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A B S T R A C T

Complex mechanical systems often exhibit strongly nonlinear behavior due to the presence
of nonlinearities in the energy dissipation mechanisms, material constitutive relationships, or
geometric/connectivity mechanics. Numerical modeling of these systems leads to nonlinear
full-order models that possess an underlying Lagrangian structure. This work proposes a
Lagrangian operator inference method enhanced with structure-preserving machine learning to
learn nonlinear reduced-order models (ROMs) of nonlinear mechanical systems. This two-step
approach first learns the best-fit linear Lagrangian ROM via Lagrangian operator inference and
then presents a structure-preserving machine learning method to learn nonlinearities in the
reduced space. The proposed approach can learn a structure-preserving nonlinear ROM purely
from data, unlike the existing operator inference approaches that require knowledge about the
mathematical form of nonlinear terms. From a machine learning perspective, it accelerates
the training of the structure-preserving neural network by providing an informed prior (i.e.,
the linear Lagrangian ROM structure), and it reduces the computational cost of the network
training by operating on the reduced space. The method is first demonstrated on two simulated
examples: a conservative nonlinear rod model and a two-dimensional nonlinear membrane
with nonlinear internal damping. Finally, the method is demonstrated on an experimental
dataset consisting of digital image correlation measurements taken from a lap-joint beam
structure from which a predictive model is learned that captures amplitude-dependent frequency
and damping characteristics accurately. The numerical results demonstrate that the proposed
approach yields generalizable nonlinear ROMs that exhibit bounded energy error, capture
the nonlinear characteristics reliably, and provide accurate long-time predictions outside the
training data regime.

1. Introduction

Reduced-order models (ROMs) of nonlinear mechanical models play a key role in a variety of tasks ranging from control of soft
robotics [1,2] to design optimization of mechanical structures [3,4] to state assessment for structural health monitoring [5,6]. Non-
linear mechanical models in structural and mechanical engineering applications often possess an underlying Lagrangian structure.
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Deriving a Lagrangian ROM of these nonlinear mechanical models is of particular importance because the Lagrangian structure is
intimately connected to physically interpretable quantities such as momentum and energy, or in case of fluid systems, vorticity.
Structure-preserving model reduction of mechanical systems was introduced in [7] where the authors showed that performing a
Galerkin projection on the Euler–Lagrange equation leads to a Lagrangian ROM. The work in [8] presented a computationally
efficient, structure-preserving model reduction method for parametric Lagrangian systems with higher-order nonlinearities. Both of
these structure-preserving model reduction approaches are intrusive in that they require access to full-order model (FOM) operators
in order to derive nonlinear ROMs via the intrusive projection. This type of information, however, is typically unavailable when
working with proprietary software, complicated legacy code, or experimental data. Thus, nonintrusive methods that can learn ROMs
directly from simulated or experimental data have become increasingly popular.

The operator inference framework [9] is a promising data-driven approach for learning low-dimensional models of FOMs with
inear or low-order polynomial nonlinear terms. Using lifting transformations, this model reduction method has been extended to

broader class of FOMs with nonpolynomial nonlinear terms in [10–13] and to the gray-box setting in [14] where the authors
se knowledge about the nonpolynomial terms in analytic form to learn nonlinear ROMs from data. Recently, a variety of papers
ave embedded problem-specific structure in the operator inference framework to develop structure-preserving operator inference
ethods for Hamiltonian systems [15,16] and Lagrangian mechanical systems [17,18]. Similarly to [14], these structure-preserving

perator inference approaches assume prior knowledge about the nonlinear terms in analytic form. Such information is typically
navailable when the underlying physics is not well known or otherwise difficult to model.

As an alternative to learning interpretable polynomial dynamical systems, deep learning-based ROMs [19–24] have been
roposed for nonintrusive model reduction of nonlinear PDEs. These methods exploit deep neural networks to learn both the
onlinear trial manifold and the reduced dynamics. However, these methods are not designed to preserve the underlying geometric
tructure and therefore may not provide accurate predictions outside the training data regime. Discovering nonlinear dynamical
ystems from data was first considered in [25,26] where the authors employed symbolic regression methods to learn the governing
quations. Dictionary-based approaches based on sparse identification of nonlinear dynamical systems (SINDy) [27] have also
een developed for structure-preserving sparse identification of nonlinear dynamics in [28–30]. In another research direction, the
achine learning community has developed a wide variety of structure-preserving machine learning methods by endowing black-

ox neural networks with physics-motivated inductive biases. These structure-preserving machine learning (SpML) methods were
irst developed in the context of conservative dynamical systems by preserving the geometric structure related to the underlying
amiltonian [31–34], Lagrangian [35–39], and conservation laws [40,41]. Building on the work in this direction, these methods
ave also been generalized to nonconservative systems by preserving the metriplectic structure [42,43]. The authors in [38,44–
9] have combined the aforementioned SpML methods with various extensions of autoencoders [50,51] to learn and predict
agrangian/Hamiltonian dynamics from high-dimensional image datasets. Even though the SpML methods have been successful
t learning nonlinear dynamics purely from data consisting of either state trajectories or high-dimensional image observations, a
ajority of these approaches are only concerned with learning tasks where the data is coming from very low-dimensional systems,

.g. 5–10 dimensions. Therefore, these SpML methods are ill-suited for applications where the underlying dynamical system of
interest is itself high-dimensional.

The main goal of this work is to develop a structure-preserving nonintrusive model reduction method that can learn ROMs strictly
rom observed data without assuming additional knowledge about the form of nonlinearity. The main contributions of this work
re:

1. We develop a Lagrangian operator inference method enhanced with structure-preserving machine learning that parametrizes
the nonlinear ROM through a reduced Lagrangian and then learns both the linear and the nonlinear ROM operators in two
steps. First, we learn the linear ROM operators from projections of the full-order model snapshot data via structure-preserving
operator inference. We then use structure-preserving neural networks to learn nonlinear terms in the reduced potential energy
and the reduced dissipation function.

2. We present results for simulated data that demonstrate the proposed method’s ability to provide accurate and stable
predictions outside the training time interval for a conservative rod model and a nonconservative two-dimensional membrane
model.

3. We present results for experimental data consisting of digital image correlation measurements of a lap-joint beam structure
that demonstrate the applicability of the proposed approach when an underlying FOM is not available.

The paper is structured as follows. Section 2 outlines the Lagrangian mechanics formulation of nonlinear mechanical models
nd presents a brief review of the intrusive structure-preserving model reduction of these mechanical FOMs. Section 3 presents
he proposed Lagrangian operator inference method enhanced with structure-preserving machine learning for learning nonlinear
agrangian ROMs from data. In Section 4, we apply the proposed method to three datasets with increasing complexity: simulated
ata from a conservative rod model, simulated data from a two-dimensional nonlinear membrane model with internal damping, and
xperimental data from a jointed structure. Section 5 provides concluding remarks and suggests future research directions motivated
y this work.

. Background

In Section 2.1 we introduce the Lagrangian formulation of the nonlinear mechanical FOMs considered in this work. In Section 2.2
e review the construction of projection-based intrusive Lagrangian ROMs.
2
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2.1. Lagrangian mechanics

Consider a nonlinear mechanical system with a configuration manifold 𝖰 = R𝑛 where 𝑛 denotes the degrees of freedom in the
OM. We take the Lagrangian viewpoint on the mechanical system where the dynamics are described by the scalar Lagrangian
unction

𝐿(𝐪, 𝐪̇) = 𝑇 (𝐪̇) − 𝑈 (𝐪), (1)

here 𝐪(𝑡) is the set of generalized coordinates describing the system state, 𝑇 (𝐪̇) is the scalar kinetic energy function, and
(𝐪) is the scalar potential energy function. The governing equations for Lagrangian mechanical systems with nonconservative

orcing 𝐟 (𝐪̇) can be derived via the Lagrange–d’Alembert principle, see [52] for more details. This principle seeks 𝐪(𝑡) satisfying
∫ 𝑡𝐾
𝑡0

𝐿(𝐪, 𝐪̇) d𝑡 + ∫ 𝑡𝐾
𝑡0

𝐟 (𝐪̇) ⋅ 𝛿𝐪 d𝑡 = 0, where 𝛿 represents variations vanishing at initial time 𝑡0 and final time 𝑡𝐾 . Using integration
y parts and setting the variations at the endpoints to zero yields the forced Euler–Lagrange equations

d
d𝑡

(

𝜕𝐿
𝜕𝐪̇

)

− 𝜕𝐿
𝜕𝐪

= 𝐟 (𝐪̇). (2)

For this work, we focus on FOM Lagrangians of the form

𝐿(𝐪, 𝐪̇) = 1
2
𝐪̇⊤𝐌𝐪̇ − 1

2
𝐪⊤𝐊𝐪 − 𝑈nl(𝐪), (3)

where 𝐌 ∈ R𝑛×𝑛 denotes the symmetric positive-definite mass matrix, 𝐊 ∈ R𝑛×𝑛 denotes the linear stiffness matrix, and 𝑈nl(𝐪) is the
higher-order nonlinear component of the potential energy function. We note that the assumption about the quadratic form of the
system’s kinetic energy in (3) is quite general in mechanical and structural engineering applications. In mechanical models obtained
via semi-discretization of PDEs, the linear stiffness matrix 𝐊 is typically a symmetric positive-definite matrix.

