermediate failure events are nested as G1 ⊃ G2 ⊃ . . . ⊃ GL = G.
The failure probability can then be expressed as

P = P (IG) = E(IG1)
L∏
j=2

P (IGj |IGj−1).

Thus, this method requires sampling from the conditional events Gj |Gj−1, and the ef-
ficiency of this sampling is pivotal to the success of subset simulation. Markov Chain
Monte Carlo (MCMC) methods provide efficient solutions to this problem [34]. Note,
that the bj cannot be determined in advance, but are found adaptively by specifying
an intermediate failure probability p0 = P (Gj |Gj−1). A typical choice is p0 = 0.1 which
yields efficient subset simulation results, see [3].

Here, we compare our fused importance sampling approach for failure probability es-
timation to a direct application of subset simulation to the full model. We follow the
recent MCMC implementation for subset simulation of [34]. Table 5 lists the computa-
tional results that include the number of levels L that subset simulation needed to arrive
at the failure probability estimate, the samples at each level (user defined), the failure
probability estimate, and the overall number of samples needed (not known beforehand).
All results were averaged over ten independent runs. We also give an approximate coef-
ficient of variation, although we caution that this is not the same coefficient of variation
defined in (2), since at the intermediate levels, subset simulation produces correlated
samples. Thus, we used an approximated coefficient of variation as suggested in [45,
Eq. (19)]. For a thorough discussion of the coefficient of variation estimation within
subset simulation we refer to [6, Sec.5.3]. We observe from Table 5 that the coefficient of
variation monotonically decreases as more samples are added. To compare our proposed
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multifidelity fusion method with subset simulation, we first note that the estimate from
subset simulation P̂f is biased for finite N (see [3, Sec.6.3]), whereas our fused estimator

P̂α is unbiased. Moreover, the numerical results in Table 5 show that the estimated
coefficients of variation are about one order of magnitude larger than the coefficients
of variation we reported in Figure 3, right. From a computational cost perspective, the
estimator with 20,000 samples in subset simulation produces an approximated coefficient
of variation of 1.18×10−1 whereas our fused estimator P̂α produces a coefficient of vari-
ation of 1.34 × 10−2 for the same number of high-fidelity model evaluations. Thus, the
fused estimator outperforms subset simulation in this particular example. In sum, our
method can successfully take advantage of cheaper low-fidelity methods to get accurate
estimators, while the subset simulation method works directly with the full model and
therefore does not have access to cheaper surrogate model information.

Table 5: Results for subset simulation to compute failure probabilities for the convection-
diffusion-reaction problem.

samples samples each level No of levels L failure Prob. estimated C.o.V.

2000 500 4 1.06× 10−3 3.24× 10−1

4000 800 5 8.14× 10−4 2.69× 10−1

4000 1000 4 8.80× 10−4 2.29× 10−1

6000 1500 4 9.30× 10−4 1.92× 10−1

10000 2000 5 7.70× 10−4 1.68× 10−1

20000 4000 5 8.22× 10−4 1.18× 10−1

5 Failure probability estimation related to a free plane jet

We apply the proposed fusion of estimators to quantify the influence of uncertain pa-
rameters on the amount of turbulent mixing produced by a free plane jet.

This is a challenging problem, since it involves an expensive-to-evaluate model for
which the naive computation of low probabilities requires thousands of hours of compu-
tation. We reduce this number significantly with our multifidelity importance sampling
framework via fusion of estimators.

The remainder of this section is organized as follows. Section 5.1 introduces the free
plane jet, followed by details of the model and its governing equations in Section 5.2. The
uncertain parameters and quantity of interest are defined in Section 5.3. The low-fidelity
surrogate models used in this investigation are discussed in Section 5.4. Finally, the
results for multifidelity fusion of small probability estimators are presented in Section 5.5.

5.1 Large-scale application: Free plane jet

Free turbulent jets are prototypical flows believed to represent the dynamics in many
engineering applications, such as combustion and propulsion. As such, free jet flows are
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the subject of several experimental [18, 17, 23] and numerical investigations [44, 39, 41,
21, 22] and constitute an important benchmark for turbulent flows.

