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Abstract— If convection is the dominate mechanism for heat
transfer in a heat exchangers, then the devices are often
modeled by hyperbolic partial differential equations. One of
the difficulties with this approach is that for low (or zero) pipe
flows, some of the imperial functions used to model friction can
become singular. One way to address low flows is to include
the full flux in the model so that the equation becomes a
convection-diffusion equation with a “small” diffusion term. We
show that solutions of the hyperbolic equation are recovered as
limiting (viscosity) solutions of the convection-diffusion model.
We employ a composite finite element - finite volume scheme
to produce finite dimensional systems for control design. This
scheme is known to be unconditionally L2-stable, uniformly with
respect to the diffusion term. We present numerical examples
to illustrate how the inclusion of a small diffusion term can
impact controller design.

I. INTRODUCTION

In recent years there has been a flurry of papers on
modeling, simulation and control of simple heat exchangers.
These models are special cases of more general thermal
fluid systems and, although there are a multitude of models
for such systems, we focus on simple models described by
convection-diffusion equations with a small or zero diffusion
term. These models may be found in the recent papers [1],
[2], [3] and [4]. We will consider variations of the models
in Sano’s papers [5], [6] and [7].

In [5], Sano considered a control problem for a mono-
tubular heat exchanger which he modeled by the 1D hyper-
bolic control system

Tt(t,x) =−vTx(t,x)−κT (t,x)+ γe−bxu(t), (1)

0 < x < L, t > 0,

with boundary condition

T (t,0) = 0, (2)

where u(·) ∈ L2(0,+∞) is a control input. The initial data
for (1) is given by

T (0,x) = ϕ(x) ∈ L2(0,L). (3)

The physical set up involves a fluid of constant density ρ

and of heat capacity Cp flowing through an internal tube of
a mono-tube heat exchanger of length L. The flow velocity
is assumed to be the constant v > 0. After some simplifying
assumptions, one arrives at equation (1) where κ ≥ 0 plays
the role of a heat transfer coefficient and T (t,x) is the tem-
perature of the liquid. The function b(x) = γe−qx distributes
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the control, but for q ≥ 1 the control is concentrated near
x = 0 to approximate a boundary control problem (see [5]).
Note that the case γ = 0 implies b(x) = 0 and corresponds
to the uncontrolled system.

It is assumed that convection dominates so that diffusion
can be ignored However, this presents as problem when
the flow velocity becomes small or zero and the hyperbolic
equation becomes degenerate. The “full flux” model modifies
(1) by adding a diffusion term of the form εTxx(t,x) (where
ε > 0) and (1) is replaced by

Tt(t,x) = εTxx(t,x)− vTx(t,x)−κT (t,x)+ γe−bxu(t). (4)

The boundary condition (7) is augmented by a flux condition
at x = L. In particular, the boundary conditions for (4) are

T (t,0) = 0, εTx(t,L) = 0. (5)

The “ε” in the flux boundary condition at x = L is important
and should not be dropped since we need this to establish
“convergence of the system” (4)-(5) to the system (1)-(2).

Observe that if ε = 0 and v > 0, the parabolic system (4)-
(5) reduces to the hyperbolic system (1)-(2) and, if ε > 0 and
v= 0, then (4)-(5) reduces to a self adjoint heat equation. It is
easy to show that if ε > 0 and v> 0, then v→ 0+ implies that
solutions of (4)-(5) converge (in L2(0,L)) to the solutions of

Tt(t,x) = εTxx(t,x)−κT (t,x)+ γe−bxu(t),

with boundary conditions

T (t,0) = 0, εTx(t,L) = 0.

On the other hand, showing that if ε > 0 and v > 0, then
ε → 0+ implies that solutions of (4)-(5) converge to the
solutions of (1)-(2) requires more effort and will be addressed
below. Finally, assuming one can prove convergence of
these systems, the issue of approximation still needs to be
addressed. Ideally, one would like to have an approximation
scheme that is valid for “small” ε > 0 and “large” v > 0
and remains convergent for “small” ε > 0 and “smaller”
v > 0. Moreover, we need these numerical schemes to be
dual convergent if they are to be useful in optimization based
design (see [8], [9]). In this paper we employ a composite
finite element - finite volume discretization method discussed
in [10] and [11]. This scheme is known to be unconditionally
L2-stable, uniformly with respect to the diffusion term.