The most popular approach to model damping in the context of mechanical and structural engineering applications is to assume
viscous damping. Under this assumption, the nonconservative forcing in (2) can be written as

𝐟 (𝐪̇) = −
𝜕 (𝐪̇)
𝜕𝐪̇

, (4)

where  (𝐪̇) ≥ 0 is the scalar nonnegative dissipation function. The dissipative force 𝐟 (𝐪̇) is typically decomposed into linear and
nonlinear components, i.e.,

𝐟 (𝐪̇) = −𝐂𝐪̇ −
𝜕nl(𝐪̇)

𝜕𝐪̇
, (5)

where 𝐂 ∈ R𝑛×𝑛 is the linear damping matrix and nl(𝐪̇) is the higher-order nonlinear component of the scalar dissipation function
 (𝐪̇) for modeling nonlinear damping behavior [53]. The linear dissipation behavior in mechanical and structural engineering
applications is modeled using Rayleigh damping where the linear damping matrix is proportional to the mass and stiffness matrix.
As a result, the damping matrix 𝐂 also possesses a symmetric positive-definite structure. Substituting expressions for the system
Lagrangian (3) and the nonconservative forcing (5) into the forced Euler–Lagrange Eqs. (2) yields the governing equations for the
Lagrangian FOM

𝐌𝐪̈ + 𝐂𝐪̇ +
𝜕nl(𝐪̇)

𝜕𝐪̇
+𝐊𝐪 +

𝜕𝑈nl(𝐪)
𝜕𝐪

= 𝟎. (6)

Variational integrators [54] provide a principled way of deriving structure-preserving numerical integrators that respect the
underlying Lagrangian structure. In this work, we use the Newmark integrator for the structure-preserving numerical integration of
both the Lagrangian FOMs and the Lagrangian ROMs.

2.2. Structure-preserving intrusive model reduction for mechanical systems

Reduced-order models obtained via the intrusive process of Galerkin projection approximate the FOM configuration space 𝖰 = R𝑛

y a reduced-order configuration space 𝖰𝑟 = R𝑟. Using an orthonormal basis matrix 𝐕𝑟 ∈ R𝑛×𝑟, the full-order model state is
pproximated via 𝐪 ≈ 𝐕𝑟𝐪 where the reduced state is denoted with 𝐪 ∈ R𝑟. We follow [8] to derive governing equations for
he intrusive Lagrangian ROM. The intrusive reduced Lagrangian 𝐿̂ is defined as

𝐿̂(𝐪, ̇̂𝐪) ∶= 𝐿(𝐕𝑟𝐪,𝐕𝑟
̇̂𝐪) = 𝑇 (𝐕𝑟

̇̂𝐪) − 𝑈 (𝐕𝑟𝐪). (7)

pplying the Lagrange–d’Alembert principle in the reduced setting, the resulting forced Euler–Lagrange equations in 𝑟 dimensions
are

𝜕𝐿̂(𝐪, ̇̂𝐪)
𝜕𝐪

− d
d𝑡

(

𝜕𝐿̂(𝐪, ̇̂𝐪)
𝜕 ̇̂𝐪

)

+ 𝐟̂ ( ̇̂𝐪) = 𝟎, (8)

where 𝐟̂ ( ̇̂𝐪) ∶= 𝐕⊤
𝑟 𝐟 (𝐕𝑟

̇̂𝐪) is the intrusive reduced nonconservative forcing.
For FOM Lagrangians of the form (3), the intrusive reduced Lagrangian is

𝐿̂(𝐪, ̇̂𝐪) = 1 ̇̂𝐪⊤
(

𝐕⊤𝐌𝐕
) ̇̂𝐪 − 1𝐪⊤

(

𝐕⊤𝐊𝐕
)

𝐪 − 𝑈 (𝐪), (9)
3

2 𝑟 𝑟 2 𝑟 𝑟 nl
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̂

where 𝑈nl(𝐪) ∶= 𝑈nl(𝐕𝑟𝐪) is the intrusive reduced nonlinear potential energy function. The intrusive reduced nonconservative forcing
𝐟 ( ̇̂𝐪) corresponding to nonconservative forcing of the form (5) is

𝐟̂ ( ̇̂𝐪) = −
(

𝐕⊤
𝑟 𝐂𝐕𝑟

) ̇̂𝐪 −
𝜕̂nl( ̇̂𝐪)

𝜕 ̇̂𝐪
, (10)

where ̂nl( ̇̂𝐪) ∶= nl(𝐕𝑟
̇̂𝐪) ≥ 0 is the nonnegative intrusive reduced dissipation function. Substituting expressions for the intrusive

reduced Lagrangian (9) and the intrusive reduced nonconservative forcing (10) into the reduced forced Euler–Lagrange equation
leads to

𝐌̂ ̈̂𝐪 + 𝐂̂ ̇̂𝐪 +
𝜕̂nl( ̇̂𝐪)

𝜕 ̇̂𝐪
+ 𝐊̂𝐪 +

𝜕𝑈nl(𝐪)
𝜕𝐪

= 𝟎, (11)

where 𝐌̂ ∶= 𝐕⊤
𝑟 𝐌𝐕𝑟, 𝐂̂ ∶= 𝐕⊤

𝑟 𝐂𝐕𝑟, and 𝐊̂ ∶= 𝐕⊤
𝑟 𝐊𝐕𝑟 are the intrusive reduced operators.

The authors in [7,8] showed that the intrusive Lagrangian ROM (11) respects the symmetric positive-definite property of the
system matrices and therefore, preserves the underlying Lagrangian structure. However, deriving an intrusive Lagrangian ROM
requires access to FOM operators, which is often not possible when working with proprietary software or a complicated community
code. The contributions of this work are presented in the next section, where we remove the intrusive assumption and learn a
nonlinear Lagrangian ROM directly from data.

3. Lagrangian operator inference enhanced with structure-preserving machine learning

Section 3.1 describes the projection of the high-dimensional data onto a low-dimensional subspace obtained via proper orthogonal
decomposition (POD). Section 3.2 formulates the Lagrangian structure-preserving learning problem and proposes a two-step strategy
to learn a structure-preserving nonlinear ROM purely from data. The first step presented in Section 3.3 employs the Lagrangian
operator inference (LOpInf) method to infer linear reduced operators. The second step presented in Section 3.4 introduces an SpML
method that augments the linear Lagrangian ROM inferred in Section 3.3 with nonlinear terms. Section 3.5 summarizes the proposed
Lagrangian operator inference enhanced with structure-preserving machine learning (LOpInf-SpML) approach in Algorithm 1 and
provides details about the offline training stage.

3.1. Data projection via proper orthogonal decomposition

We define the snapshot data matrix

𝐐 = [𝐪1,… ,𝐪𝐾 ] ∈ R𝑛×𝐾 , (12)

where 𝐪1,… ,𝐪𝐾 are the discrete states of the potentially high-dimensional system (6) at time 𝑡1,… , 𝑡𝐾 . Since it is computationally
infeasible to directly learn nonlinear high-dimensional models of the form (6), we first perform a projection of the data onto the
POD subspace, in which we then learn the nonlinear ROM.

We follow [55] to build the POD basis matrix 𝐕𝑟 from the FOM snapshot data matrix 𝐐 = [𝐪1,… ,𝐪𝐾 ] ∈ R𝑛×𝐾 via the singular
value decomposition

𝐐 = 𝐕𝛯𝛯𝛯𝐖⊤, (13)

where 𝐕 ∈ R𝑛×𝑛, 𝛯𝛯𝛯 ∈ R𝑛×𝑛, and 𝐖 ∈ R𝐾×𝑛. The columns of the matrices 𝐕 and 𝐖 are the left and right singular vectors of 𝐐,
respectively. We assume that the singular values 𝜉1 ≥ 𝜉2 ≥ ⋯ in 𝛯𝛯𝛯 are in descending order. The POD basis of dimension 𝑟 is defined
by the leading 𝑟 columns of 𝐕 that correspond to the 𝑟 largest singular values, and the state is approximated in the linear POD
subspace as 𝐪 ≈ 𝐕𝑟𝐪. Using this POD basis, we obtain reduced snapshot data via the projections onto 𝐕𝑟 as

𝐐̂ = 𝐕⊤
𝑟 𝐐 = [𝐪1,… ,𝐪𝐾 ] ∈ R𝑟×𝐾 , (14)

where the reduced snapshot 𝐪𝑘 at time 𝑡𝑘 is 𝐪𝑘 = 𝐕⊤
𝑟 𝐪𝑘.