Our expensive-to-evaluate model of a free plane jet is based on the two-dimensional
incompressible Reynolds-averaged Navier-Stokes (RANS) equations, complemented by
the k − ε turbulence model. Although a RANS model does not resolve all relevant
turbulent features of the flow, it represents a challenging large-scale application for the
computation of small probabilities. We use this model to investigate the influence of
five uncertain parameters on the amount of turbulent mixing produced by the jet. We
quantify turbulent mixing using a relatively simple metric: the integral jet width. One
of the uncertain parameters is the Reynolds number at the inlet of the jet, which is
assumed to vary from 5,000 to 15,000. The other four uncertain parameters correspond
to coefficients of the k − ε turbulence model and its boundary condition, as detailed in
Section 5.3. Figure 4 shows a flow field typical of the cases considered here.

(a) Contours of turbulent kinetic energy. (b) Streamlines colored by the intensity of the ve-
locity.

Figure 4: Flow field of a two-dimensional plane jet at Reynolds number 10,000, computed
with standard coefficients of k − ε turbulence model.

5.2 Modeling and governing equations

We consider a free plane jet in conditions similar to the ones reported in [21, 22]. Namely,
the flow exits a rectangular nozzle into quiescent surroundings with a prescribed top-hat
velocity profile and turbulence intensity. The nozzle has width D, and is infinite along
the span-wise direction. The main difference between the free plane jet we considered
here and the one described in [21, 22] is the Reynolds number at the exit nozzle. Here
the Reynolds number varies between 5,000 and 15,000.

Our simulation model computes the flow in a rectangular domain Ω located at a
distance 5D downstream from the exit of the jet nozzle, as illustrated in Figure 5. By
doing so, modeling the conditions at the exit plane of the jet nozzle is avoided. Instead,
direct numerical simulation data are used to define inlet conditions at the surface Γin.
The dynamics are modeled with the incompressible Reynolds-averaged Navier-Stokes
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Figure 5: Illustration of the free plane jet setup. The diameter of the nozzle is denoted
by D. The simulation domain Ω is composed of a 30D × 10D box situated at
a distance 5D downstream to the nozzle exit.

equations, complemented by the k − ε turbulence model [25]:

(v · ∇)v +
1

ρ
∇p−∇ · ((ν + νt)

¯̄S(v)) = 0, (29)

∇ · v = 0, (30)

v · ∇k − 2νt(
¯̄S(v) : ¯̄S(v)) + ε−∇ ·

((
ν +

νt
σk

)
∇k
)

= 0, (31)

v · ∇ε− 2C1ε
ενt
k

( ¯̄S(v) : ¯̄S(v)) + C2ε
ε2

k
−∇ ·

((
ν +

νt
σε

)
∇ε
)

= 0, (32)

where v = [vx, vy] denotes the velocity vector, p denotes pressure, ρ is the density, ν is

the kinematic viscosity, and ¯̄S is the strain rate tensor given by

¯̄S(v) =
1

2
(∇v + (∇v)T ).

In the k − ε turbulence model, k denotes the turbulent kinetic energy, ε denotes the
turbulent dissipation, and νt denotes the turbulent kinematic viscosity, defined as

νt = Cµ
k2

ε
. (33)

The coefficients1 Cµ, C1ε, C2ε, σk, σε in (31)–(33) are either considered as uncertain
parameters, or are functions of uncertain parameters, as detailed in Section 5.3.