Because of space limitations, theoretical results are pro-
vided only for the mono-tube heat exchanger. However, the
results extend to parallel and counter flow heat exchangers
and we present numerical results for the counter flow heat
exchanger illustrated in Figure 1. In the top channel one
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has a “hot” fluid with temperature T1(t,x) flowing from left
to right with constant velocity v1 and a “cold” fluid with
temperature T2(t,x) flowing from right to left with constant
velocity v2. The cold fluid is heated by heat transfer through
the wall. We consider a control system similar to the problem
considered by Sano and Nakagiri in [12] for a parallel flow
heat exchanger and may be considered as a two fluid version
of mono-tube problem above.

1( , )T t x

0x = x L=

2 ( , )T t x

Fig. 1. A Counterflow Heat Exchanger

The full flux model for this system has the form

∂T1(t,x)
∂ t = ε

∂ 2T1(t,x)
∂x2 − v1

∂T1(t,x)
∂x −κ1T1(t,x)

+κ1T2(t,x)+ γ1e−b1xu1(t)

∂T2(t,x)
∂ t = ε

∂ 2T2(t,x)
∂x2 + v2

∂T2(t,x)
∂x −κ2T2(t,x)

+κ2T1(t,x)+ γ2e−b2xu2(t)

, (6)

where the constants κ1 and κ2 are heat transfer coefficients.
For channel one, we have the boundary conditions

T1(t,0) = 0, εTx(t,L) = 0 (7)

and for channel two we have

−εTx(t,0) = 0, T2(t,L) = 0. (8)

Initial conditions for each channel are given by

T1(0,x) = ϕ(x) and T2(0,x) = ψ(x), 0 < x < L, (9)

respectively.

II. DISTRIBUTED PARAMETER FORMULATION

We focus our analysis on the mono-tube full flux system
(4)-(5), but note that the results can be extended to parallel
and counter flow heat exchanger models such as (6)-(8)
above. Note that (4)-(5) may be written as an abstract Cauchy
problem on Z = L2(0,L) of the form

ż(t) = [εA + vH ]z(t)+K z(t)+Bu(t) ∈ Z, (10)

where

D(A ) = {ϕ(·) ∈ H2(0,L) : ϕ(0) = 0, εϕ
′
(0) = 0}, (11)

A φ(·) = φ
′′
(·), (12)

D(H ) = {ϕ(·) ∈ H1(0,L) : ϕ(0) = 0}, (13)

H φ(·) =−φ
′
(·), (14)

K φ(·) =−κφ(·) and [Bu](x) = e−bxu. It is well known that
for all ε > 0 and v > 0 the operator U = [εA + vH ]+K
with domain D(U ) = D(A ) generates an analytic semi-
group S(t,ε,v), the operator εA +K generates an ana-
lytic semigroup M(t,ε) and vH +K generates a nilpotent
semigroup N(t,v), all on Z = L2(0,L) (see [13], [14], [5]).
Observe that

S(t,ε,0) = M(t,ε)

and
S(t,0,v) = N(t,v).

In order to generate useful approximation schemes that are
valid for ε and v, we first need to show that the mappings
v→ S(t,ε,v) and ε → S(t,ε,v) are strongly continuous as
v→ 0+ and ε → 0+. The following result is classical and a
proof can be found in standard books (see [15] and [16]).

Theorem 1: For each ε̂ > 0, The semigroup S(t, ε̂,v) con-
verges strongly to S(t, ε̂,0) = M(t, ε̂) as v→ 0+. Moreover,
this convergence is uniform on compact time intervals.