To learn a nonlinear ROM nonintrusively from data, we also require time-derivative data at the reduced level. Here, we compute
̇̂𝐪 and ̈̂𝐪 from the reduced trajectory data 𝐪 using the eighth-order central finite difference scheme

̇̂𝐪𝑘 ≈
4(𝐪𝑘+1 − 𝐪𝑘−1)

5𝛥𝑡
−

(𝐪𝑘+2 − 𝐪𝑘−2)
5𝛥𝑡

+
4(𝐪𝑘+3 − 𝐪𝑘−3)

105𝛥𝑡
−

(𝐪𝑘+4 − 𝐪𝑘−4)
280𝛥𝑡

, (15)

̈̂𝐪𝑘 ≈ −
205𝐪𝑘
72𝛥𝑡2

+
8(𝐪𝑘+1 + 𝐪𝑘−1)

5𝛥𝑡2
−

(𝐪𝑘+2 + 𝐪𝑘−2)
5𝛥𝑡2

+
8(𝐪𝑘+3 + 𝐪𝑘−3)

315𝛥𝑡2
−

(𝐪𝑘+4 + 𝐪𝑘−4)
560𝛥𝑡2

. (16)

Using these time-derivative approximations at the reduced level, we build the snapshot matrices of the reduced first-order and
second-order time-derivative data

̇̂𝐐 = [ ̇̂𝐪 ,… , ̇̂𝐪 ] ∈ R𝑟×𝐾 , ̈̂𝐐 = [ ̈̂𝐪 ,… , ̈̂𝐪 ] ∈ R𝑟×𝐾 . (17)
4

1 𝐾 1 𝐾
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3.2. Problem formulation

The main aim of the proposed LOpInf-SpML framework is to learn a predictive nonlinear ROM from the reduced trajectory and
ime-derivative data while also ensuring that the learned ROM (i) is a Lagrangian system; (ii) respects the symmetric positive-definite
roperty of system matrices; and (iii) captures the conservative and dissipative behavior accurately. Towards this goal, we postulate
he nonlinear ROM form in terms of its Lagrangian ingredients, i.e.,

𝐌̂ ̈̂𝐪 + 𝐂̂ ̇̂𝐪 +
𝜕̂nl( ̇̂𝐪)

𝜕 ̇̂𝐪
+ 𝐊̂𝐪 +

𝜕𝑈nl(𝐪)
𝜕𝐪

= 𝟎, (18)

where 𝐌̂ = 𝐌̂⊤ ≻ 𝟎 is the nonintrusive reduced mass matrix, 𝐂̂ = 𝐂̂⊤ ≻ 𝟎 is the nonintrusive reduced linear damping matrix,
𝐊̂ = 𝐊̂⊤ ≻ 𝟎 is the nonintrusive reduced linear stiffness matrix, ̂nl( ̇̂𝐪) is the reduced nonlinear dissipation function, and 𝑈nl(𝐪) is
the reduced nonlinear potential energy function. Given the reduced snapshot data 𝐐̂ and the reduced time-derivative data ̇̂𝐐 and
̈̂𝐐, the goal is to learn the reduced Lagrangian ingredients by solving

min
𝐌̂=𝐌̂⊤≻𝟎,𝐂̂=𝐂̂⊤≻𝟎,𝐊̂=𝐊̂⊤≻𝟎,̂nl ,𝑈nl

‖

‖

‖

‖

‖

𝐌̂ ̈̂𝐐 + 𝐂̂ ̇̂𝐐 +
𝜕̂nl(

̇̂𝐐)

𝜕 ̇̂𝐪
+ 𝐊̂𝐐̂ +

𝜕𝑈nl(𝐐̂)
𝜕𝐪

‖

‖

‖

‖

‖𝐹
, (19)

here the reduced matrices 𝐌̂, 𝐂̂, 𝐊̂ ∈ R𝑟×𝑟, the reduced nonlinear potential energy function 𝑈nl ∶ R𝑟 → R, and the reduced nonlinear
issipation function ̂nl ∶ R𝑟 → R are learned in the reduced space. However, directly training a black-box neural network to learn
he nonlinear dynamics at the reduced level can be challenging from an optimization perspective, see, e.g., [56]. Moreover, such
lack-box approaches typically fail to generalize outside the training data regime, as there is no guarantee that the neural network
odel has learned the underlying geometric structure.

We therefore propose a two-step strategy to solve the challenging optimization problem (19). In step 1, we begin by learning the
inear reduced stiffness matrix 𝐊̂ and the linear reduced damping matrix 𝐂̂ via the Lagrangian operator inference method. In step 2,
e add more complex nonlinearities to the ROM by learning the reduced mass matrix 𝐌̂, the nonlinear components of the reduced
otential energy function 𝑈nl(𝐪), and the nonlinear components of the reduced dissipation function ̂nl( ̇̂𝐪) via a structure-preserving
achine learning method. To learn a nonlinear Lagrangian ROM of the form (18), we postulate a nonlinear reduced Lagrangian

𝐿̂(𝐪, ̇̂𝐪) = 1
2
̇̂𝐪⊤ ̇̂𝐪 − 1

2
𝐪⊤𝐊̂𝐪

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
=∶𝐿̂opinf(𝐪, ̇̂𝐪)

+ 1
2
̇̂𝐪⊤𝐌̂NN

̇̂𝐪
⏟⏞⏞⏞⏟⏞⏞⏞⏟
=∶𝑇NN( ̇̂𝐪)

−𝑈NN(𝐪), (20)

where 𝐿̂opinf(𝐪, ̇̂𝐪) is the reduced Lagrangian for the linear LOpInf ROM and 𝑇NN( ̇̂𝐪) and 𝑈NN(𝐪) are the neural network parametriza-
tions of the reduced kinetic energy and nonlinear components of the reduced potential energy function, respectively. Similarly, we
postulate a nonnegative nonlinear reduced dissipation function of the form

̂ ( ̇̂𝐪) = ̂opinf( ̇̂𝐪) + ̂NN( ̇̂𝐪) =
1
2
̇̂𝐪⊤𝐂̂ ̇̂𝐪 + ̂NN( ̇̂𝐪) ≥ 0, (21)

where ̂opinf( ̇̂𝐪) is the quadratic reduced dissipation function for the linear LOpInf ROM and ̂NN( ̇̂𝐪) is the neural network
parametrization of the nonlinear components of the reduced dissipation function. The postulated forms of the nonlinear reduced
Lagrangian in (20) and the nonlinear reduced dissipation function in (21) represent the nonlinear reduced Lagrangian ingredients
as the sum of quadratic components of the linear LOpInf ROM that are learned in step 1 and the nonlinear components (including
corrections to the quadratic components) in 𝑇NN( ̇̂𝐪), 𝑈NN(𝐪), and ̂NN( ̇̂𝐪) that are learned in step 2. We discuss the solution of
the resulting two separate minimization problems in Sections 3.3 and 3.4. Substituting expressions for the nonlinear reduced
Lagrangian (20) and the nonlinear dissipation function (21) into the forced Euler–Lagrange Eqs. (2) yields the ROM model form

(𝐈𝑟 + 𝐌̂NN) ̈̂𝐪 + 𝐂̂ ̇̂𝐪 +
𝜕̂NN( ̇̂𝐪)

𝜕 ̇̂𝐪
+ 𝐊̂𝐪 +

𝜕𝑈NN(𝐪)
𝜕𝐪

= 𝟎. (22)

Since we learn the reduced potential energy function and the reduced dissipation function in two steps, we decompose the
reduced mass matrix in (18) as 𝐌̂ = (𝐈𝑟 + 𝐌̂NN), where the constant reduced mass matrix component 𝐌̂NN is learned during the
training of structure-preserving neural networks in step 2. This specific decomposition of the reduced mass matrix 𝐌̂ serves two
purposes: it simplifies the constrained linear least-squares problem in Section 3.3, and it enables the learning of a constant correction
term 𝐌̂NN in the reduced mass matrix 𝐌̂ that is compatible with the nonlinear components 𝑈NN and ̂NN learned in step 2 in
Section 3.4.

3.3. Step 1: Lagrangian operator inference method to learn the linear reduced operators

To learn the linear parts of the Lagrangian ROM, we use the Lagrangian operator inference method [17] which fits linear
reduced operators to the reduced data in a structure-preserving way. For this portion of the learning process, we learn the quadratic
components of the Lagrangian as

𝐿̂ (𝐪, ̇̂𝐪) = 1 ̇̂𝐪⊤ ̇̂𝐪 − 1𝐪⊤𝐊̂𝐪, (23)
5

opinf 2 2
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Fig. 1. Architecture for the LOpInf-SpML method. Starting from the FOM snapshot data 𝐐 in (12), the reduced snapshot data 𝐐̂ in (14) is obtained via projections
onto the POD basis matrix 𝐕𝑟. Step 1 learns the linear LOpInf ROM (25) from the reduced snapshot data and then step 2 uses the linear LOpInf ROM as a prior
to learn the nonlinear reduced operators in the LOpInf-SpML ROM (22) from the reduced snapshot data.

where 𝐊̂ ∈ R𝑟×𝑟 is the symmetric positive-definite reduced stiffness matrix. Similarly, we postulate a quadratic dissipation function

̂opinf( ̇̂𝐪) =
1
2
̇̂𝐪⊤𝐂̂ ̇̂𝐪, (24)

where 𝐂̂ ∈ R𝑟×𝑟 is the symmetric positive-definite reduced damping matrix.
Based on the assumed model form for the dissipation function ̂opinf( ̇̂𝐪) and the reduced Lagrangian 𝐿̂opinf(𝐪, ̇̂𝐪) in step 1, we

derive the governing equations for the linear LOpInf ROM via the forced Euler–Lagrange equations
̈̂𝐪 + 𝐂̂ ̇̂𝐪 + 𝐊̂𝐪 = 𝟎. (25)

We obtain the linear symmetric positive definite reduced operators 𝐂̂ ∈ R𝑟×𝑟 and 𝐊̂ ∈ R𝑟×𝑟 by solving

min
𝐊̂=𝐊̂⊤≻𝟎,𝐂̂=𝐂̂⊤≻𝟎

‖

‖

‖

‖

̈̂𝐐 + 𝐂̂ ̇̂𝐐 + 𝐊̂𝐐̂
‖

‖

‖

‖𝐹
. (26)

The symmetric positive-definite constraints on the linear reduced operators ensure that the linear LOpInf ROM (25) preserves the
underlying Lagrangian structure.