At the inlet surface Γin Dirichlet boundary conditions are imposed. Data obtained
by the direct numerical simulation described in [22] (Reynolds number 10,000) are used
to determine reference inlet profiles for velocity, vref, and for turbulent kinetic energy,
kref. Inlet conditions are allowed to vary by defining a velocity intensity (U) scale, which

1We use σk and σε here as model coefficients, which is typical notation in fluids community. These are
only used in this section, and throughout the paper σ’s are variances.
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is applied to the reference profiles. Turbulent dissipation at the inlet is estimated by
assuming a mixing length model. Thus, the boundary conditions at the inlet surface are
given by

v|Γin = Uvref, k|Γin = U2kref, ε|Γin = Cµ
k3/2

`m
,

where `m denotes the mixing length parameter.
At the symmetry axis surface, Γsym, no-flux boundary conditions are imposed through

a combination of Dirichlet and Neumann conditions of the form

vy|Γsym = 0,
∂vx
∂n

∣∣∣∣
Γsym

= 0,
∂k

∂n

∣∣∣∣
Γsym

= 0,
∂ε

∂n

∣∣∣∣
Γsym

= 0.

Finally, at the surface Γff “far-field” conditions that allow the entrainment of air around
the jet are imposed through weak Dirichlet conditions, as detailed in [43].

The complete model includes additional features that make it more amenable to nu-
merical discretization. The most delicate issue in the solution of the RANS model is the
possible loss of positivity of the turbulence variables. To avoid this issue, we introduce
an appropriately mollified (and thus smoothly differentiable) max function to ensure
positivity of k and ε. In addition, if inflow is detected at any point on the far-field
boundary, the boundary condition is switched from Neumann to Dirichlet by means of a
suitably mollified indicator of the inflow region. Finally, we stabilize the discrete equa-
tions using a strongly consistent stabilization technique (Galerkin Least Squares, GLS,
stabilization) to address the convection-dominated nature of the RANS equations. The
complete formulation is shown in [43].

The model equations described above are solved numerically using a finite element dis-
cretization. The discretization is implemented in FEniCS [1] by specifying the weak form
of the residual, including the GLS stabilization and mollified versions of the positivity
constraints on k and ε and the switching boundary condition on the outflow boundary.
To solve the nonlinear system of equations that arise from the finite element discretiza-
tion, we employ a damped Newton method. The bilinear form of the state Jacobian
operator is computed using FEniCS’s symbolic differentiation capabilities. Finally, we
use pseudo-time continuation to guarantee global convergence of the Newton method
to a physically stable solution (if such solution exists) [20]. The finite element solver is
detailed in [43].

5.3 Uncertain parameters and quantity of interest

In this investigation five uncertain parameters are considered: velocity intensity at inlet2

(U), mixing length at inlet (`m), and the k − ε turbulence model coefficients Cµ, C2ε,
and σk:

z = [U, `m, Cµ, C2ε, σk].

2Since we keep other physical parameters constant, by varying the velocity intensity we effectively
change the Reynolds number.
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The parameter domain is z ∈ D = [0.5, 1.5]×[0.05, 0.15]×[0.01, 0.15]×[1.1, 2.5]×[0.5, 2.5],
and the nominal distribution of parameters is uniform in D.

The other two coefficients of the k−ε turbulence model, C1ε and σε, are also uncertain
but do not vary independently. According to Dunn et al. [12], empirical evidence suggests
that C1ε is related to C2ε by

C1ε =
C2ε − 0.8

1.8
.

In addition, as noted in [12, 16], the log-law implies that σε must follow from

σε =
κ2√

Cµ(C2ε − C1ε)
,

where κ = 0.41 is the von Kárman constant.
The quantity of interest is the integral jet width measured at x = 27.5D:

w(v; z) =
1

vx0D

∫ 10D

0
vx(x = 27.5D, y; z) dy, (34)

where vx0 = vx(x = 27.5D, y = 0; z). Figure 6 illustrates a typical solution behavior
for this turbulent jet by plotting contours of the turbulent kinetic energy for selected
samples in D.

5.4 Simplified-physics surrogate models

We consider four surrogate models to represent the dynamics of the free plane jet flow.
The models are based on two distinct computational grids (fine and coarse), and on
two representations of turbulence effects. The fine computational grid contains 10,000
elements and 5,151 nodes, while the coarse grid contains 2,500 elements and 1,326 nodes.
Furthermore, the models are based either on the complete k − ε turbulence model de-
scribed in the previous section, or on a prescribed turbulent viscosity field.