The more interesting case concerns the strong convergence
of S(t,ε, v̂) to S(t,0, v̂)=N(t, v̂) as ε→ 0+ since this involves
what appears to be a singular perturbation result. To prove
this result we first consider the boundary value problem

−vwx(x) = f (x), 0 < x < L, w(0) = 0, (15)

where f ∈ L2(0,L) is given. For ε > 0 consider the perturbed
system

εwxx(x)− vwx(x) = f (x), 0 < x < L, (16)

with boundary conditions

w(0) = 0, εwx(L) = 0. (17)

The solution to (15) is given by

w0(x) =−
∫ x

0
( f (s)/v)ds =−

∫ x

0
h(s)ds

where h(s) = ( f (s)/v). Let

g(x) =
∫ x

0
h(s)ds

so that g(x) = −w0(x). To simplify notation, we set R =
R(ε) = v/ε so that for a fixed v = v̂ we have R(ε)→+∞ as
ε → 0+ and (16) becomes

wxx(x)−Rwx(x) = Rh(x), 0 < x < L. (18)

Integrating (18) produces

wx(x)−Rw(x) = R
∫ x

0
h(s)ds+Rc = R[g(x)+ c] (19)

for some constant c = cR. Since w(0) = 0, the Variation of
Parameters formula yields

w(x) = wR(x) =
∫ x

0
eR(x−s)R[g(s)+ c]ds. (20)
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Integrating (20) by parts we have

wR(x) =
[
−eR(x−s)(g(s)+ c)

]s=x

s=0
+
∫ x

0
eR(x−s)g′(s)ds

=−[g(x)+ c]+ ceRx +
∫ x

0
eR(x−s)g′(s)ds (21)

=−g(x)+ [eRx−1]c+
∫ x

0
eR(x−s)h(s)ds.

The boundary condition εwR
x (L) = 0 uniquely determines the

constant cR . In particular, (19) implies

wR
x (L)−RwR(L) = R[g(L)+ c]

so that
εwR

x (L)− vwR(L) = v[g(L)+ c]

and since εwR
x (L) = 0, it follows that vwR(L) =−v[g(L)+c]

which implies
c =−g(L)−wR(L). (22)

To compute the constant c = cR we substitute equation
(21) into (22) to obtain

c =−g(L)−
{
−g(L)+ [eRL−1]c+

∫ L

0
eR(L−s)h(s)ds.

}
=−g(L)+g(L)− [eRL−1]c−

∫ L

0
eR(L−s)h(s)ds

=−eRLc+ c−
∫ L

0
eR(L−s)h(s)ds.

Consequently,

0 =−ceRL−
∫ L

0
eR(L−s)h(s)ds

and solving for c yields

c = cR =
−1
eRL

∫ L

0
eR(x−s)h(s)ds =−

∫ L

0
e−Rsh(s)ds. (23)

Observe that

|cR| ≤
∫ L

0

∣∣e−Rs∣∣ |h(s)|ds≤
[∫ L

0
e−2Rsds

][∫ L

0
|h(s)|2 ds

]
=

([
−1
2R

[
e−2Rs]]s=L

s=0

)
‖h(·)‖2

L2 (24)

=
1

2R

(
1− e−2RL)‖h(·)‖2

L2 .

so that
lim
ε→0

cR = 0.

Regrouping (21), we have

wR(x)+g(x) = [eRx−1]cR +
∫ x

0
eR(x−s)h(s)ds (25)

which we write as

wR(x)−w0(x) = E(R,x) (26)

with E(R,x) defined by

E(R,x) = [eRx−1]cR +
∫ x

0
eR(x−s)h(s)ds. (27)

Lemma 1: The function E(R,x) converges to zero as ε→
0+ and the convergence is uniform on the compact interval
[0,L].

Proof: Using the definition (27) and (23), we have

E(R,x) = [eRx−1]cR +
∫ x

0
eR(x−s)h(s)ds

=−cR + eRxcR +
∫ x

0
eR(x−s)h(s)ds

=−cR + eRx
[
−
∫ L

0
e−Rsh(s)ds

]
+
∫ x

0
eR(x−s)h(s)ds

=−cR−
∫ L

0
eR(x−s)h(s)ds+

∫ x

0
eR(x−s)h(s)ds

=−cR−
∫ L

x
e−R(x−s)h(s)ds.

However,∣∣∣∣∫ L

x
e−R(x−s)h(s)ds

∣∣∣∣≤ ∫ L

x
e−R(x−s) |h(s)|ds

≤
(∫ L

x
e−2R(x−s)ds

)[∫ L

x
|h(s)|2 ds

]
(28)

≤ 1
2R

(
1− e−2R(L−x)

)
‖h(·)‖2

L2 .

and combining (24) and (28) it follows that

|E(R,x)| ≤ |cR|+
∣∣∣∣∫ L

x
e−R(x−s)h(s)ds

∣∣∣∣
≤ 1

R

(
1− e−2RL)‖h(·)‖2

L2 .

Hence,
|E(R,x)| ≤ ε ‖h(·)‖2

L2

and
lim

ε→0+
E(R,x) = 0.

Clearly the convergence is uniform on [0,L] and this com-
pletes the proof of the Lemma.

Theorem 2: The solution wR(x) converses uniformly on
[0,L] to w0(x).

The proof of this theorem is a direct consequence of
equation (26) and the previous lemma. We shall use this
result to prove the following theorem.

Theorem 3: For each v̂ > 0, the semigroup S(t,ε, v̂) con-
verges strongly to S(t,0, v̂) = N(t, v̂) as ε → 0+. Moreover,
this convergence is uniform on compact time intervals.

Proof: We employ the Trotter-Kato Theorem (see [16]).
Let v̂ > 0 be fixed and observe that S(t,ε, v̂) and N(t, v̂) are
of class G(1,−k). Thus, by Theorem 4.2 in [16] to establish
strong convergence of S(t,ε, v̂) to N(t, v̂) it is sufficient to
establish that for λ >−k, one has resolvent convergence

lim
ε→0+

(λ I− [(εA + v̂H )+K ])−1 f = (λ I− [v̂H +K ])−1 f

for all f ∈ Z = L2(0,L). Moreover, it is sufficient to establish
this convergence for λ0 = 0 (see the remark on page 86 in
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Pazy [16]). Therefore, we need to show that for f ∈ Z =
L2(0,L)

lim
ε→0+

([(εA + v̂H )+K ]−1 f = [v̂H +K ]−1 f .

Since K is bounded the problem reduces to proving that

lim
ε→0+

(εA + v̂H )−1 f = (v̂H )−1 f (29)

for all f ∈ Z = L2(0,L). However, from equation (26) above
we have

[(εA + v̂H )−1 f ](x)− [(v̂H )−1 f ](x) = E(R,x)

so that∣∣∣[(εA + v̂H )−1 f ](x)− [(v̂H )−1 f ](x)
∣∣∣≤ |E(R,x)|

and the previous Theorem implies (29) holds and this com-
pletes the proof.

III. NUMERICAL APPROXIMATIONS OF THE SYSTEM

We return now to the full flux version of the controlled
system

ż(t) = [εA + vH ]z(t)+K z(t)+Bu(t) ∈ Z (30)

which we write as

ż(t) = [A (ε)+F (v)]z(t)+Bu(t), (31)

where A (ε) = εA and F (v) = vH +K . The process of
numerical approximation can be thought of as a method
to produce hierarchal finite dimensional models which in
turn can be used for simulation, control and optimization.
It is important that these models respect the physics and
are constructed so that there is sufficient smoothness in the
model and parameters to allow for the implementation of
modern solvers.

Of course this system represents the standard convection-
diffusion equation and the important parameter is the Péclet
number Pe = v/ε . When the Péclet number is large, special
numerical methods are required (up-winding, etc.) to accu-
rately simulate the system. We are interested in numerical
schemes that produce “good approximations” for 0≤Pe< P̄.
The goal is to produce finite dimensional models for the
typical heat exchangers described by (10) of the form

żN(t) = [AN(ε)+FN(v)]zN(t)+BNu(t), (32)

which have the following properties:
1) The systems (32) preserve the properties in (10) that

are essential for simulation, control design and opti-
mization (smoothness, observability and reachability,
etc.).

