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Model and Data Reduction for Control, Identification and
Compressed Sensing

Boris Krämer

(ABSTRACT)

This dissertation focuses on problems in design, optimization and control of com-
plex, large-scale dynamical systems from different viewpoints. The goal is to develop
new algorithms and methods, that solve real problems more efficiently, together with
providing mathematical insight into the success of those methods. There are three
main contributions in this dissertation.
In Chapter 3, we provide a new method to solve large-scale algebraic Riccati equa-
tions, which arise in optimal control, filtering and model reduction. We present
a projection based algorithm utilizing proper orthogonal decomposition, which is
demonstrated to produce highly accurate solutions at low rank. The method is par-
allelizable, easy to implement for practitioners, and is a first step towards a matrix
free approach to solve AREs. Numerical examples for n ≥ 106 unknowns are pre-
sented.
In Chapter 4, we develop a system identification method which is motivated by tan-
gential interpolation. This addresses the challenge of fitting linear time invariant
systems to input-output responses of complex dynamics, where the number of in-
puts and outputs is relatively large. The method reduces the computational burden
imposed by a full singular value decomposition, by carefully choosing directions on
which to project the impulse response prior to assembly of the Hankel matrix. The
identification and model reduction step follows from the eigensystem realization al-
gorithm. We present three numerical examples, a mass spring damper system, a
heat transfer problem, and a fluid dynamics system. We obtain error bounds and
stability results for this method.
Chapter 5 deals with control and observation design for parameter dependent dy-
namical systems. We address this by using local parametric reduced order models,
which can be used online. Data available from simulations of the system at various
configurations (parameters, boundary conditions) is used to extract a sparse basis
to represent the dynamics (via dynamic mode decomposition). Subsequently, a new,
compressed sensing based classification algorithm is developed which incorporates
the extracted dynamic information into the sensing basis. We show that this aug-
mented classification basis makes the method more robust to noise, and results in
superior identification of the correct parameter. Numerical examples consist of a
Navier-Stokes, as well as a Boussinesq flow application.
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Chapter 1

Motivation and Mathematical
Background

1.1 Motivation

The desire to increase efficiency in industrial systems and to make accurate predic-
tions of future states of such systems has driven applied mathematics for decades
and continues to do so today. To improve today’s highly-engineered systems, so-
phisticated mathematics has to be involved in the design and operation of industrial
products. Modern computer architectures have vast amounts of memory and proces-
sors, as well as sophisticated software for computation and smart load distribution.
This enables us to solve more and more complex problems, which in turn empower us
to push the limits of predictive science further. Moreover, in the age of Big Data, an
excessive amount of data is available from experiments as well as real-time record-
ing, that can be used for optimization, control and observation of such systems.1

How can we extract the relevant information needed for the task at hand from this
shear amount of data? Can we make better decisions by utilizing the available data,
together with physics based models?

On the other hand, different challenges arise where only limited computational re-
sources are available, or where the time to execute a codes is a deciding factor.

1For instance, a project at Virgina Tech placed 241 sensors and accelerometers throughout a
building to record structural health and vibrations of the building. The system generates 4GB of
data every hour http://www.vt.edu/spotlight/innovation/2014-05-26-seb/sensors.html.

http://www.vt.edu/spotlight/innovation/2014-05-26-seb/sensors.html
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In engineering design, models have be simulated for multitudes of input parame-
ters, which is impractical if each simulation takes multiple days or weeks. Moreover,
on-board systems in cars, airplanes, air-conditioners, etc. have only limited computa-
tional power, and full system solves are prohibitive. The implementation of reduced
order models in such applications is one way to address this challenge. These quickly
and cheaply executable algorithms should also leverage the availability of data, and
the advancements in physics based models.

We believe that incorporating data and model reduction methods into algorithms
needed for optimization, design, control and estimation is highly relevant, and is
the overall subject of this dissertation. With this motivation in mind, we develop
algorithms and numerical techniques, that utilize the mathematical structure and
physics of the problem, and can be applied to large-scale problems. Systems of large
dimension (n > 105) arise in fluid dynamics - which is our particular focus - and more
generally in Big Data problems in many areas of modern science and technology.

This dissertation consists of four parts, each of which being motivated by the op-
timization and control of large-scale, complex systems. To keep this work self-
contained, the manuscript begins with background material on numerical linear al-
gebra, ordinary differential equations, optimal control theory, various reduced order
modeling techniques, as well as compressed sensing. For some readers this might be
known, and those can skip to Chapter 2. Subsequent chapters are characterized by
more novel work.

Chapter 2 introduces the optimal control problem for a one dimensional Burgers’
equation coupled to a heat equation, which is used to mimic the Boussinesq approx-
imation of thermally-driven flows. Reduced order controllers are obtained through
“reduce-then-design”, and special care is taken to preserve the physical structure
of the system. The convergence of reduced order controllers to their high fidelity
counterpart is demonstrated, and various POD implementation variants, such as the
selection of the input ensemble used for computation of reduced order models, are
discussed and numerically tested. Moreover, we investigate “out-of-sample” perfor-
mance of the algorithms, when the underlying parameters of the dynamical system
changed. This chapter raises important questions pertinent to reduced order models
and control, illustrates the necessary discretization steps, and highlights many of the
problems arising in more complex applications.

Optimal feedback control and filtering for large-scale systems is required in a wide
range of applications, such as electrical circuits, fluid dynamics, design of integrated
systems, etc. The solution of the optimality problem can be obtained by solving
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algebraic Riccati equations (ARE), which are nonlinear matrix equations. In Chapter
3 we provide a new algorithm to solve large-scale AREs via the method of proper
orthogonal decomposition. The algorithm is particularly designed for practitioners
in the field and provides a first step towards a matrix-free algorithm for solution of
ARE. Compared to other state-of-the-art algorithms for Riccati equations, we were
able to achieve high accuracy at low approximation rank.

In Chapter 4, we propose a new algorithm for system identification of multi-input,
multi-output (MIMO) dynamical systems, which significantly reduces the computa-
tional cost of current methods. This research is motivated by using reduced order
models for design and control of passive (or “smart”) heating and ventilation sys-
tems, and system identification for complex dynamics in general. Specifically, when
the model under consideration has a large number of both inputs and outputs, the
computational burden for current system identification methods increases. To cir-
cumvent this problem, we interpolate the impulse responses along suitably chosen
“tangential” directions and modify the conventional eigensystem realization algo-
rithm by Kung [124] to recover the full input and output dimension at the final
stage. The success of this algorithm is demonstrated on two applications, a mass-
spring-damper system and a model of cooling steel profiles in a rolling mill. Using
these test problems, we demonstrate that the computational cost decreases signifi-
cantly, while maintaining a satisfactory level of accuracy. Importantly, we also give
indicators where this algorithm can fail to produce accurate results, and therefore
provide the practitioner with valuable guidance for the success of the method.

Finally, in Chapter 5, we design a new robust sensing algorithm for complex flows,
with an application to airflow sensing in an indoor environment. The motivation is
to design smart, passive heating, ventilation and cooling systems (HVAC) to reduce
energy consumption in buildings. The incorporation of the physics and experimental
data of thermally driven flows into control and sensing mechanisms can be essential
to achieve this task. In this work, compressed sensing, a recently developed theory
for efficient and robust signal sampling [56], is employed together with a reduced
order surrogate model for the Navier-Stokes and Boussinesq equations. The goal is
to use local (parametric) models for observation and control of such systems. To
utilize the local models effectively, we sense noisy flow and temperature information,
and classify the data into dynamic, parameter dependent regimes. The particular
emphasis is on boundary sensing, which is deemed most practical for the application
at hand. Once a reliable estimate of current operating conditions or flow patterns
is obtained, controllers can make use of such information by selecting reduced or-
der model suitable for this dynamic regime. The developed classification algorithm
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is based on a regime-library and is robust to noise. For high levels of noise, we
suggest a new, even more robust “augmented” sensing basis, that incorporates the
temporal dynamics of the flow regimes. With the purely data-based dynamic mode
decomposition (DMD), we are able to extract dynamic features from the data, which
approximate the underlying forward operator. With this method, we leverage the
knowledge of time evolution of signals through reduced order models, and we are able
to correctly identify the dynamic operating regime in more than 90% of the cases.
To achieve the same classification performance without incorporating the dynamics,
many more sensors would be needed, which is impractical.

Chapters 3–5 of this dissertation contain material that is either submitted for publi-
cation in the literature, or will be in the near future. In all chapters, I most directly
developed the methods and derivations, worked on the numerical part, and did the
writing. I developed and wrote the majority of the codes in this dissertation, mi-
nus some suggestions for improvement from co-authors and collaborators, which I
carefully incorporated into the code.

1.2 Matrix Theory

Let x ∈ Cn be a vector and let ||x||1 =
∑n

i=1 |xi| and ||x||22 =
∑n

i=1 |xi|2 denote
the 1 and 2 norm of x, respectively. The inner product of two vectors is defined by
(x, y)Cn =

∑n
i=1 xiȳi and the subscript is omitted where the dimensions are clear.

Here, ȳi is the complex conjugate of yi. By ||x||∞ = maxi |xi| we denote the infinity
norm. The norms are related as

||x||∞ ≤ ||x||2 ≤ ||x||1 ≤
√
n||x||2.

Additionally, the notation

||x||0 := card{i : xi 6= 0}

denotes the number of non-zero elements in x. Note, that ||x||0 is not a norm, since
it fails to satisfy the linearity assumption.

Let A ∈ Rn×m be a matrix and denote by AT = [aij]
T = [aji] the transpose of a

matrix; if A ∈ Cn×n, then A∗ = [aij]
∗ = [āji] denotes the conjugate transpose of A.

A real matrix is called symmetric if A = AT ; a complex matrix is called self-adjoint
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(Hermitian)) if A = A∗. Sometimes, our notation is inspired by Matlab2, so that

a:,i := ith column of A, aj,: := jth row of A,

and
A1:l,1:k := first l rows of the first k columns of A.

By |A| = det(A) we denote the determinant of A and it is well known that the
following holds:

{a:,1, a:,2, . . . , a:,n} is linear independent ⇔ det(A) 6= 0.

In other words, the columns of A are linearly independent if and only if the deter-
minant of A is nonzero, and in this case Ax = b has a unique solution x = A−1b.

Moreover, define the 2-induced norm

||A||2 := sup
x∈Rn

||Ax||2
||x||2

,

which satisfies
||A||2 = λ1/2

max(A
TA) = λ1/2

max(AA
T ) = σ1(A),

where λ denotes eigenvalues and the σi are the singular values of A, as defined below.
The Frobenius norm of a matrix is defined as

||A||2F :=
∑
k

∑
l

|akl|2,

and a convenient result allows for an economical calculation:

||A||2F =

min(n,m)∑
i=1

σ2
i (A) = trace(ATA).

For large problems, the Frobenius norm is still computable, as long as the product
AAT can be formed (it does not have to be stored though!). However, the matrix 2-
norm relies on purely spectral information, and hence can become expensive for large
matrices. We refer the reader to Golub [89, pp.57+71] for the previous equivalences
and more details. Note, that the following simple equality holds ||A||22 = 1 ⇒

2 c© 2015 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The Math-
Works, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other prod-
uct or brand names may be trademarks or registered trademarks of their respective holders.
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||A||2F = n, which follows directly from the trace definition. Moreover, the Frobenius
and 2-norm are invariant under orthogonal transformations. This is particularly
helpful for practical computations, and is used in Chapter 3 for computation of
the residual norm. In particular, if A = QR is the standard QR-decomposition as
defined below, then ||A||F = ||R||F , and similarly ||A||2 = ||R||2, which is used later
to cheaply evaluate the norm of a residual matrix. Another useful property of the
Frobenius and matrix 2-norm is that both satisfy the submultiplicativity ||AB|| ≤
||A||||B||. In the following, we state matrix decompositions that are most frequently
used in this thesis.

Theorem 1.2.1. [89, Thm.5.2.1] Let A ∈ Rm×n with m ≥ n be a matrix with full
column rank. Then A has a QR-decomposition, where A = QR, Q ∈ Rm×m is
orthogonal, and R ∈ Rm×n is upper triangular. The following holds:

• span{a:,1, . . . , a:,k} = span (q:,1, . . . , q:,k) k = 1, . . . , n.

• ran(A) = ran(Q1:m,1:n)

• ran(A)⊥ = ran(Q1:m,n+1:m)

• A = Q1:m,1:nR1:n,1:n, (i.e., we can leave redundant columns out).

The QR-decomposition is therefore an alternative to Gram-Schmidt orthogonaliza-
tion. In the particular case where A is “thin”, i.e. m � n, the factorization can be
implemented in an efficient manner, as done in Matlab with the command qr(A, 0).
This is our method of choice for orthogonalizing vectors in this thesis.

Theorem 1.2.2. [89, Thm 3.2.1] The matrix A ∈ Rn×n has an LU-factorization
A = LU , where L is a lower triangular matrix (with ones in the diagonal) and U is
an upper triangular matrix, if the leading n − 1 submatrices of A are invertible. If
the LU factorization exists and A is nonsingular, then det(A) = u11 · · ·unn.

The LU decomposition is frequently used when linear systems of the form Ax = bi
have to be solved for i = 1, . . . , k. By precomputing the LU decomposition, the
linear solve can be substantially simplified by first solving Ly = bi, and subsequently
Ux = y. Next, we consider both the symmetric and unsymmetric eigenvalue decom-
positions. The eigenvalue decomposition (and the related SVD) are at the heart of
many model reduction and feature extraction algorithms.
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Theorem 1.2.3. [89, Thm.8.1.1] If A ∈ Rn×n is symmetric, then there exists a real
orthogonal matrix V such that

V TAV = Λ = diag(λ1, . . . , λn),

and the eigenpairs satisfy Avk = λkvk for k = 1, . . . , n.

Theorem 1.2.4. [89, Thm.7.1.9] If A ∈ Cn×n, then there exists a nonsingular V
such that V −1AV = diag(J1, . . . , Jt). The Ji ∈ Rmi×mi are called Jordan blocks with
λi on the diagonal and ones on the superdiagonal, and

∑
mi = n.

The computation of the eigenvalue decomposition for nonsymmetric, large matrices
is an active area of research. A general matrix A is called non-defective, if it has a
distinct set of eigenvectors. In this case, A is diagonalizable, and the Jordan form is
the standard eigenvalue decomposition. However, note that the eigenvectors do not
have to be orthogonal! On another note, if the goal is to enforce unitary, eigenvectors,
then one has to relax the “eigenvalue” matrix to become upper triangular.

Theorem 1.2.5. Schmidt-Eckardt-Young-Mirsky [8, p.37]. Every matrix A ∈
Cn×m with m ≤ n has a singular value decomposition (SVD). That is A = UΣV ∗,
where U, V are unitary matrices, UU∗ = In, V V

∗ = Im and Σii = σi ≥ 0, i = 1, . . . , n
are the singular values. The rank of the matrix is determined by the number of
nonzero singular values. The best approximation error of A via a rank r matrix is
given by

min
rank(X)=r

||A−X||2 = σr+1(A), (1.1)

and in the Frobenius norm

min
rank(X)=r

||A−X||F =

(
n∑

i=r+1

σ2
i (A)

)1/2

, (1.2)

provided that σr < σr+1. The (nonunique) minimizer to the approximation problem
is given by the truncated singular value decomposition

X∗ = UrΣrV
T
r ,

where Ur, V
T
r denote matrices of the first r columns or rows of U, V T , respectively,

and Σr is the leading r × r submatrix of Σ.
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For symmetric matrices, the eigenvalue decomposition (EVD) and singular value
decomposition are closely related, i.e. |λi(A)| = σi(A) and the left eigenvectors and
left singular vectors agree up to a sign change, see [8, p.37]. When computing the
proper orthogonal decomposition of a dataset, one uses this property to have a more
stable implementation of the algorithm, see the subsection on POD below.

Solving linear systems of the form Ax = b is required in a large number of numerical
algorithms for optimization, control, simulation, sensing, parameter estimation, and
many more. However, the data b is often corrupted or inaccurate, and one would
like to know the sensitivity of the solution with respect to errors in the data. This
leads to the definition of the condition number.

Definition 1.2.6. The condition number of A ∈ Rn×n is a measure for the sensitivity
of Ax = b to changes in the data b and is defined as

κ := ||A|| · ||A−1||,

and for the spectral norm, the norm is given as the ratio of the largest to smallest
singular value:

κ =
σ1

σn
.

Orthogonal matrices have perfect conditioning, i.e. κ = 1, and singular matrices
have infinite condition number. Large condition numbers are concerning where linear
solves are involved, since those can be extremely sensitive and therefore challenge
every algorithmic implementation. The following result is standard and more detail
can be found in [70, p.34]. To get a practical error bound, let x̂ ∈ Rn be any vector,
for which we want to know its distance to the solution x of Ax = b, and denote it by
∆x = x̂ − x. Therefore, define the residual ε = Ax̂ − b. Then, ∆x = A−1(Ax̂ − b)
and consequently

||x̂− x||2 ≤ ||A−1||2 · ||ε||2.

In other words, the error in the solution depends on the error in the data, but is
magnified by the condition number. This illustrates that small condition numbers
are beneficial for accurately solving linear systems.



CHAPTER 1. MOTIVATION AND MATHEMATICAL BACKGROUND 9

1.3 Partial Differential Equations and Approxi-

mation

In this dissertation, we are concerned with model reduction methods and algorithms
for control, simulation and optimization of large systems. One instance, where such
large models arise are after discretization of partial differential equations (PDE’s).
Here, we briefly introduce partial differential equations to illustrate the mathematical
framework, and focus on some relevant results. By no means does this dissertation
attempt to thoroughly address theoretical issues related to PDE’s and infinite di-
mensional systems.

The quest to understand and control physical phenomena often starts with a model
given by a partial differential equation (PDE). Those models arise from first princi-
ples such as conservation laws [128, §3.3] for mass, momentum, and/or energy. Par-
tial differential equations are therefore widely considered good models3 for physical
phenomena, since a process can be modeled through various variables and depen-
dencies, allowing for great flexibility. Partial differential equations model functional
dependencies of quantities of interest, e.g., velocity in flows (Navier-Stokes equa-
tion), oscillation in electromagnetic fields (Helmholtz), a wave function in quantum
mechanics (Schroedinger), potential fields (Laplace), and many more.

In Chapter 5, the Boussinesq equations are used to model the viscous, convective
and buoyant forces for indoor-air behavior. The buoyancy arises due to temperature
gradients in the fluid. The classical approach of conservation of mass and momentum
leads to the Boussinesq equations

0 = ∇ · u (1.3)

ut = µ∆u− (u · ∇)u−∇p− T + f (1.4)

Tt = k∆T − u · ∇T, (1.5)

defined on [0, T ] × Ω, where T (t, x) is a scalar temperature function, p(t, x) is a
pressure field, f(·, ·) is a body force (e.g., gravity), u(t, x) is a vector-valued flow
variable, and µ can be thought of a viscosity-like parameter. Moreover, we introduce
square integrable initial conditions T (0, x) = T0(x) and u(0, x) = u0(x). A typical
set of boundary conditions is to have a hot temperature on some portion of the
boundary and a cold wall temperature otherwise. For the boundary of the flow
field, we often consider prescribed inflows, or no-slip conditions. It is customary to

3We shall not forget though, that there is a reality beyond models.
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eliminate the static pressure (hiding it somehow in T ), so that one only has to solve
for u and T . The Boussinesq equations are ultimately the model of choice, since
they capture all relevant physical phenomena of wall bounded, thermally (natural
convection) driven flow. Where temperature gradients are negligible, we use the
Navier-Stokes equations instead.

1.3.1 The Finite Element Method

To illustrate the process of obtaining approximate ODE models from PDE’s, we
choose the finite element method (FEM) for its desirable mathematical features and
wide applicability. For ease of presentation, assume that T (t, x) = 0, i.e. consider
the incompressible Navier-Stokes (NS) equations

ut = µ∆u− (u · ∇)u−∇p+ f, (1.6)

0 = ∇ · u, (1.7)

u = 0 on ∂Ω, (1.8)

u(0, x) = u0(x), (1.9)

where the variables have the same meaning as above. The book of Layton [128] gives
an accessible introduction to the finite element method for viscous, incompressible
flows and points to much of the existing literature for more in depth study. In the
remainder, we assume that µ� 0, since otherwise the dynamics of the NS-equations
can produce turbulent flows, requiring more sophisticated discretization schemes.
First, we define the notion of a solution, followed by a brief discussion of convergence
to (analytical) solutions. Let ui(·) denote the ith component of u and define

Xu = H1
0 (Ω)d := {ui(·) ∈ L2(Ω) : ||∇ui||2 <∞,ui(x) = 0 on ∂Ω}d

as the Hilbert space of functions with square integrable derivatives which vanish on
the boundary. The notation {}d denotes the d-fold product space. Similarly, we
define L2

0(Ω) to be the space of square integrable functions which also vanish, almost
everywhere, on the boundary. For notational convenience, let

Xp := L2
0(Ω) = {p(·) ∈ L2(Ω) :

∫
Ω

p(x)dx = 0},

and the space of divergence free functions be

Xdiv=0 := {u(·) ∈ Xu : (p,∇ · u) = 0,∀p ∈ Xp}.
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Definition 1.3.1. [128, p.153] The pair {u, p} is a strong solution to (1.6) - (1.9) if
u ∈ L2(0, T ;Xu) ∩ L∞(0, T ;L2(Ω)) and

1. u : [0, T ] 7→ Xu is differentiable, ut : (0, T ] 7→ X ∗u is integrable and p : (0, T ] 7→
Xu is continuous.

2. For every t ∈ (0, T ], all v ∈ L2(0, T ;H1
0 (Ω)) ∩ L∞(0, T ;L2(Ω)), and all q ∈

L2(0, T ;L2
0(Ω)) we have∫ t

0

(ut,v) + (u · ∇u,v)− (p,∇ · v) + ν(∇u,∇v)dt =

∫ t

0

(f,v)dt

and ∫ t

0

(q,∇ · u)dt = 0.

3. u0 ∈ Xdiv=0 and ||u(t, ·)− u0|| → 0 as t→ 0.

4. u ∈ L4(0, T ;Xu).

Having a mathematically sound definition of a solution, we next show that a suit-
able approximation scheme will guarantee convergence of solutions. To this end, we
consider the finite dimensional approximation spaces

X h
u ⊆ Xu, X h

p ⊆ Xp.

The approximations of the velocity and pressure function, uh and ph, in the above
spaces need to satisfy the variational system

(uht ,v
h) + b∗(uh,uh,vh) + ν(∇uh,∇vh)− (ph,∇ · vh) = (f,vh), (1.10)

(uh(0, ·)− u0,v
h) = 0, (1.11)

for all vh ∈ X h
div=0. Here, b∗(u,v,w) := 1

2
(u · ∇v,w) − (u · w,v) is the skew-

symmetrized trilinear form. Additionally, the FEM approximating spaces need to
satisfy the famous Ladyzhenskaya-Babuska-Brezzi (inf − sup) condition, see [128,
p.62]. It is well known, that under those conditions, the approximation problem is
well defined, and a unique solution exists [128, Ch.9].

The construction of approximation spaces, i.e. the selection of proper basis functions
(shape and polynomial order), goes beyond the scope of this introduction. One can
think of basis functions in the approximation spaces as low order polynomials with
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support only over small subregions of the physical domain. A proper selection of the
FE basis functions guarantees convergence at predefined rates. For one particular
choice of a basis, namely the Taylor-Hood finite elements, an error estimate of the
form

sup
0≤t≤T

||u− uh||2 + ν

∫ T

0

||∇u−∇uh||2dt ≤ C(u, p, ν) · h4

can be obtained, see [128, p.161]. A priori error bounds of this kind specify the
asymptotic behavior of the error. They can, and should be, complemented by a
posteriori error computations, to asses the actual error of the solution at hand.

The approximation (1.10) - (1.11) is a system of ordinary differential equations,
since the spatial dependence is integrated out by virtue of the test functions. If one
expands the dependent variable u in the same basis as the test functions (yielding a
Galerkin system), i.e.

u(t) =
n∑
i=1

ai(t)φi(x),

then the above system can be written as

Eȧ(t) = Aa(t) + aTNa+ d+ F (t),

a(0) = a0,

where N is a tensor, and the terms A, d, F (·) are defined appropriately [128]. In
essence, the goal is to show that spatial discretization of a PDE leads to a system of
ODE’s, which has to be solved using a time integrator.

The previous discussion about finite element methods for forward solution of the par-
tial differential equation, gave a flavor of the solid foundation of FEM for simulation
of complex systems. However, approximation schemes yielding finite dimensional
models for optimization and control need to satisfy additional criteria and special
care should be taken in this case.

Remark 1.3.2. In Subsection 1.5, the important system theoretic concepts of con-
trollability and observability are introduced, and those ideas can be extended to
infinite dimensional PDE systems as well. For an approximation scheme to retain
e.g., controllability, additional conditions have to be imposed, see [51, §2, Prop.1.20].
Moreover, Ito [105] (see also the appendix) states that convergence combined with
dual convergence and preservation of exponential stability of the associated semi-
groups guarantee that the computed control law converges to its infinite dimensional
counterpart. In [17], Banks and Burns introduce the “AVE” scheme which can be
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used for discretization of control problems, as well as systems with delays. In short,
care should be taken when using finite element schemes for optimization and control,
as the “right” discretization for simulation could be the “wrong” discretization for
control.

1.4 Ordinary Differential Equations

Ordinary differential equations (ODE) are at the heart of dynamical systems. They
arise directly from modeling, or through semidiscretization of partial differential
equations, as illustrated in the previous section. ODE’s are well studied mathemat-
ical models, with an exhaustive theory ranging from existence and uniqueness and
solution techniques (analytical and numerical) to asymptotic behavior and perturba-
tion analysis. Most of the results required in this thesis are taken from [141], which is
an excellent and concisely written introduction to the subject. Consider the general,
nonlinear ordinary differential equation of the form

ẋ(t) = F (t, x(t)), t > 0 (1.12)

x(0) = x0, (1.13)

where F : Rn 7→ Rn is a (generally) nonlinear function, and t denotes the indepen-
dent time variable. For control and systems theory, the right hand side is often linear
and time invariant, plus a control term (disturbance) is added such that

ẋ(t) = Ax(t) +Bu(t), t > 0. (1.14)

Such systems arise naturally through linear relations of quantities of interest, or
through linearization of nonlinear dynamics.

1.4.1 Existence and Uniqueness

The existence and uniqueness of solutions to the initial value problem are first ad-
dressed, followed by a closed form solution expression.

Theorem 1.4.1. [141, p.55] Let F (·, ·) be continuous on D = (0,∞)× Ω, where Ω
is a connected domain in Rn. Moreover, let F satisfy a Lipschitz condition in D, i.e.

||F (t, x)− F (t, y)|| ≤ L||x− y||, ∀(t, x), (t, y) ∈ D
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and some finite L. Then for any (t0, x0) ∈ D, there exists as unique solution to
(1.14)-(1.13) for all times t ∈ (0,∞).

The continuity condition on F (·, ·) guarantees existence, and the Lipschitz condition
implies the uniqueness of solutions. A Lipschitz constant of L = 1 defines the usual
notion of continuity. In the special case of

F (t, x(t)) = Ax(t) +Bu(t),

existence and uniqueness is straightforwardly verified. Moreover, there is a closed
form solution, called the Variation of parameters or Variation of constants formula
[141, p.98ff], given by

x(t) = eAtx0 +

∫ t

0

eA(t−s)Bu(s)ds, ∀t ∈ (0,∞). (1.15)

The reader should note that there is a separate contribution to the solution from the
propagation of the initial condition and from the external disturbance. The expo-
nential matrix operator {etA}t≥0 is more abstractly referred to as a C0-semigroup.
The concept of semigroups was originally formulated for infinite dimensional systems
[67], and the reader is referred to the appendix for further information on operator
semigroups. The above closed form solution is a convenient tool for analysis of sys-
tems of ODE’s and can also be used to guide time integration (e.g., Rosenbrock-type)
methods.

1.4.2 Stability

In this subsection, we introduce the notion of (Lyapunov) stability and give a per-
turbation result, known as Perron’s theorem. This states that linear stability effects
dominate “small” nonlinearities as t → ∞, which in turn justifies linear control
mechanisms.

Definition 1.4.2. ([141, p.183]) A matrix A ∈ Rn×n is called stable or Hurwitz if
all of its eigenvalues have negative real parts. If at least one of the eigenvalues has
a positive real part, the matrix is called unstable.

This definition implies that the linear solution operator {etA}t≥0 is uniformly ex-
ponentially bounded. Thus, there are constants M1 ≥ 1 and ω1 > 0 such that
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‖etA‖2 ≤ M1e
−ω1t. We shall next see, that for systems with linear and nonlinear

part, stability can carry over from the linear part, as long as the nonlinearity is well
behaved. This can be particularly helpful for systems that were linearized around
an equilibrium solution.

Theorem 1.4.3 (Perron). ([141, p.261]). Let A ∈ Rn×n be stable and let B(h) :=
{x : ||x||2 < h} be the ball of radius h around the origin. Let F : R+ × B(h) 7→ Rn

be continuous in (t,x) and satisfy

F (t, x) = o(||x||) as ||x|| → 0,

uniformly in t ∈ (0,∞). Then the trivial solution of

ẋ(t) = Ax(t) + F (t, x)

is uniformly asymptotically stable.

1.4.3 Time Discretization and Stability

The finite element method and reduced order models yield (spatially) semi-discretized
systems of ordinary differential equations, which have to be solved with time inte-
gration schemes. Here, we introduce the so called “θ-method” [93] for time dis-
cretization. For ease of presentation, consider the system of autonomous ordinary
differential equations

ẋ(t) = F (x(t)), t ∈ [0, T ], (1.16)

where x ∈ Rn, F : Rn 7→ Rn. Let ∆t = T/s be a time step size and set ti = t0 + i∆t
for i = 1, . . . s. Let xm = x(tm) and define the interpolation between xm and xm−1

to be
xmθ = θxm + (1− θ)xm−1, θ ∈ [0, 1].

We can then approximate equation (1.16) with the finite difference in time

xm − xm−1

∆t
= F (xmθ ). (1.17)

For θ = 0, this yields the standard forward Euler method, for θ = 1, the backward
Euler scheme and for θ = 1/2 the Crank-Nicolson method. The reader should
observe that the nonlinearity needs information from both states xm and xm−1 and
so is not easy to implement. Thus, use

xm − xm−1

∆t
=
θxm + (−θ + 1)xm−1 − xm−1

θ∆t
=
xmθ − xm−1

θ∆t
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and insert into equation (1.17) such that

xmθ − xm−1

θ∆t
= F (xmθ ). (1.18)

Consequently, in every time step, solve the nonlinear algebraic equation

1

θ∆t
xmθ − F (xmθ )− 1

θ∆t
xm−1 = 0 (1.19)

for xmθ and compute the sought solution as

xm =
1

θ
xmθ −

1− θ
θ

xm−1.

Equation (1.19) is solved with a Newton-type method, where the initial guess at
every time step is set to xm−1

θ .

A time discretization scheme can give erroneous results, if the time step ∆t is chosen
too large. In fact, there is a rich theory of stability of time discretization schemes,
both for standard ODE’s, and PDE’s in general, see [131]. Convergence of a finite
difference scheme can be cast by the following definition.

Definition 1.4.4. [131, p.137] A one-step time discretization scheme is said to be
convergent, if applying the method to any ODE of the form 1.16, with F (·) Lipschitz
continuous, and with any set of starting values satisfying x0 = x(0), we obtain
convergence in the sense that

lim
∆t→0
nt∆t=T

xnt = x(T ), ∀T > 0,

where nt denotes the number of time steps taken.

Convergence of a one-step time discretization scheme follows from stability and con-
sistency of the method. For one-step schemes, stability is trivially satisfied, and con-
sistency (that errors during one time step go to zero as ∆t→ 0) needs to be shown.
In general terms, the (explicit) forward Euler is unstable, unless a sufficiently small
time step is taken. The (implicit) backward Euler scheme is unconditionally stable,
with a first order convergence behavior. The Crank-Nicolson scheme is second order
convergent, numerically stable, and hence often a good method to start with. More
sophisticated methods, such as multi-step approaches, can be found in [131]. The
reader should observe, that the above definition is an asymptotic expression, and of
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little use in practice. For an explicit time step ∆t, one can find the regions of stability
for the time integration methods, which involve the eigenvalues of the system matrix
(linear case) or Jacobian (nonlinear case) [131, Ch.7]. The reader should also note,
that the above ODE’s often arise from a PDE discretization. In that respect, the size
of the state space grows as the spatial grid is refined, adding additional complexity to
the problem. In particular, the previously mentioned eigenvalues change with every
mesh refinement, and satisfying the stability criterion leads to a relationship between
the spatial mesh size h and the time step ∆t, the well known Courant-Friedrichs-
Lewy condition [131, §10.7]. In this thesis, the simulations were performed such
that the CFL condition is met, or adaptive time stepping schemes are used that
automatically adjust the time step so that the methods converge.

1.5 Control and Systems Theory

The field of systems theory finds widespread use in many areas of engineering, natural
sciences and the life sciences. This is in part due to the maturity of the study of
linear, time invariant (LTI) systems and related system features, see [126, 8] and the
references therein. We shall mention the necessary concepts needed in this thesis and
refer the interested reader to the excellent references given throughout for a more
detailed study of systems theory.

1.5.1 Abstract Formulation of control problem

For a general framework, let Ω ∈ Rd, d = 1, 2, 3 be a domain, and let

Z = L2(0,∞; Ω)

be the state space of the dynamical system. By z(t, ·) ∈ Z, one denotes the state
variable of the dynamical system. The equivalence class [z(t, ·)] is identified with a
representative z(t) meaning that for every fixed, positive and finite t, the function
z(t) ∈ Z. After linearization of a possibly nonlinear dynamical system, define the
linear operator

A : D(A) 7→ Z.

Further, let U = R be the space of control inputs. Similarly, we identify the control
action [Bu](·) with Bu ∈ Z. The control operator B ∈ L(U,Z) shall be

[Bu](t) = