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Abstract— We consider control and design for coupled, mul-
tiphysics systems governed by partial differential equations
(PDEs). The numerical solution of the control problem involves
large systems of ordinary differential equations arising from
a spatial discretization scheme, which can be prohibitively
expensive. Utilizing reduced order surrogate models evolved as
a way to circumvent this computational problem. While many
reduced order models work well for simulation, the task of
control adds additional complexity. We investigate the effects of
different reduced order models on the optimal feedback control.
We propose to use a structure-preserving surrogate model,
constructed by computing dominant subspaces for each physical
quantity separately. This method addresses the different scaling
of variables commonly found in multiphysics problems. As a
test example, a coupled Burgers’ equation multiphysics PDE
model is considered. In the numerical study, we find that the
feedback gains obtained from the standard proper orthogonal
decomposition for the combined variables fail to converge, while
the physics-based method produces convergent control feedback
matrices.

I. INTRODUCTION

Coupled systems are ubiquitous in engineering problems,

as they arise in micro-electromechanical systems [1], lithium-

battery models [2], circuit-device systems [3] and fluid

dynamics [4]. Simulation of such systems provides valuable

insights to the design and control engineer, while often being

cheaper and faster to access than experimental results. Com-

plex systems can have multiple physical quantities interacting

based on the fundamental laws of physics, e.g., a fluids’

temperature and velocity are coupled through buoyancy

effects. We consider coupled partial differential equation

(PDE) models, which give rise to large, structured systems

of ordinary differential equations, by virtue of discretization,

e.g., through the finite element method (FEM). Using such

large models for design and control can be prohibitive,

given time constraints (real-time control) and/or the need for

repeated evaluation of models at various parameters (design).

Model order reduction emerged as an important tool to

reduce the computational complexity of the original high-

fidelity model. In essence, model reduction yields computa-

tionally cheaper surrogate models, which approximate the

original system with respect to a specified criteria. The

focus of this paper is on projection-based model reduction

techniques derived by Galerkin-projection of the high fidelity

model onto a suitable set of modes. An entire toolbox of

projection-based reduced order modeling (ROM) methods is

available, each producing a different set of modes: balanced

truncation, proper orthogonal decomposition, dynamic mode
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decomposition, balanced POD, reduced basis methods, and

Krylov subspace methods. An excellent overview of model

order reduction, and the previously mentioned methods, can

be found in [5].

For certain engineering tasks, it can be sufficient to

consider only the input-to-output behavior of a system,

in which case Krylov subspace methods provide optimal

approximation guarantees [6]. Finding an optimal linear

feedback law, however, requires crucial insight into the state-

space formulation of the problem. In feedback control, one

not only requires that solutions to the open loop system are

approximated properly by the surrogate model, but also that

the feedback control matrices -or gains- obtained from the

reduced model approximate the full feedback well. Hence,

we consider methods that focus on accurate state-space

approximation, and investigate their feasibility to be used as

surrogates in control feedback design. When coupled systems

are to be used in control design, we demonstrate that it is

advantageous to retain the physics-imposed structure of the

original system in the reduced order model. This in turn

yields a structure in the feedback matrices, which we show

to be important for convergence of the feedback law. We

believe that this aids the control community with a deeper

understanding of the effects of reduced order models on

control.

For ease of illustration, a one dimensional, multiphysics

coupled Burgers’ PDE model is introduced in §II, together

with a finite element discretized model. A short section on

reduced order models and POD follows in §III, together with

a presentation of the proposed physics-based reduced oder

model strategy. In §IV, we present our numerical findings

regarding approximation quality for control and simulation

of both reduced order models. In particular, we show that by

standard projection based model reduction, stability of the

model is lost, and the feedback gains fail to converge.

In the remainder of the paper, we use ḟ = df
dt as

a short notation for the time derivative of f(t), and

fx(·, x) as the partial derivative ∂f
∂x (·, x). Moreover, the

space L2((0,∞); Ω) := {f(t, x) :
∫

Ω
|f(t, x)|2dx <

∞, ∀t ∈ (0,∞)} and additionally Hk((0,∞); Ω) := {f ∈
L2((0,∞); Ω) : ∂f

∂xk ∈ L2((0,∞); Ω)}. The transpose of

a matrix A ∈ R
n×n is denoted by AT , and the Euclidian

norm of a vector x ∈ R
n is defined as ||x||22 :=

∑n
i=1

x2
i .