2) For sufficiently small ε̂ > 0, the control system (32)
approximates (10) for 0 ≤ Pe < P̄. In particular, the
approximate control system (32) is valid for zero flows
(i.e., v = 0). This is one benefit of using the full flux
physics based model. In addition, this approach does
not require having to create special variables to deal
with thermal fluid systems such as “stream varibles”
in the thermal fluid Modelica models (see [17]).

3) The approximations that are convergent and dual con-
vergent so that the resulting finite dimensional systems
are suitable for optimal design and control (see [8],
[9]).

In this regard it is helpful to observe that A (ε) is self
adjoint while F (v) is a low order non-self adjoint operator.
Consequently, one can take advantage of composite finite ele-
ment - finite volume methods (see [11] and [10]) where A (ε)
is approximated by A E

N (ε) constructed by a finite element
method and F (v) is approximated by FV

N (v) constructed
by a finite volume method. As noted in [11] such methods
can be shown to be convergent uniformly with respect to the
diffusion coefficient ε . For the controlled system, one has
the additional benefit that these composite methods can be
constructed to ensure dual convergence.

We have shown above that for a fixed v, as ε → 0+ the
semigroup generated by [A (ε)+F (v)] converges strongly
to the semigroup generated by F (v). Therefore, we may
think of (31) as a parabolic approximation of the limiting
hyperbolic system. By employing a composite finite element
- finite volume scheme, convergence is achieved even as
ε → 0+. Moreover, the system is well-posed even when v
approaches zero and in the limiting case one has a standard
finite element approximation of the self adjoint system. The
only remaining issue is how to approximate the control input
operator B. Since we are interested in small values of
ε , we shall assume that the diffusion coefficient ε satisfies
0≤ ε ≤ 1. Thus, B is approximated by an averaging process

BN = (1− ε)BV
N + εBE

N (33)

where again as the notation suggests, BV
N is the finite

volume approximation of B and BE
N is the finite element

approximation of B.
In the numerical results below we employ standard con-

tinuous piecewise linear finite elements for A (ε) and a finite
volume scheme for the convective operator F (v). Although
space does not allow us to provide complete descriptions
of these approximations and their convergence properties,
the interested reader can find detailed information about the
finite element scheme in [18] and the finite volume (so called
AVE scheme) in [14] and [19].

To construct the approximating scheme based on the idea
of composite finite element - finite volume methods one cre-
ates a partition on [0,L] by defining xN

j = jL/(N+1), where
j = 0, . . . ,N + 1. The standard continuous piecewise linear
finite element scheme is used to construct the approximating
operators A E

N (ε) and BE
N . Since this construction appears

in several books and papers we leave out the details (see
[20], [21], [22], [18] and [23]). The finite volume scheme
used to approximate approximation operators F E

N (v) and
BE

N is based on the “AVE” scheme used for delay systems
in [24] and [25] and may be found in [14] and [19]. To
construct approximating operators using the finite volume
AVE scheme for the above partition on [0,L], one defines χN

j :
[0,L]→ R to be the characteristic functions on (xN

j−1,x
N
j ],

for j = 2 . . .N + 1 and χN
1 to be the characteristic function
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on [0,xN
1 ]. Let ZN be the closed subspace of Z = L2(0,L)

defined by

ZN ≡

{
ϕ

N(x) =
N+1

∑
j=1

zN
j χ

N
j (x), zN

j ∈ R

}
. (34)

The orthogonal projection πN of Z onto ZN is defined by

πNϕ(·) =
N+1

∑
j=1

ϕ
N
j χ

N
j (·), (35)

where for j = 1, . . . ,N +1,

ϕ
N
j ≡

N +1
L

∫ xN
j

xN
j−1

ϕ(s)ds. (36)

are the mean values. Approximating the operator F (v) is
now straightforward. Define DN(v) : ZN → ZN ⊆ Z by

DN(v)ϕN(x) =
L

N +1

[
−v

N+1

∑
j=1

[zN
j − zN

j−1]χ
N
j (x))

]
,

where we set zN
0 = 0. Also, let KN : ZN → ZN ⊆ Z be given

by
KNϕ

N(x) =−κϕ
N(x) (37)

so that F E
N (v) : ZN → ZN ⊆ Z is the sum

F E
N (v) = DN(v)+KN .