Since the snapshot data 𝐐 from (12) is obtained (simulated or experimentally measured) from a nonlinear mechanical system, the
linear LOpInf ROM in (25) may be inaccurate because it does not capture the underlying nonlinear behavior. Step 2 in the proposed
learning approach exploits the expressive power of neural networks to augment the linear LOpInf ROM with missing nonlinear ROM
operators.

3.4. Step 2: Structure-preserving machine learning for nonlinear reduced operators

In this section, we present a structure-preserving machine learning architecture to learn the nonlinear components of the
reduced potential energy and the reduced dissipation function. For learning these nonlinear components, we choose a nonlinear
parametrization that strikes a balance between polynomial terms based on domain-specific knowledge and neural networks that
can capture more complex nonlinearities. Polynomial-augmented multilayer perceptrons (MLPs) [39,57] provide an expressive
parametrization where the polynomial terms allow us to exactly capture the effects of low-degree polynomial (but not purely
quadratic) energy terms commonly observed in mechanical systems, and the MLPs allow us to learn arbitrary nonlinearities that
cannot be captured by polynomial terms. We parametrize the nonlinear components of the reduced potential energy as

𝑈NN(𝐪;𝜶,𝝀,𝜽𝑈NN
) =

𝑖1+𝑖2+⋯+𝑖𝑟=𝑃1
∑

𝑖1 ,𝑖2 ,…,𝑖𝑟

𝛼𝑖1 ,𝑖2 ,…,𝑖𝑟𝑞
𝑖1
1 𝑞

𝑖2
2 ⋯ 𝑞𝑖𝑟𝑟 +

𝑁
∑

𝑖
𝜆𝑖 (𝑖)(𝐪), (27)

where 𝑃1 is the degree of the polynomial term, 𝜶 contains all the unknown 𝛼𝑖1 ,𝑖2 ,…,𝑖𝑟 coefficients, 𝝀 contains all the unknown 𝜆𝑖
coefficients, the function  (𝑖)(𝐪) represents an MLP, and 𝜽 contains all the neural network parameters used to define the MLPs
6

𝑈NN
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in (27). The quadratic terms in 𝑈NN(𝐪), i.e., 𝑃1 = 2 with 𝑖1 +⋯ + 𝑖𝑟 = 2, may be interpreted as providing a correction to the linear
reduced stiffness matrix 𝐊̂ learned in step 1. We parametrize the nonlinear components of the reduced dissipation function as

̂NN( ̇̂𝐪; 𝜷, 𝜸,𝜽̂NN
) =

𝑖1+𝑖2+⋯+𝑖𝑟=𝑃2
∑

𝑖1 ,𝑖2 ,…,𝑖𝑟

𝛽𝑖1 ,𝑖2 ,…,𝑖𝑟
̇̂𝑞𝑖11

̇̂𝑞𝑖22 ⋯ ̇̂𝑞𝑖𝑟𝑟 +
𝑁
∑

𝑖
𝛾𝑖 (𝑖)( ̇̂𝐪), (28)

where 𝑃2 is the degree of the polynomial term, 𝜷 contains all the unknown 𝛽𝑖1 ,𝑖2 ,…,𝑖𝑟 coefficients, 𝜸 contains all the unknown 𝛾𝑖
coefficients, the function  (𝑖)( ̇̂𝐪) represents an MLP, and 𝜽̂NN

contains all the neural network parameters used to define the MLPs
in (28). The quadratic terms in ̂NN( ̇̂𝐪), i.e., 𝑃2 = 2 with 𝑖1 +⋯ + 𝑖𝑟 = 2, may be interpreted as providing a correction to the linear
reduced damping matrix 𝐂̂ learned in step 1. In this work, we use polynomial terms up to degree 𝑃1 = 𝑃2 = 4 in both 𝑈NN(𝐪) and
̂NN( ̇̂𝐪). Finally, we parametrize the reduced kinetic energy term as

𝑇NN( ̇̂𝐪; 𝜻) =
𝑖1+𝑖2+⋯+𝑖𝑟=2

∑

𝑖1 ,𝑖2 ,…,𝑖𝑟

𝜁𝑖1 ,𝑖2 ,…,𝑖𝑟
̇̂𝑞𝑖11

̇̂𝑞𝑖22 ⋯ ̇̂𝑞𝑖𝑟𝑟 , (29)

here we only use polynomial terms up to degree two in 𝑇NN( ̇̂𝐪) and 𝜻 contains all the unknown 𝜁𝑖1 ,𝑖2 ,…,𝑖𝑟 coefficients. This quadratic
orm for the reduced kinetic energy term 𝑇NN( ̇̂𝐪) leads to a constant, symmetric reduced mass matrix 𝐌̂NN which is obtained by

computing the Hessian of 𝑇NN( ̇̂𝐪) as

[𝐌̂NN]𝑖𝑗 =
𝜕2𝑇NN

(

̇̂𝐪
)

𝜕 ̇̂𝑞𝑖𝜕 ̇̂𝑞𝑗
, (30)

where [𝐌̂NN]𝑖𝑗 denotes the 𝑖, 𝑗th element of the 𝐌̂NN matrix for 𝑖, 𝑗 = 1,… , 𝑟.
We consider a unsupervised learning setup and learn the LOpInf-SpML ROM (22) by solving

min
𝜻 ,𝜶,𝜷,𝝀,𝜸,𝜽𝑈NN

,𝜽̂NN

 (𝜻 ,𝜶, 𝜷,𝝀, 𝜸,𝜽𝑈NN
,𝜽̂NN

) such that 1
2
̇̂𝐪⊤(𝐈𝑟 + 𝐌̂NN) ̇̂𝐪 > 0, ̂ ( ̇̂𝐪) ≥ 0, (31)

where the loss function  (𝜻 ,𝜶, 𝜷,𝝀, 𝜸,𝜽𝑈NN
,𝜽̂NN

) is based on the residual of the forced Euler–Lagrange equations at the reduced
level, specifically

 (𝜻 ,𝜶, 𝜷,𝝀, 𝜸,𝜽𝑈NN
,𝜽̂NN

) =
‖

‖

‖

‖

‖

(𝐈𝑟 + 𝐌̂NN)
̈̂𝐐 + 𝐂̂ ̇̂𝐐 +

𝜕̂NN(
̇̂𝐐; 𝜷, 𝜸,𝜽̂NN

)

𝜕 ̇̂𝐪
+ 𝐊̂𝐐̂ +

𝜕𝑈NN(𝐐̂;𝜶,𝝀,𝜽𝑈NN
)

𝜕𝐪

‖

‖

‖

‖

‖𝐹
, (32)

herein the linear symmetric positive definite reduced operators 𝐊̂ and 𝐂̂ are learned in step 1. The reduced kinetic energy term
N̂N( ̇̂𝐪), the reduced nonlinear potential energy term 𝑈NN(𝐪), and the reduced nonlinear dissipation function ̂NN( ̇̂𝐪) learned through
he SpML method in step 2 can be interpreted as perturbations to the reduced Lagrangian ingredients in step 1. The proposed
OpInf-SpML ROMs provide a flexible learning approach that combines the Lagrangian operator inference method [17] with the
tructure-preserving neural networks.

.5. Complete training algorithm

The schematic in Fig. 1 provides a visual explanation of the two-step learning strategy whereas Algorithm 1 formally summarizes
he proposed method which learns the LOpInf-SpML ROM (22) in two separate stages. After projecting the high-dimensional data
nto a low-dimensional subspace of appropriate dimension, we first learn the linear reduced operators by solving the constrained
ptimization problem (26). The constrained linear least-squares problems for inferring the linear reduced operators in the numerical
tudies are solved using semidefinite programming mode provided by the CVX package [58]. To preserve the Lagrangian structure
n the linear ROM, we declare 𝐊̂ and 𝐂̂ as symmetric matrix variables and impose 𝐊̂ − 10−8 ⋅ 𝐈𝑟 ⪰ 𝟎 and 𝐂̂ − 10−8 ⋅ 𝐈𝑟 ⪰ 𝟎. These

constraints ensure that the inferred reduced operators are symmetric positive-definite matrices.
In the SpML training procedure, the projected snapshot data is split into 𝐐̂ = [𝐐̂train, 𝐐̂val], where the training dataset 𝐐̂train is

used for training the model parameters and the validation dataset 𝐐̂val is used for assessing the model’s performance. The training
data is divided into minibatches of size 𝑁mb, which determines the number of samples that are propagated through the neural
network before the weights are updated. We use a minibatch size of 𝑁mb = 250 for all the examples in Section 4. To preserve the
Lagrangian structure in the LOpInf-SpML ROM (22), we numerically solve the constrained optimization problem in (33) via

min
𝜻 ,𝜶,𝜷,𝝀,𝜸,𝜽𝑈NN

,𝜽̂NN

 (𝜻 ,𝜶, 𝜷,𝝀, 𝜸,𝜽𝑈NN
,𝜽̂NN

) + +(𝜻 ,𝜶, 𝜷,𝝀, 𝜸,𝜽𝑈NN
,𝜽̂NN

), (33)

where the constraints on the total reduced kinetic energy and the reduced dissipation function are imposed through an added penalty
function