Sometimes, we shall use Matlab short notation for the

truncation of matrices and vectors, i.e., A(j : k, j : k), j < k

denotes the submatrix of A taken from row (resp. colum) j

to k.
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II. MODELLING, DISCRETIZATION AND CONTROL

A. Partial Differential Equation Model

The coupled Burgers’ equation [7] is a one dimensional

model that incorporates many interesting questions related to

thermal fluid dynamics, commonly modeled by the two or

three dimensional Boussinesq equations. The model reads as

wt(t, x) + w(t, x)wx(t, x) = µwxx(t, x) − κT (t, x), (1)

Tt(t, x) + w(t, x)Tx(t, x) = cTxx(t, x) + b(x)u(t), (2)

for t > 0 on the one dimensional domain Ω = (0, 1) with

boundary conditions

w(t, 0) = 0 wx(t, 1) = 0, (3)

T (t, 0) = 0 T (t, 1) = 0, (4)

for all t > 0 and initial conditions

w(0, x) = w0(x), T (0, x) = T0(x) ∈ L2(Ω). (5)

Here, w ∈ H2((0,∞); Ω) is a velocity-like function and

T ∈ H2((0,∞); Ω) is a temperature-like function. The

parameter κ denotes the coefficient of the thermal expansion,

c is the thermal diffusivity, and µ is the viscosity coefficient.

The function b(x) specifies the location of the control action

u(t), and hence we have a distributed control acting on the

temperature, which adversely controls the velocity through

the coupling. As a notational remark, u(t) denotes any open

loop control, disturbance or excitation, and by u∗(t) we

denote the unique solution to the optimal control problem

introduced below.

To design a linear feedback controller for the coupled

system (1)-(2), a first step consists of linearizing the model

around its steady state solution. It is known [8] that the only

equilibrium to Burgers’ equation with homogeneous, mixed

Dirichlet-Neumann boundary conditions (3) is the zero so-

lution. This solution is globally asymptotically stable. By

imposing zero Dirichlet boundary conditions on equation (2),

the energy eventually dissipates and the system converges

uniformly to the zero steady state, independent of the initial

condition. Thus, wss = Tss = 0 is an equilibrium to (1)-(2).

To this end, the velocity and temperature are decomposed

into a steady state and fluctuation part as

w(t, x) = wss(x) + w̃(t, x) = w̃(t, x),

T (t, x) = Tss(x) + T̃ (t, x) = T̃ (t, x).

Assuming that the fluctuations are small in the

H1((0,∞); Ω) norm, implies w̃ · w̃x ≈ 0 and w̃ · T̃x ≈ 0.

Thus, the linearized coupled Burgers’ system is given by

˙̃w(t, x) = µw̃xx(t, x)− κT̃ (t, x), (6)

˙̃
T (t, x) = cT̃xx(t, x) + b(x)u(t). (7)

B. Finite Element Discretization

We discretize the PDE model in space via the finite ele-

ment method (FEM) with piecewise linear basis functions for

both velocity and temperature; they can be replaced by other

FE basis functions without changing the exposition below.

The finite dimensional system is obtained through Galerkin

projection of the fluctuation functions w̃(t, x), T̃ (t, x) onto

the finite element spaces. The coupled Burgers’ equation then

takes the form of a linear time-invariant system (LTI) with

a mass matrix

Eẋ(t) = Ax(t) +Bu(t), (8)

Ex(0) = x0 ∈ R
n, (9)

where x(t) = [xT
1 (t), xT

2 (t)]
T is the combined state of

velocity and temperature coefficients. The parameter n1 +
n2 = n denotes the size of the combined FEM state space,

and the solution snapshots can be partitioned, as

X =

[

X1

X2

]

, (10)

where X1 ∈ R
n1×s represents the solutions of the velocity,

and X2 ∈ R
n2×s denotes the part of the system data

corresponding to the temperature. We note in passing that

the functions w(·, ·) and T (·, ·) have different scaling and

physical meanings. The mass, system, and control input

matrices E,A,B have block structure:

E =

[

E1 0
0 E2

]

, A =

[

A1 A12

0 A2

]

, B =

[

0
B2

]

. (11)

Similarly, discretization of the full nonlinear system (1)-(4)

reads as

Eẋ(t) = Ax(t) + F (x(t)) +Bu(t), (12)

which is used to generate data for the model reduction step.

C. Optimal Feedback Control

The goal of the optimal control problem is to minimize

a specified cost (depending on the state x and control u

) subject to dynamic constraints. For the linear quadratic

regulator (LQR) optimal control problem, we set the cost

J(x(·), u(·)) =

∫ ∞

0

x(t)TEx(t) + u(t)TRu(t)dt, (13)

and the dynamic constraints are given by the linearized, finite

dimensional model (8)-(9). One of many appeals to using an

LQR controller is that the optimal control is given by linear

feedback [9, p.237f] as

u∗(t) = −Kx(t), (14)

which exponentially stabilizes the system. The constant gain

matrix K is constructed as

K = R−1BTPE, (15)

where P ∈ R
n×n is the unique positive definite solution the

algebraic Riccati equation

ATPE + ETPA− ETPBR−1BTPE + CTC = 0. (16)

For large n, solving the above matrix equation is time con-

suming, as the complexity scales cubicly with the dimension

of the state space n. Moreover, reduced order models are

often at hand for simulations, and can be used for design

and control as well.
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III. MOR FOR COUPLED SYSTEMS

We compare two different strategies to obtain reduced

order models for the previously motivated multiphysics prob-

lem, each having their justification in the toolbox of reduced

order modeling techniques. The first strategy yields proper

orthogonal modes with an optimal approximation property

for the data X . The second method focuses on the physics

of the problem, and computes modes from the data X1, X2

separately. We refer to [10], [11], [12] for further applications

and methods of MOR for coupled systems.

A. Proper Orthogonal Decomposition (POD)

Henceforth, we use POD as a dimension reduction tech-

nique within a Galerkin-projection framework, and note that

this method can be replaced by any other modal expansion

or projection based method for nonlinear model reduction.

We refer the reader to Volkwein’s notes [13] for theoretical

results, an excellent list of references, and implementation

details for POD. To begin with, assume a dynamical system

of the form

Eẋ(t) = f(x(t)), x ∈ R
n,

is given, where E ∈ R
n×n is a symmetric positive definite

matrix. Solutions at s snapshot locations, xk := x(tk) for

k = 1, . . . , s are obtained, and stored in the snapshot matrix

X = [x1 x2 . . . xs] ∈ R
n×s. (17)

Let the weighted inner product in R
n be defined via

(x, y)E := xTEy. Proper orthogonal decomposition pro-

vides a basis that optimally represents the given solution

data X in the least squares sense, consequently solving the

optimization problem

min
φi

s
∑

j=1

∥

∥

∥

∥

∥

xj −

r
∑

i=1

(xj , φi)φi

∥

∥

∥

∥

∥

2

E

s.t. (φi, φj)E = δij .

(18)

We consider the case when s < n, i.e. when the data matrix

has fewer columns than rows, which leads to the method of

snapshots for efficient POD computations. We shall see that

this only requires computing a singular value decomposition

of a square matrix of size s×s. In most complex applications,

such as fluid dynamics considered herein, the state space is of

enormous size (n > 106), and the above assumption naturally

holds. Solving the optimization problem (18) above with the

weighted inner product [13, Ch.1] requires solving

E1/2X(E1/2X)T = Φ̄ΛΦ̄T ∈ R
n×n,

which, however, can be replaced by the computationally

cheaper decomposition

XTEX = Ξ̄ΛΞ̄T ∈ R
s×s, (19)

as we shall see below. In both cases Λ = Σ2 is the diagonal

matrix containing the POD eigenvalues. Consequently, Ξ̄
contains the eigenvectors of XTEX and the columns of Φ̄
are the eigenvectors of E

