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This paper presents a physics-based data-driven method to learn predictive reduced-order models (ROMs) from

high-fidelity simulations and illustrates it in the challenging context of a single-injector combustion process. The

method combines the perspectives of model reduction andmachine learning.Model reduction brings in the physics of

the problem, constraining the ROM predictions to lie on a subspace defined by the governing equations. This is

achieved by defining the ROM in proper orthogonal decomposition (POD) coordinates, which embed the rich physics

information contained in solution snapshots of a high-fidelity computational fluid dynamics model. The machine

learning perspective brings the flexibility to use transformed physical variables to define the POD basis. This is in

contrast to traditionalmodel reduction approaches that are constrained touse the physical variables of thehigh-fidelity

code. Combining the two perspectives, the approach identifies a set of transformed physical variables that expose

quadratic structure in the combustion governing equations and learns a quadratic ROM from transformed snapshot

data. This learning does not require access to the high-fidelity model implementation. Numerical experiments show

that the ROM accurately predicts temperature, pressure, velocity, species concentrations, and the limit-cycle

amplitude, with speedups of more than five orders of magnitude over high-fidelity models. Our ROM simulation is

shown to be predictive 200%past the training interval. ROM-predicted pressure traces accuratelymatch the phase of

the pressure signal and yield good approximations of the limit-cycle amplitude.

Nomenclature

A = system matrix for linear part
B = input matrix
cl�t; x; y� = species molar concentrations, l �

1;2; : : : ; nsp, also denoted as �S� for
chemical species S

d = number of physical variables
H = matricized quadratic tensor
nx = spatial discretization dimension
p�t; x; y�, p�t� = pressure, continuous and discretized
Q = snapshot matrix
q�t� = state vector in finite dimensions

~qp�t; x; y�, ~qc�t; x; y�,
~qL�t; x; y�

= state vector in primitive, conservative,

and learning variables

r = reduced model dimension
T�t; x; y�, T�t� = temperature, continuous and discretized
t = time

u�t� = external input vector
V = matrix of proper orthogonal decom-

position basis vectors
vx�t; x; y�, vx�t� = velocity in x direction, continuous and

discretized
x, y = spatial coordinates
Yl�t; x; y� = species mass fraction, l � 1;2; : : : ; nsp
ξ�t; x; y�, ξ�t� = specific volume, continuous and

discretized
ρ�t; x; y�, ρ�t� = density, continuous and discretized
⊗ = Kronecker product
⋅̂ = notation for reduced-order model

quantities

I. Introduction

T HIS paper presents an approach to learning low-dimensional
surrogate models for a complex, nonlinear, multiphysics, multi-

scale dynamical system in the form of a multispecies combustion
process. The need for repeated model evaluations in optimization,
design, uncertainty quantification, and control of aerospace systems
has driven the development of reduced-order models (ROMs) for
applications in aerodynamics [1–7], reacting flows [8–10], and com-
bustion [11–13]. ROMs combine the rich information embedded in
high-fidelity simulations with the efficiency of low-dimensional
surrogate models; yet, effective and robust ROM methods for non-
linear, multiscale applications such as combustion have remained an
open challenge.
Most existing nonlinear model reduction methods are intrusive—

that is, they derive the ROM by projecting the high-fidelity model
operators onto a low-dimensional subspace. In doing so, the physics
of the problem is embedded in the reduced-order representation. The
proper orthogonal decomposition (POD) [14,15] is themost common
way to define the low-dimensional subspace, using the singular value
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decomposition (SVD) to identify low-dimensional structure based on
training data. For some problems, the projection approach is ame-
nable to rigorous error analysis and structure-preservation guarantees
[16–19], but these rigorous guarantees do not apply to nonlinear,
multiphysics, multiscale models, for which projection-based ROMs
remain challenging to implement (due to the need for access to
the high-dimensional operators). The compressible flow setting
of the combustion process poses numerous problems with respect
to stability of the projection-based ROMs; see [20–25] for several
approaches to address this stability problem. Furthermore, ROMs for
these problems typically require relatively high dimensionality (and
thus high cost) to avoid problems with robustness and stability
[12,26]. For instance, Huang et al. [11] construct two separate ROMs
for the same single-injector combustion simulation as presented
herein, one that uses POD and the other uses least-squares Petrov–
Galerkin projection. That work finds that well over 100 modes are
necessary to obtain stable ROMs and sufficient accuracy.
There is increasing attention to nonintrusive model reduction

methods (sometimes called black-box or data-driven methods) that
learn amodel based on training data,without requiring explicit access
to the high-fidelity model operators. The nonintrusive philosophy
aligns directly with the field of machine learning, where representa-
tions such as neural networks have been shown to induce nonlinear
model forms that can approximate many physical processes [27].
However, neural networks require a large amount of training data,
limiting their utility when the data come from expensive large-scale
partial differential equation (PDE) simulations [28]. Moreover, the
parameterization of the learned low-dimensional model is critical to
the predictive accuracy and success of the learned model—in par-
ticular, it is critical to determining whether the ROM can issue
reliable predictions in regimes outside of the training data.
For large-scale PDE models, an important class of nonintrusive

learning approaches tackles this challenge ofmodel parameterization
by embedding the structure of the problem into the learning formu-
lation. Some approaches use sparse learning techniques to identify
PDE model terms that explain the data [29–31]. Dynamic mode
decomposition [32,33] extracts spectral information of the infinite
dimensional linear Koopman operator from observed data of the
nonlinear system. This spectral information can then be used to build
data-driven predictive models. When the model can be expressed in
the form of a dynamical system with polynomial terms, then the
learning problem can be formulated as a parameter estimation prob-
lem, as in the operator inference approach of [34]. An important
advantage of nonintrusive learning approaches is that the user has the
flexibility to choose the variables that drive the learning. This opens
the way for variable transformations that expose system structure
and, in doing so, transform the ROM learning task into a structured
form. In some cases, the governing PDEs naturally admit variable
transformations that reveal polynomial form, such as the specific
volume representation of the Euler equations [35]. More generally,
one can introduce new auxiliary variables to the problem—known as
lifting—to produce a system that is polynomial in its expanded set of
state variables [36–38]. This allows for a much broader class of non-
linear systems to be learned using the operator inference framework.

In this work, we build on the operator inference framework to learn
structured, polynomial ROMs from simulated snapshot data of a
single-injector combustion model. Although in our case the poly-
nomial model parameterization is a model approximation, we show
that the predictive capabilities of the learned ROM are excellent
beyond the training data. Our proposed approach follows the steps
below, which we develop in detail in the ensuing sections:
1) We obtain high-dimensional simulation snapshot data for a

spatially two-dimensional combustion process from the General
Equation and Mesh Solver (GEMS) computational fluid dynamics
(CFD) code [39] developed at Purdue University. The governing
equations and combustion problem setup are described in Sec. II.
2)We identify a set of state variables in whichmany of the terms in

the governing equations have quadratic form. We transform the
snapshot data to these new state variables, as described in Sec. III.C.
3) We use operator inference to learn a ROM that evolves the

combustion dynamics in a low-dimensional subspace. Details of the
model learning are given in Secs. III and IV.B.
We present numerical results comparing our learned ROMs with

GEMS test data in Sec. IVand conclude the paper in Sec. V.

II. Combustion Model

Section II.A defines the computational domain under considera-
tion, Sec. II.B presents the governing equations for the combustion
model, and Sec. II.C briefly summarizes the numerical implementa-
tion. The combustion model follows the implementation of the
GEMS CFD code [39] and more details can be found in [40]. The
GEMScode has been successfully used for rocket engine simulations
[11] and in high-pressure gas turbines [41].

A. Computational Domain

A single-injector combustor as in [42] is shown in Fig. 1a, with the
computational domain outlined in red dashed lines. Our domain is a
simplified two-dimensional version of the computational domain,
shown in Fig. 1b, which also shows the four locations where we
monitor the state variables.

B. Governing Equations

The dynamics of the combustor are governed by the conservation
equations for mass, momentum, energy, and species mass fractions.
For this two-dimensional problem, the conservation equations are

∂~qc
∂t

� ∇ ⋅ � ~K − ~Kv� � ~S (1)

and they describe the evolution of the conservative variables

~qc � � ρ ρvx ρvy ρe ρY1 : : : ρYnsp �⊤

where ρ is the density (kg∕m3), vx and vy are the x and y velocities

(m∕s), e is the total energy (J∕m3), and Yl is the lth species mass
fraction with l � 1; 2; : : : ; nsp and nsp is defined as the number of

chemical species that are included in the model.

Fig. 1 Setup and geometry of single-injector combustor.
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The total energy is defined as

e �
Xnsp
l�1

hlYl �
1

2
�v2x � v2y� −

p

ρ
� h0 −

p

ρ
(2)

where pressure p is given in Pa; hl � hl�T� is the enthalpy corre-
sponding to the lth species and is a highly nonlinear function of

temperature, T; and h0 is the stagnation enthalpy. The inviscid flux ~K

and viscous flux ~Kv in Eq. (1) are

~K �

2
666666666666664

ρvx

ρv2x � p

ρvxvy

ρvxe� pvx

ρvxY1

..

.

ρvxYnsp

3
777777777777775

~i�

2
666666666666664

ρvy

ρvxvy

ρv2y � p

ρvye� pvy

ρvyY1

..

.

ρvyYnsp

3
777777777777775

~j;

~Kv �

2
666666666666664

0

τxx

τyx

τxxvx � τyxvy − jqx

−jm1;x

..

.

−jmnsp;x

3
777777777777775

~i�

2
666666666666664

0

τxy

τyy

τxyvx � τyyvy − jqy

−jm1;y

..

.

−jmnsp;y

3
777777777777775

~j

The two-dimensional viscous shear tensor is defined as

τ �
�
τxx τxy
τxy τyy

�
� μ̂

2
6664

1

3

∂vx
∂x

∂vx
∂y

� ∂vy
∂x

∂vy
∂x

� ∂vx
∂y

1

3

∂vy
∂y

3
7775

where μ̂ is the mixture viscosity coefficient. The diffusive heat flux
vector is defined as

~j
q � �jqx jqy �⊤ � −κ∇T � ρ

Xnsp
l�1

Dlhl∇Yl (3)

where κ quantifies thermal conductivity and Dl is the diffusion
coefficient for the lth species into the mixture, which is an approxi-
mation used to model the multicomponent diffusion as the binary
diffusion of each species into a mixture. The two terms in the
definition of the heat flux [Eq. (3)] represent heat transfer due to
conductivity and species diffusion. The diffusive mass flux vector of
species l is modeled as

~j
m
l � � jml;x jml;y �⊤ �

h
ρDl

∂Yl

∂x ρDl
∂Yl

∂y

i⊤

The source term ~S in Eq. (1) is

~S � � 0 0 0 0 _ω1 : : : _ωnsp �⊤ (4)

and is defined by considering a one-step combustion reaction gov-
erned by

CH4 � 2O2 → CO2 � 2H2O

as presented in [43], with nsp � 4. The corresponding general stoi-

chiometric equation is defined as 0 � Pnsp
l�1 νlχl, where χ1 � CH4,

χ2 � O2, χ3 � CO2, χ4 � H2O, and νl is the net stoichiometric
coefficients of each species with ν1 � −1, ν2 � −2, ν3 � 1, and
ν4 � 2. Themolar concentration of the lth species is denoted by cl. In
our case, l ∈ f1; 2; 3; 4g, and so c1 � �CH4�, c2 � �O2�, c3 � �CO2�
and c4 � �H2O� are the molar concentrations. Here, we use the
standard bracket notation �⋅� to indicate molar concentration of a
species. The general relationship between a species molar concen-
tration, cl, and a species mass fraction, Yl, is

Yl �
clMl

ρ
(5)

whereY1 is themass fraction ofCH4,Y2 is themass fraction ofO2,Y3

is the mass fraction of CO2, and Y4 is the mass fraction of H2O. The

production rate of the lth species in the source term ~S in Eq. (4) is
modeled as

_ωl � Ml

∂creactionl

∂t
� νlΓr (6)

where creactionl are chemical reaction source terms whose

dynamics are described below and Γr is the reaction rate. The
molar mass of CH4 is M1 � 16.04 g∕mol, the molar mass of O2 is
M2 � 32.0 g∕mol, themolar mass ofCO2 isM3 � 18.0 g∕mol, and
the molar mass of H2O is M4 � 44.01 g∕mol. The reaction rate is
approximated by

Γr � k
Ynreactant
l�1

coll

where nreactant � 2 is the number of reactants, k is the rate coefficient,
and ol is the reaction order of the lth reactant. In our case o1 � 0.2
and o2 � 1.3. The rate coefficient k is described by the Arrhenius
equation as

k � A exp

�
−Ea

RuT

�
(7)

where Ru�8.314 J∕
�
mol ⋅K

�
is the universal gas constant,

A�2×1010 is the pre-exponential constant, and Ea � 2.025 × 105

is the energy required to reach a chemical reaction, measured in
Joules and referred to as the activation energy. In this work, we use
the ideal gas state equation that relates density and pressure to
temperature

ρ � p

RT
(8)

where R � Ru∕M andM � �Pnsp
l�1�Yl∕Ml��−1 is the average molar

mass of the mixtures. Thus, we can obtain temperature via
T � p∕ρR�Yl� from the states ρ, p, Yl.
At the downstream end of the combustor, we impose a nonreflect-

ing boundary condition while maintaining the chamber pressure via

pback�t� � pback;ref �1� A sin�2πft�� (9)

where pback;ref � 1.0 × 106 Pa, A � 0.1, and f � 5000 Hz. The top
and bottom wall boundary conditions are no-slip conditions, and for
the upstream boundary we impose constant mass flow at the inlets.

C. Numerical Model

GEMS uses the finite volume method to discretize the conservation
equations (1).Theprimitivevariables ~qp � �p vx vy T Y1 : : : Ynsp �⊤
are chosen as solution variables in GEMS, because they allow for
easier computation of thermal properties and provide more flexibility
when extending to complex fluid problems like liquid and supercritical
fluids. For a spatial discretization with nx cells, this results in a
dnx-dimensional system of nonlinear ordinary differential equations
(ODEs)
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dq

dt
� G�q; u�t��; q�0� � q0 (10)

for 0 < t ≤ T, where d is the number of unknowns in the PDE
governing equations and here d � 8 (4 flow variables and 4 species

concentrations). In Eq. (10), q�t� ∈ Rdnx is the discretized state
vector at time t (for GEMS, it is the discretization of the primitive

variables ~qp), q0 are the specified initial conditions, and dq∕dt is the
time derivative of the state vector at time t. The m inputs u�t� ∈ Rm

arise from the time-dependent boundary condition, defined in Eq. (9),
applied at the combustor downstream end. The nonlinear function

G:Rdnx × Rm → Rdnx maps the discretized states q and the input u to
the state time derivatives, representing the spatial discretization of the
governing equations described in Sec. II.B.
Solving these high-dimensional nonlinear ODEs is expensive,moti-

vating the derivation of a ROM that can yield approximate solutions at
reduced cost. The nonlinear multiscale dynamics represented by these
equations makes this a challenging task. To maintain computational
efficiency in the ROM, state-of-the-art nonlinear model reduction
methods combine POD with a sparse interpolation method (often
called hyperreduction) by evaluating the nonlinear functions only at
a select number of points. For instance, POD, together with the discrete
empirical interpolation method (DEIM), has had some success, but
also encountered problems in combustion applications [12]. Of par-
ticular challenge is the need to include a large number of interpolation
points in the POD-DEIM approximation, which means that the ROM
loses its computational efficiency. Robustness and stability of the
POD-DEIM models is also a challenge [26]. In the next section, we
present a different approach that uses nonintrusive ROM learning to
enable variable transformations that expose system structure. This
structure is then exploited in the derivation of the ROM and removes
the need for the DEIM approximation.

III. Nonintrusive Learning of a Combustion
Reduced Model

This section presents our approach to learn ROMs for the unsteady
combustion dynamics simulation from GEMS. Section III.A writes
a general nonlinear system in a form that exposes the underlying
structure of the governing equations and shows how projection
preserves that structure. Section III.B presents the operator inference
approach from [34], which learns structured ROM operators from
simulation data. Section III.C describes variable transformations that
lead to the desired polynomial structure for the combustion gov-
erning equations presented in Sec. II. These transformations yield the
structure needed to apply the operator inference approach.

A. Projection Preserves Polynomial Structure in the Governing
Equations

Consider a large-scale system of nonlinear ODEs written in poly-
nomial form:

dq

dt
� Aq�H�q ⊗ q� � C�q ⊗ q ⊗ q� � Bu� c� HOT (11)

Relating this equation to the general nonlinear system in Eq. (10),
we see thatAq are the terms inG�⋅� that are linear in the state q, with
A ∈ Rdnx×dnx ;H�q ⊗ q� are the terms inG�⋅� that are quadratic in q,
with H ∈ Rdnx×�dnx�2 ; C�q ⊗ q ⊗ q� are the terms in G�⋅� that are
cubic in q, with C ∈ Rdnx×�dnx�3 ; Bu are the terms in G�⋅� that are
linear in the input u, with B ∈ Rdnx×m; and c ∈ Rdnx are constant
terms in G�⋅� that do not depend on state or input. The abbreviation
“HOT” in Eq. (11) denotes higher-order terms and represents terms
that are quartic and higher order, as well as any other nonlinear terms
that cannot be represented in polynomial form.
We emphasize that we are not (yet) introducing approximations—

rather, we are explicitly writing out the discretized equations in the
form (11) to expose the system structure that arises from the form of
the terms in the governing PDEs. For example, a term such as

�∂∕∂x�ρvx in Eq. (1) is linear in the state ρvx, whereas a term such
as �∂∕∂x�ρvxY1 is quadratic in the states ρvx and Y1. Also note that
the term �∂∕∂x�ρvx is quadratic in the states ρ and vx, highlighting the
important point that the structure of the nonlinear model depends on
the particular choice of state variables.
A projection-based ROM of Eq. (11) preserves the polynomial

structure. Approximating the high-dimensional state q in a

low-dimensional basis V ∈ Rdnx×r, with r ≪ dnx, we write
q ≈ Vq̂. Using a Galerkin projection, this yields the ROM of
Eq. (11) as

dq̂

dt
� Â q̂�Ĥ�q̂ ⊗ q̂� � Ĉ�q̂ ⊗ q̂ ⊗ q̂� � B̂u� ĉ� HOT (12)

where Â � V⊤AV ∈ Rr×r, Ĥ � V⊤H�V ⊗ V� ∈ Rr×r2 , Ĉ �
V⊤C�V ⊗ V ⊗ V� ∈ Rr×r3 , and B̂ � V⊤B ∈ Rr×m are the ROM
operators corresponding, respectively, to A, H, C, and B, and
ĉ � V⊤c ∈ Rr is a constant vector. We note again that projection
preserves polynomial structure; that is, Eq. (12) has the same poly-
nomial form as Eq. (11), but in the reduced subspace defined by V.
In what follows, we will work with a quadratic system in order to

simplify notation. We note that the least-squares learning approach
described below applies directly to cubic, quartic, and all higher-
order polynomial terms (although it should be noted that the number
of elements in the ROM operators scales with r4 for the cubic

operator, r5 for the quartic operator, etc.). Higher-order terms often
exhibit significant block-sparsity that can be exploited in numerical
implementations, which limits the growth of computational cost to
solve the ROM. For terms in the governing equations that are not in
polynomial form (such as terms involving 1∕ρ, and the Arrhenius
reaction terms), we discuss in Sec. III.C the introduction of variable
transformations and auxiliary variables via the process of lifting
[36,37] to convert these terms to polynomial form.

B. Operator Inference for Learning Reduced Models

Here we summarize the steps of the operator inference approach
from [34]. First, we collect K snapshots of the state by solving the
high-fidelity model. We store the snapshots and the inputs used to
generate them in the matrices:

Q � �q0 : : : qK � ∈ Rdnx×K; U � �u0; : : : ; uK � ∈ Rm×K

where ui ≡ u�ti� and qi ≡ q�ti� with 0 � t0 < t1 < : : : < tK � T. In
general, dnx ≫ K, and so the matrixQ is tall and skinny. Second, we
identify the low-dimensional subspace in which we will learn the
ROM. In this work, we use the POD to define the low-dimensional
subspace, by computing the SVD of the snapshot matrix

Q � VΣW⊤

where V ∈ Rdnx×K , Σ ∈ RK×K , and W ∈ RK×K . The r ≪
dnx-dimensional POD basis, Vr � �v1; : : : ; vr�, is given by the first
r columns of V. Third, we project the state snapshot data onto the
POD subspace spanned by the columns ofVr and obtain the reduced
snapshot matrices

Q̂ � V⊤
r Q � � q̂0 : : : q̂K � ∈ Rr×K;