+(𝜻 ,𝜶, 𝜷,𝝀, 𝜸,𝜽𝑈NN
,𝜽̂NN

) =
‖

‖

‖

‖

‖

ReLU
(

−1
(

1
2
̇̂𝐐
⊤
(𝐈𝑟 + 𝐌̂NN)

̇̂𝐐
))

+ ReLU
(

−1
(

̂ ( ̇̂𝐐)
))‖

‖

‖

‖

‖𝐹
, (34)
7

where ReLU represents the rectified linear unit function which is nonzero only for positive argument values.
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The neural network parametrizations in this work use the Swish activation function [59] for all the hidden layers and the linear
ctivation function for the final layer. The network parameters and the unknown coefficients in (27) and (28) are collected in a
ector 𝜽 ∈ R𝑁param where 𝑁param is the total number of unknown parameters. The weights for each layer in the neural network
arametrizations are randomly initialized using the Glorot initialization algorithm [60]. The loss function (32) is minimized using
he ADAM optimizer [61], which is a widely used stochastic optimization method in the machine learning community. During
he optimization process, weights inside the neural network functions along with the coefficients in (27) and (28) are optimized
imultaneously. For the ADAM optimizer, we use an initial learning rate 𝜂 = 10−4 and exponential decay parameter values 𝛽1 = 0.9

and 𝛽2 = 0.999.

Algorithm 1 Lagrangian operator inference enhanced with structure-preserving machine learning (LOpInf-SpML)

Input: Full-order snapshot data 𝐐 ∈ R𝑛×𝐾 and reduced dimension 𝑟. Additional hyperparameters: size of training set 𝑇train and
validation set 𝑇val, initial learning rate 𝜂, batch size 𝑁𝑏, maximum number of epochs 𝑁epochs, and number of minibatches
𝑁mb = (𝑇train − 𝑇val)∕𝑁𝑏.

utput: Reduced linear operators 𝐌̂NN, 𝐂̂, 𝐊̂ ∈ R𝑟×𝑟, neural network for reduced nonlinear potential energy 𝑈NN(𝐪), and neural
network for reduced nonlinear dissipation function ̂NN( ̇̂𝐪).

1: Build basis matrix 𝐕𝑟 ∈ R𝑛×𝑟 from SVD of 𝐐 ∈ R𝑛×𝐾 (12).
2: Project to obtain reduced state data 𝐐̂ ∈ R𝑟×𝐾 (14).
3: Compute reduced time-derivative data ̇̂𝐐, ̈̂𝐐 ∈ R𝑟×𝐾 as in (17) from the projected data 𝐐̂ using an appropriate finite difference

scheme (e.g., (15)–(16)).
4: Solve constrained linear least-squares problem (26) to nonintrusively infer reduced operators 𝐊̂ and 𝐂̂.
5: Split projected snapshot data into 𝐐̂ = [𝐐̂train, 𝐐̂val], similarly for ̇̂𝐐, ̈̂𝐐.
6: Randomly initialize weights 𝜽0.
7: Initialize epoch counter 𝑛𝑒 = 0.
8: while 𝑛𝑒 < 𝑁epochs do
9: for 𝑖 = 1 ∶ 𝑁𝑚𝑏 do

10: Build a minibatch from the training set, 𝐐̂batch ⊆ 𝐐̂train, similarly for ̇̂𝐐batch,
̈̂𝐐batch.

11: Evaluate 𝑈NN(𝐐̂batch) (27), 𝑇NN(
̇̂𝐐batch) (29), and ̂NN(

̇̂𝐐batch) (28), which are parameterized by 𝜽𝑁mb𝑛𝑒+𝑖.
12: Evaluate loss function from residual as shown in (32).
13: Accumulate loss and compute gradient of loss function ∇𝜽 .
14: Update weights 𝜽𝑁𝑚𝑏𝑛𝑒+𝑖+1 = ADAM(𝜂,∇𝜽 , 𝜃𝑁mb𝑛𝑒+𝑖).
15: end for
16: Repeat for loop on 𝐐̂val,

̇̂𝐐val,
̈̂𝐐val with updated weights.

17: Accumulate loss on 𝐐̂val,
̇̂𝐐val,

̈̂𝐐val to evaluate network convergence.
18: 𝑛𝑒 = 𝑛𝑒 + 1.
19: end while

4. Numerical results

In this section, we apply the proposed LOpInf-SpML method to three nonlinear mechanical examples with increasing complexity.
n Section 4.1 we apply the proposed method to a one-dimensional conservative rod model with isolated elastic nonlinearities to
nvestigate its performance for conservative nonlinear mechanical systems. In Section 4.2 we study a two-dimensional geometrically
onlinear membrane model with internal damping to show the effectiveness of the proposed approach for nonconservative
echanical systems. Finally, in Section 4.3 we consider a dataset of experimental measurements of a lap-joint beam structure to
emonstrate the proposed method’s ability to learn structure-preserving surrogate models from experimental data.

.1. Conservative rod model with spatially isolated elastic nonlinearities

We consider the conservative structural dynamics of a one-dimensional rod with spatially isolated elastic nonlinearities. The rod
s modeled with a spring–mass model consisting of a chain of masses connected with spring elements. A schematic of this nonlinear
ass–spring model is shown in Fig. 2.

.1.1. FOM implementation
For this numerical experiment, we consider a rod of length 𝓁 = 1 and discretize it with a chain of 𝑛 = 64 mass elements with

equal mass 𝑚 = 1.56×10−2 which leads to a state vector of dimension 𝐪 ∈ R64. The masses are connected with spring elements with
a constant linear stiffness 𝜅 = 65.0. The region with isolated nonlinearities, i.e. 𝑠 ∈ (0.25, 0.35), is modeled with additional cubic
spring elements with coefficient 𝜚 = 2.62 × 105. As a result, the interaction force 𝑓𝑖(𝑞𝑖, 𝑞𝑖+1) between two adjacent masses is

𝑓𝑖(𝑞𝑖, 𝑞𝑖+1) =

{

𝜅(𝑞𝑖+1 − 𝑞𝑖) + 𝜚(𝑞𝑖+1 − 𝑞𝑖)3 if 𝑖 ∈ {22, 23, 24, 25, 26, 27, 28}
8

𝜅(𝑞𝑖+1 − 𝑞𝑖) otherwise,
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Fig. 2. Conservative rod model. The nonlinearities are localized within the region 𝑠 ∈ (𝑠1 , 𝑠2), while the remainder of the rod is linear.

Table 1
Conservative rod model (relative state error comparison between four different methods). Bold font highlights the lowest values
in each column, and the strikethrough indicates that the POD-SpML approach failed to learn a stable ROM in 104 epochs for
𝑟 = 4 and 𝑟 = 8.
Method Training data Test data

𝑟 = 4 𝑟 = 6 𝑟 = 8 𝑟 = 4 𝑟 = 6 𝑟 = 8

Intrusive POD ROM 3.0 × 10−2 1.3 × 10−2 1.1 × 10−2 8.6 × 10−2 3.5 × 10−2 2.6 × 10−2

LOpInf ROM 3.1 × 10−2 3.1 × 10−2 3.1 × 10−2 8.6 × 10−2 8.6 × 10−2 8.6 × 10−2

LOpInf-SpML ROM 𝟐.𝟓 × 𝟏𝟎−𝟐 𝟏.𝟏 × 𝟏𝟎−𝟐 𝟖.𝟏 × 𝟏𝟎−𝟑 𝟕.𝟗 × 𝟏𝟎−𝟐 𝟐.𝟖 × 𝟏𝟎−𝟐 𝟐.𝟔 × 𝟏𝟎−𝟐

POD-SpML ROM ———– 3.7 × 10−2 ———– ———– 1.9 × 10−1 ———–

where 𝑞𝑖 represents the displacement of the 𝑖th element. For numerical comparison with intrusive Lagrangian ROMs, we provide
details about the Lagrangian FOM for this example. The FOM Lagrangian for this conservative mechanical system can be written as

𝐿(𝐪, 𝐪̇) = 1
2
𝐪̇⊤𝐌𝐪̇ − 1

2
𝐪⊤𝐊𝐪 −

28
∑

𝑖=22

𝜚
4
(

𝑞𝑖+1 − 𝑞𝑖
)4 , (35)

where 𝐌 ∈ R64×64 and 𝐊 ∈ R64×64 are the symmetric positive-definite system matrices. The governing equations for the Lagrangian
FOM are

𝐌𝐪̈ −
𝜕𝐿(𝐪, 𝐪̇)

𝜕𝐪
= 𝟎. (36)

We specify the initial condition in terms of modal velocities 𝐪(0) = 𝟎 and 𝐪̇(0) = 𝜱
[

𝜈1,… , 𝜈64
]⊤, where 𝜱 ∈ R64×64 is the modal

transformation matrix based on the linear modal analysis and 𝜈𝑖 values are the initial modal velocity coefficients.