In the latter case, the turbulent viscosity field is estimated by a linear interpolation
based on 243 conditions that span the input parameter space D on a uniform grid (3
points along each of the 5 dimensions). At each of these 243 conditions, the turbulent
viscosity field is computed with the k − ε turbulence model and the fine computational
grid.

The following four low-fidelity models are increasingly complex in terms of either
modeled physics or grid resolution:

• LFM1–CI: Coarse, interpolated; combines the interpolated turbulence viscosity
field with the coarse computational grid (3,978 degrees of freedom); average com-
putational time 25s;

• LFM2–FI: Fine, interpolated; combines the interpolated turbulence viscosity field
with the fine computational grid (15,453 degrees of freedom); average computa-
tional time 72s;
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(a) z = [0.53, 0.07, 0.13, 1.20, 0.91], w = 1.13. (b) z = [0.86, 0.13, 0.08, 1.21, 1.08], w = 2.38.

(c) z = [0.96, 0.10, 0.08, 1.15, 1.59], w = 2.78. (d) z = [1.11, 0.14, 0.12, 2.49, 0.69], w = 4.13.

Figure 6: Samples of the flow solution computed at different points of the input parame-
ter space D. The plots show contours of turbulent kinetic energy and velocity
streamlines. The white bars denote the integral jet width w associated with
each case.

• LFM3–CKE: Coarse k− ε; combines the k− ε turbulence model with the coarse
computational grid (6,630 degrees of freedom); average computational time 109s;

• HFM: High-fidelity model; combines the k − ε turbulence model with the fine
computational grid (25,755 degrees of freedom); average computational time 590s.

Note that the models based on an interpolated turbulent viscosity field run four to
eight times faster than the corresponding models based on the k − ε turbulence model.

This speedup results from eliminating (31)–(32) from the governing equations, which
leads to a reduction in the total number of degrees of freedom (elimination of variables
k and ε) and simplifications in the numerical discretization.
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Let vi, i = HFM, LFM1, LFM2, LFM3, denote the velocity field computed with the
models above. The high-fidelity model is the mapping from the inputs to the quantity
of interest (jet width from (34)) for a velocity field computed with the most complex
representation of the flow dynamics, vHFM:

f : D 7→ R, f(z) = w(vHFM; z).

The surrogate models are defined in a similar fashion as

f (i) : D 7→ R, f (i)(z) = w(vi; z), i = LFM1, LFM2, LFM3.

5.5 Results for multifidelity fusion of small probability estimators

We define a design failure when the jet width is below the value 0.98. Hence, the limit
state function is given by

g(f(z)) = f(z)− 0.98. (35)

We compute the biasing distributions qi for i = LFM1, LFM2, LFM3 from the three
low-fidelity surrogate models via MFIS (see Section 2.3). For each surrogate, we draw
m̂ = 20, 000 parameter samples from the uniform distribution onD and evaluate the limit
state function applied to the resulting quantity of interest. If the limit state function
indicates failure of the system for a solution obtained from the ith surrogate model,
the corresponding parameter is added to G(i), the failure set computed from the ith
surrogate model. We then fit a multivariate Gaussian to the samples in G(i), resulting
in the biasing densities qLFM1, qLFM2, qLFM3.

Evaluation of the limit state function with the threshold value of 0.98 resulted in
few samples in the failure region, so we increased it to 1.12 to obtain more samples to
compute the biasing density from. For the three surrogate models and the high-fidelity
model, the m̂ = 20, 000 evaluations yield 21, 21, 30 and 76 samples, respectively, where
the QoI falls below that increased threshold. This strategy yields an efficient biasing
density as we see below. As reference, we repeat the same process with the high-fidelity
model, resulting in the biasing distribution qHFM.

First, we investigate the quality of the biasing distributions. For reference, Figure 7,
left, shows the result of 103 uniform sample evaluations with the four computational
models. Note that hardly any samples are below the failure threshold. In contrast, the
quantity of interest computed from samples of the four biasing distributions is shown
in Figure 7, right. The biasing distributions give between 10%-50% of the 1000 drawn
samples in the failure domain. Note, that the y-axis scaling of both figures is different,
which also shows that the biased samples result in a tighter range of QoI values than
the unbiased samples. Thus, the biasing distributions are indeed biased towards the
failure region, and therefore the multifidelity strategy provides a viable way of saving
computational time to inform a biasing distribution.
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Figure 7: Quantity of interest, the width of the jet at x = 27.5D, for n = 103 samples.
Left: The input parameters are drawn from the nominal distribution. Right:
The input parameters are drawn from different biasing distributions. Note the
large portion of samples falling below the failure threshold, and the different
scaling of the y-axis.

The reference failure probability is computed via importance sampling with n = 104

samples drawn from the HFM biasing distribution and is P̂ IS
7,500,qHFM

= 7.25× 10−4.

We compute the estimators P IS
ni , i = 1, 2, 3 with ni samples using the biasing densi-

ties qLFM1, qLFM2, qLFM3 derived from the three surrogate models. We obtain the fused
multifidelity estimator Pα as described above in Algorithm 1 with ni = bn/3c, i = 1, 2, 3,
samples by fusing the three surrogate-model-based importance sampling estimators. The
fused estimator thus uses a total of n samples. We compare these estimators with an
estimator that uses n samples from the HFM biasing density qHFM. The estimators and
the error measures are averaged over three independent runs.

The coefficient of variation (24) is shown in Figure 8, left. The biasing density derived
from the high-fidelity model yields the best estimator among all the models, as expected.
The fused estimator yields a better coefficient of variation than LFM2 and LFM3, shows
almost identical convergence as the estimator using qLFM1. Table 6 shows the three
weights for the fused estimator P̂α as given in Proposition 1, according to which, the
estimates with the lowest variance get assigned the largest weights.

Table 6: Weights of the fused estimator P̂α with n samples.

n = 300 n = 600 n = 900 n = 1200

α1 0.500 0.502 0.610 0.900
α2 0.448 0.044 0.055 0.057
α3 0.052 0.453 0.335 0.043

The CPU-hours to compute the biasing densities via this approach are shown in Fig-
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ure 8, right. Since MC methods are embarrassingly parallel, any practical implemen-
tation can take advantage of this. Our numerical experiments were parallelized on a
computing cluster with 55 nodes. Each node is a quad-core Intel Xenon E5-1620 with
3.6 GHz and 10MB Cache. The nodes have either 32GB or 64GB RAM. To put the
CPU-hours savings achieved by using the high-fidelity model versus the lower-fidelity
models to construct biasing densities into perspective, we see that using LFM1 reduces
the computational cost by 96%, LFM2 by 88% and LFM3 by 81.5%. If we are using a
fused estimator of all three models, we still save more than 65% computational effort
compared to using the HFM, see Figure 8, right. This significant time difference can
have important implications for engineering practice, as it translates into faster evalua-
tion time and savings in CPU-hours .
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Figure 8: Free plane jet application with five uncertain parameters. Left: Coefficient of
variation for the different estimators. Right: CPU-hours for construction of
the biasing densities used in the estimators in the left plot.

6 Conclusions

We enabled the estimation of small probabilities for expensive-to-evaluate models via a
new approach drawing from importance sampling, multifidelity modeling and informa-
tion fusion. The effectiveness of our proposed approach is demonstrated on a convection-
diffusion-reaction PDE, where asymptotic numerical results could be obtained. The
strength of the proposed framework is then shown on the target application of the
turbulent jet, a challenging problem for small-probability computation due to its high
computational cost. The proposed framework was illustrated for the special case of
importance-sampling based estimators, but applies to a much broader class of estima-
tors, as long as the estimators are unbiased. An investigation of correlated estimators and
the effect of correlation for variance reduction would be an interesting future direction.
By fusing different estimators, we avoid the difficult biasing density selection problem.
We also showed that this strategy always outperforms sampling from the worst biasing
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density. The numerical results suggest that the fused estimator is often comparable to
an estimator that samples from the best biasing density only.
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