Recall that the input operator B : R1 → Z is defined by
[Bu](x) = γe−bxu = b(x)u. The finite volume approximating
operator is simply

[BV
Nu](x) = [πNb(x)]u.

Details for the counter flow heat exchanger (6) may be
found in [14] where convergence and dual convergence are
established.

IV. NUMERICAL EXAMPLE

Consider the LQR problem defined by the counterflow
problem (6)-(9) where L = 1, control is applied only on the
top channel with b1(x) = e−5xu(t) and b2(x) = 0 so that γ1 =
1, γ2 = 0 and b = 5. The diffusion coefficient is fixed at
ε = 0.005, κ1 = 15.933 and κ2 = 16.483. We set v1 = v and
v2 = (1.1)v, where v is varied between v = 0.1 and v = 0.

The cost function is given by

J =
∫ +∞

0

{
〈qQz(t, ·),z(t, ·)〉Z +R[u(t)]2

}
dt (38)

where Q = Q∗ = IZ is the identity operator on Z = L2(0,1)×
L2(0,1), R = 1 > 0 and q = 5. Let A (ε,v) = [A (ε) +
F (v)+K ]. In [14] and [19] we established that the pair
(A (ε,v),B) is stabilizable and there exist a unique optimal
control uopt(t) to the LQR problem defined by the cost
function (38) and

uopt(t) =−K (ε,v)zopt(t).

Here, K (ε,v) = R−1B∗Π where Π : Z → Z is the self-
adjoint bounded linear operator satisfying the standard al-
gebraic Riccati operator equation A (ε,v)∗Π+ΠA (ε,v)−

ΠBR−1B∗Π+Q = 0. Moreover, the Riesz representation
theorem implies that K : Z→ R1 has the form

K (ε,v)
[

ϕ(·)
ψ(·)

]
=
∫ L

0
k1(ε,v,ξ )ϕ(ξ )dξ (39)

+
∫ L

0
k2(ε,v,ξ )ψ(ξ )dξ .

where k1(ε,v, ·) and k2(ε,v, ·) are called the (optimal feed-
back) functional gains.

Figures 2 and 3 illustrates the that the functional gains
kN

1 (·) and kN
2 (·) converge as the number of finite volumes

increases. Here we fixed v = 0.1 and refined the mesh. The
plots are color codes so that N = 128 corresponds to the
solid blue line, N = 256 corresponds to the solid black line,
N = 512 corresponds to the solid red line and N = 1,024
corresponds to the dashed blue line.
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Fig. 2. Plots of k1(·)
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Fig. 3. Plots of k2(·)

Figures 4 and 5 illustrates the that the functional gains
k1(·) and k2(·) depend continuously on v. Here we fixed
N = 64, set ε = 0.005 and varied v from v = 0.1 down to
v= 0.0. The plots are color codes so that v= 0.1 corresponds
to the solid blue line, v = 0.05 corresponds to the solid green
line, v= 0.001 corresponds to the solid black line and v= 0.0
corresponds to the solid red line. Observe that as v→ 0+,
the functional gains are still defined at v = 0.0 and both
gains converge to a zero flow controller. The sharp ”peak”
in the v = 0 gains is a consequence of the finite element
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approximation for small ε (see [20]). Finally, the functional
gains also approach a limiting controller for a fixed v̂ > 0,
as ε→ 0+. This is a consequence of the results presented in
[19].
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Fig. 4. Plots of k1(·)
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V. CONCLUSIONS

We used the so called full flux model to approximate the
physics of heat exchangers. This approach allows for the
development of approximate finite dimensional models that
are valid for low or zero flow. Moreover the composite finite
element-finite volume method preserves important systems
properties needed for simulation and optimal control design
for a range of Péclet numbers. A simple numerical exam-
ple was provided to illustrate convergence of the optimal
feedback gain operators as v→ 0+. A complete analysis of
the method and several additional numerical examples will
appear in a forthcoming paper.
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