4.1.2. Learning setup
In this study, we consider a training initial condition with nonzero initial modal velocity for the first three modes

𝜈1 = 1.0 × 10−1, 𝜈2 = 2.5 × 10−2, 𝜈3 = 5.0 × 10−2, 𝜈𝑖 = 0 for 4 ≤ 𝑖 ≤ 64. (37)

We generate the simulated snapshot data by numerically integrating the conservative FOM (36) for total time 𝑇 = 16 using a
Newmark integrator with a fixed time step of 𝛥𝑡 = 10−3. We use data from 𝑡 = 0 to 𝑡 = 7.5 as the training data, data from 𝑡 = 7.5 to
𝑡 = 8 as the validation data, and data from 𝑡 = 8 to 𝑇 = 16 as the test data. We consider ROMs of size 𝑟 = 4, 𝑟 = 6, and 𝑟 = 8 to show
the increase in the accuracy of the learned ROMs with an increase in the reduced dimension.

Since the high-dimensional system is a conservative mechanical system, we learn a nonlinear ROM of the form

̈̂𝐪 + 𝐊̂𝐪 +
𝜕𝑈NN(𝐪)

𝜕𝐪
= 𝟎, (38)

where 𝐊̂ is the reduced linear stiffness matrix and 𝑈NN(𝐪) is the neural network component of the reduced potential energy. The
specific choice for the reduced mass matrix, i.e., 𝐌̂ = 𝐈𝑟, in (38) is consistent with the mass-normalized modal basis commonly
used in the structural engineering community. Moreover, we observe that choosing the reduced mass matrix as 𝐌̂ = 𝐈𝑟 (without
employing the reduced kinetic energy term 𝑇NN( ̇̂𝐪) in step 2) yields accurate ROMs with fewer network parameters compared to the
most expressive LOpInf-SpML ROM form (22). For this numerical example, we use four hidden layers with {64, 30, 20, 6} units in the
neural network parametrization for the reduced potential energy function 𝑈NN(𝐪) which leads to LOpInf-SpML ROMs with network
parameters 𝑁param = 2903 for 𝑟 = 4, 𝑁param = 3031 for 𝑟 = 6, and 𝑁param = 3159 for 𝑟 = 8.

4.1.3. Numerical results
Table 1 compares the numerical performance of four different model reduction approaches for the conservative rod model

example. The intrusive POD approach in this comparison derives nonlinear Lagrangian ROMs via the intrusive Galerkin projection
of FOM operators onto the POD basis. The LOpInf method learns the best-fit linear Lagrangian ROMs nonintrusively from the data
whereas the LOpInf-SpML approach combines the linear LOpInf ROM with structure-preserving neural networks to learn nonlinear
Lagrangian ROMs in a nonintrusive manner. We also compare to a POD-SpML approach, which learns nonlinear Lagrangian ROMs
9
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Fig. 3. Conservative rod model. (a) The LOpInf-SpML ROM correctly predicts 𝑞1(𝑡) trajectory 100% outside the training time interval whereas the POD-SpML
OM provides inaccurate predictions after 𝑡 = 12. (b) The LOpInf- SpML ROM exhibits bounded energy error behavior with an energy error of approximately
0−4. The energy error for the POD-SpML ROM, on the other hand, slowly grows with time. The magenta line in both plots indicates the end of the training
ime interval at 𝑇train = 8.

Fig. 4. Conservative rod model. An accurate phase space portrait obtained using the LOpInf-SpML ROM demonstrates that the proposed approach has learned
the underlying nonlinear dynamics whereas the POD-SpML ROM fails to capture the qualitative behavior of the FOM in phase space.

Fig. 5. Conservative rod model. The LOpInf-SpML ROM based on the two-step learning approach starts at a significantly lower validation loss value and
chieves the lowest error achieved by the POD-SpML ROM in 100× fewer epochs. The horizontal magenta line indicates the lowest validation error achieved by
he POD-SpML ROM.
10
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Fig. 6. Conservative rod model. The LOpInf-SpML ROM is robust to perturbations in the training initial condition and achieves a relative state error of
approximately 10−2 for unseen initial conditions whereas the POD-SpML ROM fails to provide accurate predictions for unseen initial conditions that are marginally
different than the training initial condition. The magenta star in both plots represents the training initial condition.

by training the structure-preserving neural networks (without any prior) directly on the reduced snapshot data (projected onto the
POD modes). The relative state error values reported in Table 1 compute

relative state error =
‖𝐐 − 𝐕𝑟𝐐̃‖𝐹

‖𝐐‖𝐹
,

where 𝐐̃ is reduced snapshot data obtained by numerically integrating the learned ROM. For both training and test regimes, we
observe that the relative state error decreases with an increase in the reduced dimension for the intrusive POD and the proposed
LOpInf-SpML approach with the LOpInf-SpML approach performing marginally better. This higher accuracy of the LOpInf-SpML
approach, compared to the intrusive POD ROMs, can be explained through the lens of data-driven closure modeling, see [62] and
the references therein. In projection-based model reduction, data-driven closure modeling seeks to model the effect of the discarded
POD modes on the ROM dynamics. The step 2 in the proposed LOpInf-SpML approach may be viewed as learning data-driven closure
terms that capture the unresolved dynamics implicitly through the expressive polynomial-augmented MLPs employed in (27) and
(28), and as a result, yielding LOpInf-SpML ROMs with lower relative state errors than the intrusive POD ROMs. The errors for the
nonintrusive linear Lagrangian ROM based on LOpInf do not show improvement with an increase in the reduced dimension. The state
error leveling-off for LOpInf is due to two separate phenomena. First and foremost, this stagnation demonstrates the limitations of
linear data-driven Lagrangian ROMs in capturing dynamic behavior that is inherently nonlinear. Second, theoretical analysis in [63]
has shown that this state error leveling-off would occur even for linear FOMs because the projected snapshot data in (14) corresponds
to non-Markovian dynamics in the reduced setting even though the FOM dynamics are Markovian.2 The POD-SpML approach yields
the least accurate ROM in both training and test regimes, which shows that directly training a structure-preserving neural network
on the reduced data is not a good strategy. Overall, the proposed LOpInf-SpML approach yields the most accurate ROMs in both
training and test regimes for all three 𝑟 values.

The 𝑞1(𝑡) trajectory plots in Fig. 3(a) compare the approximate ROM solutions against the benchmark FOM solution from 𝑡 = 0
to 𝑇 = 16. Both the POD-SpML ROM and the LOpInf-SpML ROM solutions are indistinguishable from the FOM solution in the
training regime. In the test regime, we observe that the LOpInf-SpML ROM solution accurately tracks the FOM solution whereas the
POD-SpML ROM solution is less accurate in capturing amplitude and frequency content. In Fig. 3(b), we observe that the proposed
approach yields a structure-preserving ROM that exhibits bounded energy error behavior whereas the energy error for the POD-SpML
ROM grows with time.

Phase space portraits are an invaluable tool for studying conservative dynamical systems. Fig. 4 compares the accuracy of the
phase-space portraits in the (𝑞15, 𝑞̇15) phase space. The phase space plot based on the LOpInf-SpML ROM in Fig. 4(c) accurately
captures the qualitative behavior of the phase space plot based on the FOM in Fig. 4(b) whereas the phase space plot based on the
POD-SpML ROM in Fig. 4(a) deviates away from the phase space plot based on the FOM. This comparison demonstrates that the
proposed LOpInf-SpML approach has learned the nonlinear characteristics of the problem. Similarly to this representative example,
the LOpInf-SpML approach demonstrates a higher accuracy than the POD-SpML approach in the phase-space portraits for other mass
elements.

2 The state error leveling-off for operator inference methods has been resolved by a re-projection sampling scheme in [63] for fully discrete FOMs with
explicit time integrators. However, this scheme in its current form cannot be used for the mechanical FOMs considered in this work because they require implicit
integrators for accurate numerical simulation.
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Fig. 7. Nonconservative membrane model. Plots in (a) and (b) show that the LOpInf-SpML ROM of reduced dimension 𝑟 = 12 provides accurate predictions
00% outside the training time interval whereas the POD-SpML ROM of size 𝑟 = 12 fails to learn the internal nonlinear damping which leads to trajectories with
naccurate amplitudes outside the training time interval. The magenta line indicates the end of the training time interval.

Fig. 5 illustrates the decay in the validation loss for both approaches during the offline training stage. Both neural networks are
rained from the reduced data using the same SpML architecture. Due to its two-step learning strategy, the proposed LOpInf-SpML
pproach starts at a validation loss value four orders of magnitude lower than the POD-SpML method. The validation loss for the
OpInf-SpML approach continues to decrease as training proceeds, remaining significantly lower than the POD-SpML ROM. The
orizontal magenta line indicates the lowest validation error achieved by the POD-SpML approach. We observe that this error is
chieved by the LOpInf-SpML approach with 100× fewer epochs. This study highlights that using the LOpInf ROM for learning the
inear ROM components provides higher accuracy along with significant computational savings in offline training.