1

2X(E
1

2X)T , which are sought. To

illustrate the key step of the method of snapshots, let the

singular value decomposition of the data be

E
1

2X = Φ̄ΣΞ̄T ,

so that Φ̄, Ξ̄ are orthogonal (in the non-weighted inner

product) and its respective columns satisfy

E
1

2Xξ̄i = σiφ̄i, (E
1

2X)T φ̄i = σiξ̄i,

for i = 1, . . . , rank(X). Since E
1

2XΞ̄ = Φ̄Λ
1

2 we have

E−
1

2 Φ̄ = XΞΛ−
1

2 ,

and the E-orthogonal POD modes that solve the POD

minimization problem (18) are then given by [13, Thm 1.3.2]

Φ := E− 1

2 Φ̄.

With the proper orthogonal modes, the solution can be

approximated as

x(t) ≈
r

∑

i=1

x̂i(t)φi

which is used in a Galerkin-projection framework to obtain

a model of reduced order r ≪ n.

Remark 1: In multiphysics problems, the scaling of en-

tries in X often varies by several magnitudes, the computa-

tion of the product XTEX or E
1

2X(E
1

2X)T can introduce

numerical errors. Instead, a direct singular value decompo-

sition of X should be used. Alternatively, subtraction of the

column-wise mean of X from the data, or preconditioning,

can remedy the scaling problem.

B. Standard Model Order Reduction

The standard projection based model reduction technique

is based on optimal modes for the overall data X . The

snapshot matrix X consists of solutions to the full coupled

dynamics (12) with initial conditions (9). From X , we

compute the r proper orthogonal basis functions with the

method of snapshots. The reduced order model is obtained

through projection onto the modes, see Algorithm 1.

Algorithm 1 : Standard POD Algorithm (STD-POD)

Input: Data X ; Model E,A,B, x0; reduced model order r;

Output: ROM: Ãr, B̃r, x̃0,r.

1: XTEX = ΞΛΞT .

2: Λr = Λ(1 : r, 1 : r); Ξr = Ξ(:, 1 : r).

3: Φ̃ = XΞrΛ
−1/2
r ∈ R

n×r.

4: Ãr = Φ̃TAΦ̃, B̃r = Φ̃TB, x̃0,r = Φ̃Tx0.

A reduced order model of the linearized dynamics is

obtained through Galerkin projection as

(STD-POD)

{

˙̃xr(t) = Ãrx̃r(t) + B̃ru(t)
x̃r(0) = x̃0,r

}

,

where Er = Ir = Φ̃TEΦ̃, since the singular vectors are E

- orthonormal. Due to the Schmidt-Eckardt-Young-Mirsky
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theorem [5, p.37], the above basis Φ̃ is the best order r basis

to represent the snapshot data in the weighted least squares

sense. Nonetheless, the coefficients x̃r(t) do not enjoy a

direct physical interpretation anymore.

C. Physics-Preserving Model Reduction

To preserve the physics, and hence the mathematical

(block-) structure of the original system, which then allows

for a sound physical interpretation of the corresponding

reduced order model coefficients xr(t), a different projection

matrix is constructed. In the case of the Boussinesq equa-

tions, similar approaches have been used for simulation [14],

[4], [15], but the focus here is on the effect of model reduc-

tion on the optimal feedback matrix. From the data X1, X2

in (10), separate basis Φ̂1 ∈ R
n1×r1 and Φ̂2 ∈ R

n2×r2

for the velocity and temperature are computed via POD,

respectively, and the overall projection matrix is assembled

block-wise as Φ̂ = diag(Φ̂1, Φ̂1). The projected reduced

order model reads as

Âr =

[

Φ̂1 0

0 Φ̂2

]T [

A1 A12

0 A2

] [

Φ̂1 0

0 Φ̂2

]

,

=

[

Φ̂T
1 A1Φ̂1 Φ̂T

1 A12Φ̂2

0 Φ̂T
2 A2Φ̂2

]

=

[

Ar1 Ar12

0 Ar2

]

,

B̂r =

[

Φ1 0
0 Φ2

]T

B =

[

0
ΦT

2 B2

]

=

[

0
Br2

]

,

x̂r,0 =

[

Φ1 0
0 Φ2

]T

x0 =

[

x̂r1(0)
x̂r2(0)

]

∈ R
r1+r2 .

The mass matrix of the reduced order model is the identity

matrix, by virtue of E-orthonormality of the POD basis

functions. Let x̂r(·) = [x̂r1(·), x̂r2(·)]
T be the state variable

of the POD system. Then, the POD-ROM of the linear

system (8),(9), is given by

(PB-POD)

{

˙̂xr(t) = Ârx̂r(t) + B̂ru(t)
x̂r(0) = x̂0,r

}

.

The structure of this system is identical to (8)-(11). In

particular, the coefficients x̂r1(·) and x̂r2(·) correspond to the

evolution of velocity, and temperature in the reduced space,

respectively. Another advantage of this approach is that it

allows for an independent choice of the order of the surrogate

models r1 and r2. For instance, the temperature T might

be easier to approximate than the velocity, so r1 ≤ r2. The

physics-based reduced order model procedure is summarized

in Algorithm 2.

D. Feedback Control via ROMs

We circumvent the expensive computation of the Riccati

equation (16) by incorporating surrogate models. Therefore,

we compute Pr, the solution of the low order ARE

PrAr +AT
r Pr − PrBrR

−1BT
r Pr + CT

r Cr = 0, (20)

and project the feedback matrix Kr = R−1BT
r Pr from the

r-dimensional POD subspace up to the n-dimensional FE

space via

K ≈ Kn
r := ΦKr,

Algorithm 2 : Physics-Based POD Algorithm (PB-POD)

Input: Data X1, X2; Model E1, E2, A,B, x0; reduced

model order r;

Output: ROM: Ar, Br, x0,r.

1: X = [X1, X2] according to physics variables.

2: XT
1 E1X1 = Ξ1Σ1Ξ

T
1 .

3: XT
2 E2X2 = Ξ2Σ2Ξ

T
2 .

4: Λ1,r1 = Λ1(1 : r1, 1 : r1); Ξ1,r1 = Ξ1(:, 1 : r1).
5: Λ2,r2 = Λ2(1 : r2, 1 : r2); Ξ2,r2 = Ξ2(:, 1 : r2).

6: Φ̂1 = X1Ξ1,r1Λ
−1/2
1,r1

∈ R
n1×r1 .

7: Φ̂2 = X2Ξ2,r2Λ
−1/2
2,r2

∈ R
n2×r2 .

8: Φ̂ =

[

Φ1 0
0 Φ2

]

∈ R
n×r, n = n1 + n2, r = r1 + r2.

9: Âr = Φ̂TAΦ̂, B̂r = Φ̂TB, x̂0,r = Φ̂Tx0.

where Φ = Φ̃ yields K̃n
r for (STD-POD), and Φ = Φ̂

produces the gain K̂n
r for (PB-POD).

Remark 2: In future research, we envision using black-

box simulation code for the above methods in a matrix-

free setup. Therefore, we restrict ourselves to using only

simulation data for construction of the reduced order models,

and no dual information, such as in balanced truncation

and its variants [16], [17]. This necessitates the careful

investigation of the control properties of the reduced order

models, as done in the next section.

IV. NUMERICAL RESULTS

For the coupled Burgers’ equation, the viscosity is set to

µ = 10−3, and the parameters κ = 1.0, c = 10−2; the

system is simulated for 5s and 100 snapshots are recorded

at equidistant times. A control penalty is set to R = 0.1 in

(13). The initial conditions (5) are w0(x) = 2
(

x2
(

1

2
− x

)2
)

and T0(x) = 5 sin
(

1

2
x
)

. We mention in passing that the

feedback gains obtained from the finite element method con-

verged quickly with increasing n. Thus, we choose n = 128
as the discretization order of the high fidelity (“truth”) model.

With the above specifications, we simulate the nonlinear

finite element system (12) with initial conditions (9) and

subsequently compute reduced order models from this data

through (STD-POD) or (PB-POD).