_̂
Q � � _̂q0 _̂q1 : : : _̂qK � ∈ Rr×K

where the columns of
_̂
Q are computed from Q̂ using any time

derivative approximation (see, e.g., [44–46]), or can be obtained—
if available—by collecting and projecting snapshots of G�qi; ui�.
Operator inference solves a least-squares problem to find the

reduced operators that yield the ROM that best matches the projected
snapshot data in a minimum residual sense. For the quadratic ROM

dq̂

dt
� Â q̂�Ĥ�q̂ ⊗ q̂� � B̂u� ĉ (13)
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operator inference solves the least-squares problem

min
Â∈Rr×r;Ĥ∈Rr×r2 ;B̂∈Rr×m;ĉ∈Rr

���Q̂⊤Â⊤��Q̂⊗ Q̂�⊤Ĥ⊤�U⊤B̂⊤�1K ĉ
⊤− _̂

Q
⊤���2

2

where 1K ∈ RK is the length K column vector with all entries set to
unity. Note that this least-squares problem is linear in the coefficients

of the unknown ROM operators Â, Ĥ, B̂, and ĉ. Also note that the
operator inference approach permits us to compute the ROM oper-

ators Â, Ĥ, B̂, and ĉ without needing explicit access to the original
high-dimensional operators A,H, B, and c.
We combine the unknown operators of Eq. (13) in the matrix

O � � Â Ĥ B̂ ĉ � ∈ Rr×�r�r2�m�1�

and the known low-dimensional data in the data matrix

D � � Q̂⊤ �Q̂ ⊗ Q̂�⊤ U⊤ 1K � ∈ RK×�r�r2�m�1� (14)

and then solve the minimization problem

min
O∈Rr×�r�r2�m�1�

����DO⊤ − _̂
Q

⊤
����
2

2

(15)

ForK > r� r2 �m� 1 this overdetermined linear least-squares
problem has a unique solution ([47] Sec. 5.3). It was proven in [34]
that Eq. (15) can be written as r independent least-squares problems

of the formmin
oi∈Rr�r2�m�1kDoi − rik22, for i � 1; : : : ; r, where oi is

a column of O⊤ (row of O) and ri is a column of
_̂
Q

⊤
. This makes the

operator inference approach efficient and scalable.
Regularization becomes necessary to avoid overfitting and to infer

operators that produce a stable ROM. In this work, we use an L2

regularization penalty on the off-diagonal elements of the operator Â
and on all elements of the remaining operators. With this regulariza-
tion, our least-squares problem becomes

min
oi∈Rr�r2�m�1

kDoi − rik22 � λkPioik22 for i � 1; : : : ; r (16)

where λ is the regularization parameter and Pi is the r� r2 �m� 1
identity matrix, with the ith diagonal set to zero so that we avoid
regularizing the diagonal elements of A. It should be noted that the
regularization parameter λ is problem specific and should be chosen
accordingly. In Sec. IV.B, we discuss details of the operator inference
implementation, a method for selecting λ, and the removal of redun-
dant terms in the least-squares problem in Eq. (16).

C. Structure-Exploiting ROM Learning Formulation for GEMS

Akey contribution of thiswork is to recognize that the nonintrusive
operator inference approach gives us complete flexibility in the set of
physical variables we work with to define the ROM.We can identify
choices of physical variables that expose the desired polynomial
structure in the governing equations, and then extract snapshots for
thosevariables by applying transformations to the snapshot data—we
do not need to make any modifications to the high-fidelity CFD
simulationmodel itself. In theory, a classical intrusiveROMapproach
could work with transformed variables (e.g., in the work of [24]);
however, this would involve rewriting the high-fidelity simulator,
a task that would be not only time-consuming but also fraught with
mathematical pitfalls, especially for unusual choices of variables.
This is where the data-driven perspective of machine learning
becomes extremely valuable.
The Euler equations admit a quadratic representation in the spe-

cific volume variables; in that case, a transformation of the snapshots
from conservative (or primitive) variables to specific volume varia-
bles can be exploited to create quadratic ROMs [35].Other PDEsmay
not admit polynomial structure via such straightforward transforma-
tions, but the process of lifting the equations via the introduction of

new auxiliary variables can produce a set of coordinates in which the

governing equations become polynomial in the lifted state [36–38].

For example, the tubular reactor example of [37] includes Arrhenius-

type reaction terms similar to those in Eq. (7). The introduction of

auxiliary variables permits the governing equations to be written

equivalently with quartic nonlinearity in the lifted variables.¶

Lifting to polynomial form for the GEMS equations described in

Sec. II is made difficult by several of the terms, in particular through

some of the gas thermal properties such as the nonlinear dependence

of enthalpy on temperature. A complete lifting that converts all

equations to a polynomial form is possible, but would require the

introduction of a large number of auxiliary variables and would also

result in the introduction of some algebraic equations. However, as

the analysis below shows, the GEMS governing equations admit a

transformation for whichmany terms in the governing equations take

polynomial form when we use the variables

~qL � �p vx vy ξ c1 c2 c3 c4 �⊤ (17)

Here ξ � �1∕ρ� is the specific volume, and recall that c1 � �CH4�,
c2 � �O2�, c3 � �CO2�, and c4 � �H2O� are the molar concentrations

with cl � �ρYl∕Ml�.
Below, we derive the governing PDEs for specific volume ξ and

velocities vx, vy. These three governing PDEs all turn out to be

quadratic in the learning variables ~qL. In Appendix A we present

the lifting transformations for the source term dynamics creactionl in the

vector ~S in Eq. (4). In Appendix Bwe derive the equations governing

the pressure p and the species molar concentrations ci. These equa-
tions have some terms that are not polynomial in the chosen learning

variables ~qL.
To keep notation clean in application of the chain rule, let the

conservative variables be denoted as g1 � ρ, g2 � ρvx. Throughout,
we frequently use the relationship

∂ξ
∂x

� ∂
∂x

1

ρ
� −

1

ρ2
∂ρ
∂x

� −ξ2
∂ρ
∂x

(18)

and similarly for ∂ξ∕∂y. Note also that we are assuming the existence

of these partial derivatives; that is, we do not consider the case of

problems with discontinuities.
Specific volume ξ � 1∕ρ: We use the constitutive relationship for

the density ρ in Eq. (1) in the derivation

∂ξ
∂t

� ∂
∂t
1

ρ
� −

1

ρ2
_ρ � ξ2∇ ⋅ �ρvx~i� ρvy ~j �

� ξ2
�
∂ρ
∂x

vx � ρ
∂vx
∂x

�
� ξ2

�
vy

∂ρ
∂y

� ρ
∂vy
∂y

�

Inserting Eq. (18) into the above, we obtain

∂ξ
∂t

� −
∂ξ
∂x

vx � ξ
∂vx
∂x

− vy
∂ξ
∂y

� ξ
∂vy
∂y

which is quadratic in the learning variables ξ, vx, vy.
Velocities vx, vy: We have

∂vx
∂t

� ∂
∂t
g2
g1

� 1

g1
_g2 − g2

1

g21
_g1 �

1

ρ
_g2 −

vx
ρ

_g1

and from Eq. (1) we have that _g1 � _ρ � −∇ ⋅ �ρvx~i� ρvy ~j� as well
as _g2��ρ _vx��∇⋅�−�ρv2x�p�~i− �ρvxvy�~j�τxx~i�τxy ~j�. Thus,

we obtain

¶The Arrhenius reaction terms can be lifted further to quadratic form,
but then require the inclusion of algebraic constraints, which makes the
model reduction task more difficult; see [37].
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∂vx
∂t

� 1

ρ
∇ ⋅ �−�ρv2x � p�~i− �ρvxvy�~j� τxx~i� τxy ~j�

� vx
ρ
∇ ⋅ �ρvx~i� ρvy ~j�;

� −ξ
∂ρ
∂x

v2x −
∂v2x
∂x

− ξ
∂p
∂x

− ξ
∂ρ
∂y

vxvy −
∂vxvy
∂y

� ξ

�
∂τxx
∂x

� ∂τxy
∂y

�

�v2xξ
∂ρ
∂x

� vx
∂vx
∂x

� ξvxvy
∂ρ
∂y

� vx
∂vy
∂y

� −
∂v2x
∂x

− ξ
∂p
∂x

−
∂vxvy
∂y

� ξ

�
∂τxx
∂x

� ∂τxy
∂y

�
� vx

∂vx
∂x

� vx
∂vy
∂y

� −ξ
∂p
∂x

− vy
∂vx
∂y

� ξ

�
∂τxx
∂x

� ∂τxy
∂y

�
− vx

∂vx
∂x

and we get a similar expression for ∂vy∕∂t. Both dynamics are

quadratic in the learning variables p, vx, vy, ξ.
As noted above, Appendix A and Appendix B present the deriva-

tions for the chemical source terms, pressure, and chemical species.

IV. Numerical Results

We now apply the variable transformations and operator inference
framework to learn a predictive ROM from GEMS high-fidelity
combustion simulation data.** Section IV.A describes the problem
setup and GEMS dataset. Section IV.B discusses implementation
details, and Sec. IV.C presents our numerical results. Additional
numerical results can be found in [48].

A. GEMS Dataset

The computational domain shown in Fig. 1b is discretized with
nx � 38523 spatial discretization points. Each CFD state solution
thus has dimension dnx � 308184. The problem considered here has
fuel and oxidizer input streams with constant mass flow rates of 5.0
and 0.37 kg∕s, respectively. The fuel is composed of gaseous meth-
ane and the oxidizer is 42% gaseous O2 and 58% gaseous H2O, as
described in [11]. The forcing input Eq. (9) is applied at the right side
of the domain. For this simulation, the resulting Reynolds number
is about 10,000, defined as Re � ρvxL∕μ, where the density ρ,
horizontal velocity vx, and viscosity μ are evaluated at the inlet of
the oxidizer post (x � −0.04 m in Fig. 1b), and the characteristic
length L is defined as the height of the oxidizer inlet. The highest
Mach number is≈0.25 and is evaluated inside the oxidizer post (from
x � −0.04 to 0 m in Fig. 1b).
To generate training data,GEMS is simulated for a duration of 1ms

with a time step size of Δt � 1 × 10−7 s, resulting in K � 10;000
snapshots. The GEMS output is transformed to the variables given in
Eq. (17). The recorded snapshot matrix is thus

Q � � q0 q1 : : : qK � ∈ Rdnx×K � R308184×10000

Our numerical experiments were parallelized on a cluster with two
computing nodes. Each node has two 10-core Intel Xeon-E5 pro-
cessors (20 cores per node) and 128 GB RAM. The training data
generation took approximately 200 h in CPU time for the 1 ms,
10,000 snapshots of high-fidelity CFD data.
The range of variable values for the training data is shown in

Table 1. Note that the data cover a wide range of scales. Pressure is
of the order 106, whereas species concentrations can be as low as

10−12. This large scaling difference presents a challenge when learn-
ing models from data. To deal with the numerical issues related to
large differences in scaling and small species concentrations and
velocities, we scale each variable to the interval �−1; 1�. Variables
are scaled before computing the POD basis and projecting the data.

To obtain snapshots of the projected state time derivative,

we approximate the derivative with a five-point approximation

q̂i � �−q̂i�2 � 8q̂i�1 − 8q̂i−1 � q̂i−2�∕�12Δt�. This approximation

is fourth-order accurate. The first two and last two time derivatives are

computed using first-order forward and backward Euler approxima-

tions, respectively.

B. Learning a Quadratic Reduced-Order Model

To learn the operators of the quadratic ROM, we solve the regu-

larized least-squares problem shown in Eq. (16). We are using

numpy’s least squares solve numpy.linalg.lstsq. The algorithm is

based on the LAPACK routine xGELSD. That routine is based on

the SVD, which typically provides a stable implementation. In what

follows next, we describe several important implementation details.

1. Singular Value Decomposition Implementation and POD Basis

Selection

Because of the large size of this dataset, we implement the ran-

domized SVD algorithm, introduced in [49], to compute the leading

500 singular values and vectors of the snapshot matrix. The random-

ized SVD algorithm can be implemented in a scalable way for large

datasets as the data do not have to be read into single memory all at

once. The POD basis is chosen as the r leading left singular vectors.
The dimension r is typically chosen so that the cumulative energy

contained in the subspace is greater than a user-specified tolerance ϵ;
that is,

P
r
k�1 σ

2
kPdnx

k�1 σ
2
k

> ϵ

where σ2k are the squared singular values of the data matrix Q. To

guide the choice of r, we also use the relative projection error

Eproj �
kQ − VrV

⊤
r Qk2F

kQk2F
� 1 −

P
r
k�1 σ

2
kPdnx

k�1 σ
2
k

(19)

2. Removing Redundant Terms in Least-Squares Problem

There are redundant terms that arise in the Kronecker product

Q̂ ⊗ Q̂ in Eq. (14), which can cause the least-squares problem to

become ill-posed. To see this, consider q ⊗ q with q � � q1 q2 �T ;
that is, we have q ⊗ q � � q21 q2q1 q1q2 q22 �. Becausewe know
where the repeated terms occur in the product, we merely need to

remove the redundant (repeated) terms before we solve the least-

squares problem. Thus, the Kronecker product is replaced with the

term

Q̂2 � � q̂20 q̂21 : : : q̂2K � ∈ Rs×K

where s � r�r� 1�∕2. Each vector q̂2j is defined, according

to [34], as

Table 1 Range of variable values for GEMS data

State variable Minimum Mean Maximum

Pressure p in Pa 9.226 × 105 1.142 × 106 1.433 × 106

Velocity vx in m∕s −222.930 69.637 307.147

Velocity vy in m∕s −206.990 1.304 186.548

Specific volume ξ � ρ−1 in m3∕kg 0.0533 0.220 0.674

Molar concentration �CH4� 0.0 0.063 1.169

Molar concentration �O2� 0.0 0.056 0.097

Molar concentration �CO2� 0.0 0.002 0.012

Molar concentration �H2O� 0.0 0.154 0.232

**Code for the operator inference framework is available at https://test.pypi
.org/project/operator-inference/ in Python and https://github.com/elizqian/
operator-inference in MATLAB.
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q̂2j �

2
664
q�1�j

..

.

q�r�j

3
775 ∈ Rs; where; q�i�j � q̂i;j

2
64
q̂i;j

..

.

q̂r;j

3
75 ∈ Ri

and q̂i;j is the ith element of thevector q̂j. Now, instead of learning the

operator Ĥ ∈ Rr×r2 , the operator F̂ ∈ Rr×s is learned, which satisfies
the equivalent least-squares problem

min
Â∈Rr×r;F̂∈Rr×s;B̂∈Rr×m;ĉ∈Rr

��Q̂⊤Â⊤��Q̂2�⊤F̂⊤�U⊤B̂⊤�1K ĉ
⊤− _̂

Q
⊤��2

2

(20)

The least-squares problem is again of the form (15) but we use

the data matrix D � � Q̂⊤ �Q̂2�⊤ U⊤ 1K � ∈ RK×�r�s�m�1� and
solve for the operators O � �Â F̂ B̂ ĉ� ∈ Rr×�r�s�m�1�. Once
we have solved for the operator F̂, we can easily transform it to

obtain Ĥ.

3. Regularization

We use an L2 regularization (also known as Tikhonov regulariza-
tion or ridge regression) to solve the operator inference problem, as
shown in Eq. (20). The regularization term introduces a tradeoff
between operators that fit the data well and operators with small
values. This regularization is used to avoid overfitting to the data,
which in this setting causes our learned ROMs to be unstable (sol-
ution blow up in finite time). The regularization parameter λ affects
the performance of this algorithm—we require enough regularization
to avoid overfitting, but if λ is too large, the data will be poorly fit.
To help determine appropriate values of λ, we consider the

“L-curve” criterion discussed in [50]. The L-curve is a way of
visualizing the effects of different values of λ on the norm of the
residual (data fit) against the norm of the solution. The L-curve
criterion recommends choosing a value for λ that lies in the corner
of the curve, nearest the origin. In our numerical experiments, we
compute the L-curve to help determine appropriate values for λ.
Regularization also helps to reduce the condition number of the

regularized least-squares data matrix, �D λP �⊤. In Fig. 2 we show
the condition number of the data matrix D from Eq. (20) (with the
data already scaled to [−1, 1]) when we include 2500, 5000, 7500,
and 10,000 snapshots in the training set. The condition number is
quite large for this application, yet it decreases as we add more
training data. This effect is because, as we add more training data,
the first r POD basis vectors become richer. This in turn means that
the projected data in D are richer for a given dimension of the POD
basis. Our numerical experiments reinforced this finding by confirm-
ing that 10,000 training snapshots were required to achieve a suffi-
ciently rich POD basis to obtain accurate ROMs, an indication of the
complexity of the combustor dynamics. Although the condition
number of the least-squares problem is high, for this example, it
remains at manageable levels. However, if the condition number gets

much larger, a careful treatment and consideration of proper data
sampling and regularization will be required.

4. Error Measures

To evaluate the ROM performance, we define appropriate error
metrics for each variable. The error is computed after the ROM
solutions have been reconstructed back into the full CFD model
dimension and scaled back to the original variable ranges. Recall
Table 1, which showed the range of values for each variable. Below
we provide details on how error is computed for each variable:
1) For pressure and temperature, the values are always positive and

well above zero, and so we use a standard relative error, defined as

Erelative;i �
jζCFD;i − ζROM;ij

jζCFD;ij
(21)

where ζ ∈ fp;Tg and ζ ⋅;i denotes the ith entry of a vector, and ζCFD is
the CFD solution variable and ζROM is the solution variable obtained
from the ROM simulation.
2) Because of the small values of species concentrations (on the

order of 10−12), dividing by the true value can skew a small error.
Similarly, velocities range from positive to negative, including zero.
Thus, for species concentrations and velocities, we use a normalized
absolute error, defined as

Enabs;i �
jζCFD;i − ζROM;ij
maxl�jζCFD;lj�

(22)

where ζ ∈ fvx; vy; �CH4�; �O2�; �CO2�; �H2O�g and maxl�jζCFD;lj�
denotes the maximum entry of jζCFDj, that is, the maximum absolute
value over the discretized spatial domain.

C. Learned Reduced Model Performance

The given K � 10;000 snapshots representing 1 ms of GEMS
simulation data (scaled to [−1, 1]) are used to learn the ROM.We are
also given another 2ms of testing data at themonitor locations shown
in Fig. 1b, which we use to assess the predictive capabilities of our
learned ROMs beyond the range of training data.
The cumulative energy of the singular values of the snapshot data

matrixQ is shown in Fig. 3. The singular values that correspond to a
cumulative energy of 98.5% and 99% are indicated with the red
triangle and green square, respectively. We use basis sizes of
r � 24, capturing 98.5% of the total energy, and r � 29, capturing
99% of the total energy.
In Figs. 4a and 4b we show the L-curve for each basis size. The

L-curve for a basis of r � 24 is somewhat uninformative in this
case. The regularization parameters chosen were 1.0E� 05 and
λ � 3.0E� 05, which lie in the upper part of the L-curve and are
therefore a recommended choice by the L-curve criterion discussed
above. For a basis of size of r � 29, the L-curve indicates a regu-
larization parameter around λ � 3.0E� 04. Stable systems are pro-
duced for λ � 3.0E� 04 and 5.0E� 04.

Fig. 2 Condition number of the datamatrixD vs basis size for different-
sized training sets.

Fig. 3 Cumulative energy computed with Eq. (19). The leading r � 24
singular values capture 98.5% of the energy and the leading r � 29
capture 99%.

2664 SWISCHUK ETAL.

D
ow

nl
oa

de
d 

by
 U

N
IV

 O
F 

C
A

L
IF

O
R

N
IA

 S
A

N
 D

IE
G

O
 o

n 
Ju

ne
 1

, 2
02

0 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.J

05
89

43
 

https://arc.aiaa.org/action/showImage?doi=10.2514/1.J058943&iName=master.img-001.jpg&w=230&h=136
https://arc.aiaa.org/action/showImage?doi=10.2514/1.J058943&iName=master.img-002.jpg&w=229&h=140


We simulate the learned ROM for the two model sizes, r � 24
and r � 29, with the same initial value and time step size

(Δt � 1 × 10−7 s) as those used to generate the training set. Because
the ROM was constructed from data scaled to [−1, 1], we solve the
ROM in the (scaled) subspace, and then reconstruct the dimensional
quantities by reversing the scaling. Figures 5 and 6 compare the time
trace of pressure computed by GEMS (our “truth” data) with the
ROM predictions for 30,000 time steps (10,000 time steps are used
for training; 20,000 time steps are pure prediction for the ROM) at the
cell located at (0.0, 0.0225) in the domain (denoted as monitor
location 1 in Fig. 1b). The performance of the ROM on the training
data (first 1 ms of data) is good in both cases, although the r � 29

ROM (Fig. 6) is more accurate. For test data predictions beyond the
training data, both ROMs yield accurate phase predictions and pres-
sure oscillation amplitudes that are good approximations of the truth.
A Galerkin-projection-based POD method was applied to this

GEMS model in Ref. [11]. The authors there found that a large
number of modes (r > 100) were necessary to obtain stable ROMs.
Moreover, comparable accuracy, for example, for the pressure probe
predictions shownhere,was only achievedwith r � 200PODmodes
for the ROM (cf. Fig. 15 in Ref. [11] with Figs. 5 and 6 herein; both
are recording pressure at the same probe location). Consequently,
although our learned ROM does not resolve the full flow physics, we
do obtain good predictability in time at much lower ROM dimension

Fig. 4 L-curve for different basis sizes and regularization parameters λ. The horizontal axis shows the squared normof learned operators, kOk22, and the
vertical axis shows the least-squares residual, kDO⊤ − Q̂⊤k22.

Fig. 5 Pressure time traces for basis size r � 24. Trainingwith 10,000 snapshots.Black vertical line denotes the end of the trainingdata and the beginning
of the test data.

Fig. 6 Pressure time traces for basis size of r � 29. Training with 10,000 snapshots. Black vertical line denotes the end of the training data and the
beginning of the test data.
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than in the classical Galerkin-POD approach used in Ref. [11]. The
key innovation leading to this improvement is our use of variable
transformations to build the ROM over a space for which the trans-
formed governing equations have more polynomial structure. The

nonintrusive operator inference approach is an enabler that makes
these variable transformations practical from an implementation
perspective, because the transformations are applied only to the
snapshot data and not to the CFD model itself.
We also compute the average error of each variable over the entire

domain at the last time step of the training set (the 10,000th time step).
The normalized absolute error, defined in Eq. (22), is shown for each
species and for x and y velocities in Fig. 7. This figure also shows the
relative error, defined in Eq. (21), for pressure and temperature. These
plots show that overall the error is decreasingwith an increasing basis
size. At a basis size of 18, 22, and 24 the systems were unstable

(solution blow up in finite time), and so these basis sizes are excluded
from the figure. The cause of this, and the nonmonotone error decay,
may be that the same regularization parameter was used for each of
these, λ � 3.0E� 04. Ideally, one would pick a parameter specific
for the basis size, but here we used the same regularization parameter
in order to give a fairer assessment of the ROM performance without
using manual tuning to optimize our results. We note, however,
that even with manual tuning of the regularization parameters we
are not guaranteed monotone state-error decay for strongly nonlinear

dynamical system ROMs.
In Fig. 8, we show the integrated species concentrations over time.

To compute these, at each time step in our simulation, we sum all

elements of a species vector. This measure monitors whether our
ROM conserves species mass, an important feature of a physically
meaningful simulation. As the discretization of the high-fidelity
model becomes finer, pointwise error may become large and mis-

leading if the mass is shifted slightly into the neighboring cells. The
integrated species concentration complements the evaluation of
pointwise errors and provides a global viewof the error in the domain.
Although CH4 conservation is tracked well qualitatively by the
ROM, it does show the largest deviation out of the four species. This
is a result of CH4 having the sharpest gradients (CH4 concentration
ranging from 0 to 1) compared with the other three species; see also
Figs. 9–12, and their respective color bars.
We also compare the state variables over the entire domain pre-

dicted by the learned ROMwith the given GEMS data at the last time
step K � 10;000 (which corresponds to t � 0.0159999 s). We pro-

vide the true field, the ROM-predicted field, and an error field for
each variable in Figs. 9–16. Again, for pressure and temperature, we
use a relative error from Eq. (21). For x and y velocities and for
species molar concentrations, we use a normalized absolute error
from Eq. (22). The plots show that the ROM predictions are, as
expected, not perfect, but indeed they capture well the overall struc-
ture and many details of the solution fields.
Table 2 shows timing results for the ROM generation and simu-

lation, as performed using python 3.6.4 on a dual-core Intel i5
processor with 2.3 GHz and 16 GB RAM. We report the following
CPU times: solving the operator inference least-squares problem
(20); ROM runtime for the two different basis sizes for 3 ms of

Fig. 7 Errormeasures vs basis size, averaged over the spatial domain at the last time step of training data.Normalized absolute error (22) of speciesCH4,
O2, CO2, andH2O and vx and vy velocities. Relative error (21) given for pressure and temperature.

Fig. 8 Integrated species at each time step for different basis sizes. Training with 10,000 snapshots.
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real-time prediction; and reconstruction of the high-dimensional,
unscaled combustion variables. The latter is required because the
ROM is evolving the dynamics in the �−1; 1� scaled variables, and
thus a postprocessing step is required to obtain the truemagnitudes of

the variables. In comparison with the approximately 200 h of CPU
time needed on a 40-core architecture (more details in Sec. IV.A) to
compute the first 10,000 snapshots of data, the ROMs provide 5–6
orders of magnitude in computational speed-up.

Fig. 9 Predictive results for CH4 molar concentration at the last time step of training data. Training with 10,000 snapshots, a basis size of r � 29, and
regularization set to λ � 3.0E� 04.

Fig. 10 Predictive results for O2 molar concentration at the last time step of training data. Training with 10,000 snapshots, a basis size of r � 29, and
regularization set to λ � 3.0E� 04.

Fig. 11 Predictive results forCO2 molar concentration at the last time step of training data. Training with 10,000 snapshots, a basis size of r � 29, and
regularization set to λ � 3.0E� 04.
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Fig. 12 Predictive results forH2Omolar concentration at the last time step of training data. Training with 10,000 snapshots, a basis size of r � 29, and
regularization set to λ � 3.0E� 04.

Fig. 14 Predictive results for velocityvx at the last time step of training data. Trainingwith 10,000 snapshots, a basis size of r � 29, and regularization set
to λ � 3.0E� 04.

Fig. 13 Predictive results for pressure at the last time step of trainingdata.Trainingwith 10,000 snapshots, a basis size of r � 29, and regularization set to
λ � 3.0E� 04.
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V. Conclusions

Operator inference is a data-driven method for learning ROMs of

dynamical systems with polynomial structure. This paper demon-

strates how variable transformations can expose quadratic structure

in the nonlinear system of PDEs describing a complex combustion

model. This quadratic structure is preserved under projection, pro-

viding the mathematical justification for learning a quadratic ROM

using operator inference. An important feature of the approach is that

the learning of the ROM is nonintrusive—it requires state solutions

generated by running the high-fidelity combustion model, but it does

not require access to the discretized operators of the governing

equations. This is important because it means that the variable trans-

formations can be applied as a postprocessing step to the simulation

data set, but no intrusivemodifications are needed to the high-fidelity

code. Although the quadraticmodel form is an approximation for this

particular application problem, the numerical results show that the

learned quadratic ROM can predict relevant quantities of interest and

can also conserve species accurately. Many nonlinear equations in
scientific and engineering applications admit variable transforma-
tions that expose polynomial structure. This, combined with the
nonintrusive nature of the approach, makes it a viable option for
deriving ROMs for complex nonlinear applications where traditional
intrusive model reduction is impractical and/or unreliable. Although
ROM stability was improved through the presented regularization of
the least-squares problem, some of the ROMs were unstable. Future
work thus includes devising alternative approaches (see, e.g.,
[23,24]) and developing theory to guarantee stable learned ROMs.

Appendix A: Lifting Chemical Source Terms

The chemical source terms in ~S in Eq. (4) are _ωl � Ml _c
reaction
l ; see

Eq. (6). The dynamics for the source terms _creactionl are given by

_creaction1 � −A exp

�
−

Ea

RuT

�
c0.21 c1.32 (A1a)

_creaction2 � 2_creaction1 (A1b)

_creaction3 � − _creaction1 (A1c)

_creaction4 � −2 _creaction1 (A1d)

To lift this system to polynomial form, we introduce the auxiliary
variables

Table 2 CPU times for two ROMs with time step size

Δt � 1 × 10−7 s and 30,000 time steps

ROMorder LS solve of Eq. (16) ROMsimulation
Reconstructing
high-dim. field

r � 24 2.80 s 6.06 s 0.04 s

r � 29 6.05 s 6.22 s 0.05 s

Fig. 16 Predictive results for temperature at the last time step of training data. Trainingwith 10,000 snapshots, a basis size of r � 29, and regularization
set to λ � 3.0E� 04.

Fig. 15 Predictive results for velocityvy at the last time step of training data. Trainingwith 10,000 snapshots, a basis size of r � 29, and regularization set
to λ � 3.0E� 04.
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w1 � c0.21 ; w2 � c−11 ; w3 � c1.32 ; w4 � c−12 ;

w5 � exp

�
−

Ea

RuT

�
; w6 �

1

T2

The source term dynamics (A1) are then cubic in w1, w3, w5:

_creaction1 � −Aw1w3w5 (A2a)

_creaction2 � 2Aw1w3w5 (A2b)

_creaction3 � −Aw1w3w5 (A2c)

_creaction4 � −2Aw1w3w5 (A2d)

Wenext derive the dynamics for the auxiliary variablesw1; : : : ; w6.

For instance, we have _w1 � 0.2c0.2–11 _c1 � 0.2w1w2 _c1. Similarly, we
obtain the system of auxiliary dynamics:

_w1 � 0.2w1w2 _c1; _w2 � −w2
1 _c1; _w3 � 1.3w3w4 _c2;

_w4 � −w2
4 _c2; _w5 �

Ea

Ru

1

T2
w5

_T � Ea

Ru

w5w6
_T;

_w6 � −2
1

T3
� −2Tw2

6

The dynamics of the lifted variables are quintic in the variables
w1; : : : ; w6. If we further include an additional auxiliary variable
w7 � w1w3w5, then we obtain the system of equations

_w1 � 0.2Aw1w2w7; _w2 � −Aw2
1w7;

_w3 � 2.6Aw3w4w7; _w4 � −2Aw2
4w7;

_w5 �
Ea

Ru

w5w6
_T; _w6 � −2Tw2

6;

0 � w7 −w1w3w5

The temperature T � pξ∕R�Yl� can be obtained from the states ξ,
p, Yl via the ideal gas relationship in Eq. (8).

Appendix B: Equations for Pressure
and Chemical Species

Here, we give the complete governing equation for the species
molar concentrations cl and pressure p.

B.1. Species Molar Concentrations cl
For the species molar concentration dynamics, we use the relation-

ship cl � ρYl∕Ml from Eq. (5), where the constantsM1; : : : ;M4 are
molar masses. We obtain for l � 1;2; : : : ; nsp:

∂cl
∂t

� 1

Ml

∂ρYl

∂t

� 1

Ml

� _ωl � ∇ ⋅ �−vxρYl
~i − vyρYl

~j� ~j
m
l ��

� 1

Ml

�
Ml _c

reaction
l −Ml

�
∂vxcl
∂x

� ∂vycl
∂y

�
� ∇ ⋅ ~jml

�

� _creactionl −
�
∂vxcl
∂x

� ∂vycl
∂y

� 1

Ml

∇ ⋅ ~jml
�

Note that the chemical source terms _creactionl were given in Appen-

dix A, and from Eq. (A2) we see that the _cl are cubic in the auxiliary
lifted states w1; : : : ; w6. The divergence term is

∇ ⋅ ~jml � Dl

�
∂
∂x

�
ρ
∂Yl

∂x

�
� ∂

∂y

�
ρ
∂Yl

∂y

��

and since Yl � Mlclξ, we have that

ρ
∂Yl

∂x
� ρMl

∂clξ
∂x

� Ml

�
∂cl
∂x

� ρcl
∂ξ
∂x

�

Overall, we have that

∂cl
∂t

� _creactionl −
�
∂vxcl
∂x

� ∂vycl
∂y

� ∂cl
∂x

� ρcl
∂ξ
∂x

� ∂cl
∂y

� ρcl
∂ξ
∂y

�

which is quadratic in the learning variables vx, vy, cl with the

exception of the terms ρcl�∂ξ∕∂x� and ρcl�∂ξ∕∂y�. We note that if
ρ were included as a lifted variable (in addition to ξ), these terms
would become quadratic in the lifted state.

B.2. Pressure p

We start with the energy equation (2). Bymultiplying with density

ρ, we have ρe � ρh0 − p, and so from the conservation equation (1)
for ρe we obtain

∂�ρh0 − p�
∂t

� ∂ρvxh0

∂x
� ∂ρvyh0

∂y
� ∂

∂x
�vxτxx � vyτyx − jqx�

� ∂
∂y

�vxτxy � vyτyy − jqy� � 0

This directly gives an equation for the time evolution of pressure:

∂p
∂t

� ∂ρh0

∂t
� ∂ρvxh0

∂x
� ∂ρvyh0

∂y
� ∂

∂x
�vxτxx � vyτyx − jqx�

� ∂
∂y

�vxτxy � vyτyy − jqy�

Moreover, per definition of h0 in Eq. (2) and with cl � �ρYl∕Ml�
we have that

∂ρh0

∂t
�

Xnsp
i�1

∂ρhlYl

∂t
� ∂ρ�1∕2��v2x � v2y�

∂t

�
Xnsp
i�1

Ml

∂hlcl
∂t

� 1

2
�v2x � v2y�

∂ρ
∂t

� ρ
∂�vx � vy�

∂t

Overall, we have that

∂p
∂t

�
Xnsp
i�1

Ml

�
hl

∂cl
∂t

� cl
∂hl
∂t

�
� 1

2
�v2x � v2y�

∂ρ
∂t

� ρ
∂�vx � vy�

∂t

� ∂ρvxh0

∂x
� ∂ρvyh0

∂y
� ∂

∂x
�vxτxx � vyτyx − jqx�

� ∂
∂y

�vxτxy � vyτyy − jqy�

This equation remains nonlinear in our chosen learning variables

~qL. In particular, the enthalpies hl � hl�T� and their time derivatives
are nonlinear functions of temperature. The other terms show some
polynomial structure; for example, in Sec. III.C we showed that
∂�vx � vy�∕∂t is quadratic in the learning state variables p, vx, vy,
ξ. However, towrite this equation exactly in a polynomial formwould
require introducing a large number of auxiliary variables along with
their corresponding dynamics. We have instead chosen to introduce

an approximation by learning a ROM in the variables ~qL with
quadratic form.
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