Finally, we study the generalizability of the learned models by evaluating their accuracy for unseen initial conditions based on
𝜈1, 𝜈2, 𝜈3) values that are different from the values considered in (37). We first simulate the FOM until 𝑇 = 16 for 27 test initial
onditions based on different combinations of 𝜈1 ∈ {5.0 × 10−2, 8.75 × 10−2, 1.25 × 10−1}, 𝜈2 ∈ {1.0 × 10−2, 3.0 × 10−2, 5.0 × 10−2},

and 𝜈3 ∈ {4.0 × 10−2, 5.75 × 10−2, 1.25 × 10−1}. We then simulate both LOpInf-SpML and POD-SpML ROMs for these 27 test initial
conditions and compare the relative state error values for each of those test initial conditions. The comparison in Fig. 6 shows that
the proposed approach achieves a relative state error of approximately 10−2 over a wide range of initial conditions, an order of
magnitude more accurate than the POD-SpML approach.

4.2. Two-dimensional nonlinear membrane

We consider a two-dimensional nonlinear membrane model with internal damping to study the performance of the proposed
approach for nonconservative mechanical systems.

4.2.1. FOM implementation
We study a two-dimensional membrane with length 𝑙𝑥 =

√

2 in the 𝑥-direction and length 𝑙𝑦 = 1∕
√

2 in the 𝑦-direction. The
FOM for this numerical example is obtained using two-dimensional membrane elements with 𝑁𝑥 = 21 nodes in the 𝑥-direction and
𝑁𝑦 = 13 nodes in the 𝑦-direction. In these membrane elements, the in-plane stiffness comes from a pre-tension force. Each node in
the two-dimensional membrane element has an out-of-plane displacement, which after applying the clamped boundary conditions
leads to a FOM with 𝑛 = 240 degrees of freedom.

The linear stiffness associated with each element is defined via stiffness coefficient 𝑘𝑥 = 𝑛⋅(𝑙𝑥∕𝑁𝑥)2 in the 𝑥−direction and stiffness
coefficient 𝑘𝑦 = 𝑛 ⋅ (𝑙𝑦∕𝑁𝑦)2 in the 𝑦−direction. The corresponding linear stiffness matrix 𝐊 is obtained by assembling elements based
on their connectivity. The linear damping matrix is proportional to the stiffness matrix, so 𝐂 = 10−4 ⋅𝐊. The nonlinear behavior is
modeled using cubic nonlinearities with nonlinear stiffness and nonlinear damping coefficients 𝑘𝑛𝑙 = 𝑐𝑛𝑙 = 0.02𝑛3∕2 = 74.361. Such
cubic nonlinearities are commonly used for modeling complex nonlinearities exhibiting softening or hardening behavior, such as
geometric nonlinearities [64]. The governing equations for the nonconservative FOM are

𝐌𝐪̈ + 𝐂𝐪̇ +
𝜕nl(𝐪̇)

𝜕𝐪̇
+𝐊𝐪 +

𝜕𝑈nl(𝐪)
𝜕𝐪

= 𝟎. (39)

Similarly to the conservative rod example, the proposed LOpInf-SpML approach learns a structure-preserving nonlinear ROM purely
from the data, without any prior knowledge about the FOM (39) for the two-dimensional nonlinear membrane.
12
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Table 2
Nonconservative membrane model (relative state error comparison between different nonintrusive methods). Bold
font highlights the lowest values in each column, and the strikethrough indicates that the POD-SpML approach
failed to learn a stable ROM in 104 epochs for 𝑟 = 10.

Method Training data Test data

𝑟 = 10 𝑟 = 12 𝑟 = 10 𝑟 = 12

LOpInf ROM 2.6 × 10−1 2.6 × 10−1 9.7 × 10−1 9.7 × 10−1

LOpInf-SpML ROM 𝟓.𝟔 × 𝟏𝟎−𝟐 𝟓.𝟏 × 𝟏𝟎−𝟐 𝟑.𝟑 × 𝟏𝟎−𝟏 𝟏.𝟗 × 𝟏𝟎−𝟏

POD-SpML ROM ———– 2.0 × 10−1 ———– 1.0 × 100

4.2.2. Learning setup
In this numerical example, we generate simulated data for the training and test datasets by integrating the nonconservative

OM (39) with the Newmark integrator until the final time 𝑇 = 35. We use a fixed time step of 𝛥𝑡 = 5×10−3. We use data from 𝑡 = 0
to 𝑡 = 15 as the training data, data from 𝑡 = 15 to 𝑡 = 17.5 as the validation data, and data from 𝑡 = 17.5 to 𝑇 = 35 as the test data.

e consider ROMs of size 𝑟 = 10 and 𝑟 = 12 to study the effect of an increase in the reduced dimension for the LOpInf ROMs, the
OD-SpML ROMs, and the LOpInf-SpML ROMs. For comparison between the POD-SpML approach and the proposed LOpInf-SpML
pproach, we consider ROMs of size 𝑟 = 12 as the POD-SpML approach failed to learn a stable ROM in 104 epochs for 𝑟 = 10.

Due to the nonconservative nature of the problem, we consider a nonconservative nonlinear ROM of the form

̈̂𝐪 + 𝐂̂ ̇̂𝐪 +
𝜕̂NN( ̇̂𝐪)

𝜕 ̇̂𝐪
+ 𝐊̂𝐪 +

𝜕𝑈NN(𝐪)
𝜕𝐪

= 𝟎, (40)

where 𝐊̂ and 𝐂̂ are the linear reduced operators, and ̂NN( ̇̂𝐪) and 𝑈NN(𝐪) are the neural network parametrizations for the
onlinear dissipation function and the nonlinear potential energy function, respectively. Similarly to the conservative rod example
n Section 4.1, we observe that choosing the reduced mass matrix as 𝐌̂ = 𝐈𝑟 yields accurate and stable Lagrangian ROMs with fewer
raining parameters. Both ̂NN( ̇̂𝐪) and 𝑈NN(𝐪) are trained using a five-layer neural network with {128, 64, 30, 20, 12} units which leads

to an LOpInf-SpML ROM with 𝑁param = 24750 network parameters.

4.2.3. Numerical results
Table 2 compares the numerical performance of the three different nonintrusive model reduction approaches for the nonconser-

vative membrane example. For both training and test regimes, we observe that the relative state error for the LOpInf-SpML approach
decreases as we increase the reduced dimension from 𝑟 = 10 to 𝑟 = 12 whereas the errors for the nonintrusive LOpInf ROMs do not
show any improvement due to their linear ROM form. The POD-SpML ROM of dimension 𝑟 = 12 performs marginally better than
the LOpInf ROM of dimension 𝑟 = 12 in the training data regime but fails to provide accurate predictions in the test data regime.
Similarly to the conservative example in Section 4.1, the proposed LOpInf-SpML approach yields the most accurate ROMs for the
nonconservative membrane example in both training and test regimes for both 𝑟 values.

In Fig. 7, we compare the ROM solutions with the FOM solution for two different states. The 𝑞1(𝑡) trajectory plots in Fig. 7(a) show
that the LOpInf-SpML ROM captures the decay in the FOM solution accurately whereas the POD-SpML ROM provides inaccurate
predictions outside the training data regime. For the 𝑞30(𝑡) trajectory plots in Fig. 7(b), we observe that the LOpInf-SpML ROM
solution is indistinguishable from the FOM solution which demonstrates the proposed approach’s ability to learn the internal
nonlinear damping of the full-order model. The POD-SpML ROM solution, on the other hand, fails to learn the internal damping
which leads to substantially higher errors in the test regime.

Fig. 8 compares the FOM solution with the ROM solution at different time instances. In Fig. 8(a), the LOpInf-SpML ROM provides
an approximate full-field solution that agrees with the FOM solution. In Fig. 8(b), we observe that the proposed approach accurately
predicts the membrane displacements over the entire two-dimensional domain. Even though the solution at 𝑡 = 30 in Fig. 8(c)
has been significantly damped out, the ROM solution predicts the displacement amplitude over the two-dimensional domain with
reasonable accuracy.

Finally, we study the frequency characteristics of this nonconservative problem by analyzing the time-series data for the first
node. We study the spectral information in the training data and the test data separately. All the models are numerically integrated
with a time step of 𝛥𝑡 = 5×10−3, so the sampling frequency for this setting is 200 Hz. We apply the standard fast Fourier transform to
obtain the frequency–amplitude curves in Fig. 9. We observe that both LOpInf-SpML and POD-SpML capture the frequency content
in the training data regime accurately with the LOpInf-SpML ROM performing marginally better. In the test regime, we observe
that the amplitude–frequency curve for the LOpInf-SpML ROM agrees with the FOM amplitude–frequency curve whereas the POD-
SpML ROM only performs well for frequencies below 0.5 Hz. This spectral analysis shows that the ROM learned with the proposed
LOpInf-SpML approach has learned the damped dynamics accurately.

4.3. Half Brake–Reußbeam

Accurate prediction of the dynamics of jointed structures remains a challenging problem due to the strong nonlinearities at the
frictional interfaces found in joints. The main purpose of a joint in an engineering structure is to connect two separate substructures
13
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Fig. 8. Nonconservative membrane model. The membrane displacement comparison in plots (a), (b), and (c) shows that the LOpInf-SpML ROM provides accurate
predictions over the entire computational domain.

behind the energy dissipation mechanisms at the joints. In part, this lack of understanding is due to the multiscale nature of
interfacial mechanics for jointed structures where the influencing sources can range from macro-scale geometry and loading to
nano-scale grain boundaries, see [65] for more details. Due to the problem-specific and dynamic nature of interfacial mechanics, it
is unrealistic to expect a universal law of friction that is predictive across most types of interfaces. For such problems, the structural
and mechanical engineering community is mainly interested in developing a predictive model for different types of joints such as lap
14
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Fig. 9. Nonconservative membrane model. In the training data regime, both ROMs capture the frequency content in the training data accurately. In the test
regime, we observe that the LOpInf-SpML ROM predicts the frequencies in the system significantly better than the POD-SpML ROM.

joints, dove-tail joints, fir-tree joints, and tape joints. In this section, we apply the proposed learning approach to learn a predictive
model of a beam structure with a lap joint from a dataset consisting of experimental measurements. The dataset considered in this
numerical example is obtained from the experimental setup in [66,67] where the authors used high-speed cameras combined with
digital image correlation to obtain the full-field response of the structure known as the ‘‘Half Brake–Reußbeam’’. The data was
obtained from the authors’ repository.3

4.3.1. Experimental data collection using digital image correlation measurements
The half Brake–Reußbeam is a modification of the Brake–Reußbeam [68], which is a widely used benchmark structure for

studying nonlinear dynamics in jointed systems. The half Brake–Reußbeam consists of two beams that are joined through a three-
bolt lap joint as shown in Fig. 10. The lap joint is the most common type of interface found in built-up structures and is defined as
the mating of two components through a bolted connection.

The free-response data considered in this study was obtained by first exciting the beam at a specific frequency of interest (i.e., at
the natural frequency of the mode of interest) with a fixed sinusoidal signal and then detaching the shaker once resonance is
identified. Even though this procedure is meant to isolate a mode of interest, the full-field response includes multiple modes due to
modal coupling resulting from the nonlinearity. The nonlinearity in this structure arises due to energy dissipation caused by slipping
and possible intermittent contact in the joint.

For the free-response experiments, the beam structure was suspended horizontally using bungee cords to simulate the free-
free boundary conditions. Using the digital image correlation technique, the vibrational motion of 𝑛 = 206 measurement points
was tracked for 𝑇 = 3.06 s with a sampling frequency of 𝑓sampling = 5000 Hz. The recorded images from this experiment were
post-processed to build a dataset containing the time history of the displacements of the measurement points.

4.3.2. Learning setup
For this example with experimental measurements, we use data from 𝑡 = 0 s to 𝑡 = 0.92 s as the training data, data from 𝑡 = 0.92 s

to 𝑡 = 1.02 s as the validation data, and data from 𝑡 = 1.02 s to 𝑇 = 3.06 s as the test data. Joints introduce two qualitatively
important features to a structure: amplitude-dependent stiffness and amplitude-dependent damping. The aim of this study is to use
the LOpInf-SpML ROM as a surrogate model for the jointed beam structure and provide accurate predictions of these qualitative
properties outside the training data regime.4 To accurately capture the amplitude-dependent frequency and damping characteristics
of the jointed structure, we consider the most expressive ROM form (22) in this study. In addition to learning the neural network
parametrizations for the dissipation and potential energy functions, we also learn a reduced kinetic energy term 𝑇NN( ̇̂𝐪) that leads to
a symmetric positive-definite reduced mass matrix 𝐌̂NN in the offline training phase, see (30). For this example, the reduced kinetic
energy term 𝑇NN( ̇̂𝐪) in (29) is parameterized with nine unknown network parameters. Both ̂NN( ̇̂𝐪) and 𝑈NN(𝐪) are trained using a
four-layer neural network with {16, 16, 16, 16} units which leads to an LOpInf-SpML ROM with 𝑁param = 2538 network parameters.

3 https://github.com/mattiacenedese/BRBtesting
4 For this example, the POD-SpML ROM approach failed to learn stable ROMs in 104 epochs from reduced dimension 𝑟 = 3 to 𝑟 = 6. The LOpInf ROMs, on

the other hand, cannot capture the nonlinear characteristics of the jointed structure due to their linear nature.
15
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Fig. 10. Half Brake–Reußbeam. Geometry of the jointed structure including a photo with digital image correlation speckle pattern shown (a), top view (b), and
front view (c).
Source: Figure reprinted from [66].
© 2022 with permission from Elsevier and the authors.

Fig. 11. Half Brake–Reußbeam. The LOpInf-SpML ROM of size 𝑟 = 3 accurately predicts the amplitude-dependent frequency characteristics and yields backbone
curves that appear to agree with the backbone curves obtained directly from the experimental data.

Fig. 12. Half Brake–Reußbeam. The amplitude-dependent damping plots based on the LOpInf-SpML ROM of dimension 𝑟 = 3 are reasonably similar to the plots
obtained from the experimental data.

4.3.3. Numerical results
Fig. 11(a) shows the amplitude-dependent frequency curves of the jointed structure based on the experimental measurements at

different points along the length of the beam. In Fig. 11(b), we observe that the LOpInf-SpML ROM accurately predicts the frequency
range with less than 0.5% error. More importantly, the amplitude-dependent frequency curves for the learned ROM has the same
16
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Fig. 13. Half Brake–Reußbeam. The proposed approach accurately predicts the frequency–energy curve in (a) and captures the overall trend of the challenging
damping–energy curve in (b).

shape as the one obtained from the experimental data which demonstrates that the proposed approach has learned the nonlinear
characteristics of the problem.

In Fig. 12, we obtain the amplitude-dependent damping plots using the LOpInf-SpML ROM and compare them with the plots
ased on the experimental data. Even though the proposed ROM predicts damping ratio values higher than the ones based on the
xperimental data for some points, the amplitude–damping curves obtained using the ROM in Fig. 12b are reasonably similar to the
lots obtained from the experimental data in Fig. 12(a).

As an alternative to displacement-based plots, Fig. 13 shows the nonlinear characteristics of the jointed structure through energy-
ependent plots. The total energy of the jointed structure consists of kinetic energy 𝑇 (𝐪̇) and potential energy 𝑈 (𝐪). The standard
ay to compute the total energy is to assume the potential energy to be zero at the equilibrium position and then calculate the
inetic energy at the equilibrium position

𝑇 (𝐪̇) =
𝑛=206
∑

𝑖=1

1
2
𝑚𝑞̇2𝑖 ,

here 𝑞̇𝑖 is the velocity of the 𝑖th measurement point, and 𝑚 = 𝑀∕𝑛 is the lumped mass of each measurement point. Since the
energy calculation utilizes information about the motion at all the points across the length of the beam, the energy-dependent plots
provide a more global perspective on the mechanical system under analysis. The frequency–energy plots in Fig. 13(a) show that
the LOpInf-SpML ROM of reduced dimension 𝑟 = 3 accurately predicts the time-evolution of the frequency–energy relationship. In
Fig. 13(b) we observe that the learned ROM accurately captures the overall energy–damping trend but predicts damping ratio values
higher than the ones obtained from the experimental data. We note that the energy-dependent plots based on the experimental data
are known to demonstrate increased variability towards small amplitudes due to the degradation of the signal-to-noise ratio in the
digital image correlation measurements.

5. Conclusions

We have presented an ML-enhanced model reduction method that learns structure-preserving ROMs of nonlinear mechanical
systems from data in a nonintrusive manner. The presented method parametrizes the ROM in terms of the mechanical problem’s
Lagrangian structure and then learns the reduced operators in a structure-preserving way to ensure that the learned operators
are Lagrangian. The proposed learning algorithm uses a POD basis to project the high-dimensional data onto a low-dimensional
subspace and then derives the Lagrangian ROM by (i) inferring the linear reduced operators using a structure-preserving nonintrusive
operator inference method, and then (ii) learning nonlinear reduced operators using a structure-preserving machine learning method.
The proposed LOpInf-SpML framework is well-suited for engineering applications where the data are generated from complicated
high-fidelity computational models or from experimental measurements.

The numerical experiments for conservative and nonconservative mechanical systems and for simulated and experimental data
demonstrate the wide applicability of the proposed approach. The nonlinear conservative rod model shows that the LOpInf-SpML
approach learns long-time stable ROMs with bounded energy error, while also providing accurate predictions for unseen initial
conditions. Compared to the POD-SpML approach, the proposed LOpInf-SpML approach achieves significant computational savings
in the offline training phase which highlights the key role played by the linear Lagrangian ROM in our two-step learning algorithm.
The two-dimensional nonlinear membrane example demonstrates the proposed method’s ability to learn accurate ROMs for
nonconservative mechanical systems with nonlinear damping. For the half Brake–ReußBeam example, the learned ROM accurately
captures the amplitude-dependent frequency and damping characteristics of the jointed structure from a dataset consisting of digital
17
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image correlation measurements. This example highlights the ability of the proposed method to learn a computationally efficient
predictive model from experimental observations for applications where the underlying physics is not well understood.

This work has motivated a number of future research directions. The proposed method uses linear basis approximations, which
an make offline training prohibitively expensive if the problem requires a large basis size. For such problems, the proposed approach
ould be combined with autoencoders [22,69] or structure-preserving nonlinear manifolds [70] to reduce the computational costs
n the offline phase. In another direction, the proposed LOpInf-SpML approach could be extended to mechanical problems with
eometric nonlinearities. Finally, we would like to apply our framework to learn models from noisy and sparse data.
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