We first compare the feedback matrices Kn
r from both

methods for increasing r as outlined in §III-D. Thus, let

r = r1 + r2 in the standard reduced order model, where

r1, r2 are the number of POD basis functions chosen for

approximation of the velocity and temperature in the physics-

based approach, respectively. The gains converge for the

physics-based model, see Figures 1 and 2, whereas they

fail to converge for the standard POD based reduced order

model, see Figures 3-4, and instead grow in magnitude. The

reduced order models for (STD-POD) are unstable, e.g., the

largest computed reduced model with r = 20 still has two

eigenvalues of the system matrix Âr with positive real part,

λ1,2 = 0.128± 0.007i, where i denotes the imaginary unit.

All lower order models are unstable, too. The transfer

function of system (8)-(9) results from a Laplace transform
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Fig. 5. Bode plot for the physics-based reduced order model (PB-POD).

(time variable t to frequency variable s), and is defined as

G(s) := (sE − A)−1B. A comparison of the full transfer

function G to G̃r(s) := (sIr − Ãr)
−1B̃r and Ĝr(s) :=

(sIr−Âr)
−1B̂r obtained from the two reduced order models

provides insight into the approximation quality of the open

loop systems. Figures 5-6 show the Bode plots (transfer

function vs. frequency) for both reduced order models. The

magnitude and phase of the physics based reduced order

models (PB-ROM) match the full order model indisputably

well, see Figure 5. From Figure 6 one can see that neither

the amplitude, nor phase of the models match for slow

frequencies. Yet for higher frequencies, the magnitude of the

(STD-POD) reduced order model matches the high-fidelity

model, and the phases converge (adding 360 degrees to the

plot). Since the error between the original and reduced

transfer function bounds the output error in the frequency

domain is

‖x− xr‖2 ≤ ‖G−Gr‖H∞
‖u‖2,

the errors ‖G − Gr‖H∞
are used to asses the quality of

the reduced order models. Here, the (Hardy-) norm of the

transfer function is defined as ‖G‖H∞
:= supω∈R

‖G(iω)‖2.
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TABLE I

ERROR MEASURES FOR THE STANDARD MODEL REDUCTION, AND PHYSICS-BASED MODEL REDUCTION METHOD.

(r1, r2) ||G− G̃r||∞ ||G− Ĝr||∞ ||X − Φ̃Φ̃TX||2 ||X − Φ̂Φ̂TX||2 ||K −K(Φ̃Φ̃T )E||2 ||K −K(ΦΦT )E||2

(3,3) 8.81× 10−2 4.40× 100 5.83× 10−2 2.40× 10−2 1.16× 10−1 1.74× 10−1

(6,5) 1.32× 10−2 3.98× 100 2.00× 10−2 4.09× 10−3 2.38× 10−2 9.85× 10−2

(8,5) 1.32× 10−2 3.98× 100 2.00× 10−2 1.19× 10−3 2.01× 10−2 9.81× 10−2

(12,8) 3.57× 10−4 4.01× 100 4.26× 10−3 1.04× 10−4 1.80× 10−2 4.65× 10−2
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Fig. 6. Bode plot for the standard POD reduced order model (STD-POD).

In Table I, we list the errors in the transfer functions

‖G−Gr‖H∞
. Moreover, we provide insight into how well

the computed POD modes for both strategies are suitable

to approximate the data (||X − ΦΦTX ||2) and the true

feedback matrices (||K −K(ΦΦT )E||2). As expected from

the optimality result of POD for the standard model reduction

method (STD-POD), the approximation of the snapshot set

is better than model (PB-POD). However, this conclusion

reverses as we look at the approximation of the feedback

gain functions, where the physics-based model gives better

approximation results. This adds to our findings in Figures

1 and 4 above.

V. CONCLUSION

At the current maturity of the field of model reduction,

numerous excellent methods exist, and it is up to the engi-

neer/user to decide what suits best for the application at hand.

Were we to only focus on a method producing modes for

optimal data approximation, valuable information about the

physics of the problem gets lost. We advocate that extra effort

for constructing structure-preserving reduced order models

for control and design of coupled multiphysics systems is

beneficial, despite the fact that we loose the optimality

guarantee for approximation of the overall snapshot set.

We acknowledge that further work regarding guarantees for

convergence of reduced order gains to their high-fidelity

counterparts is necessary.
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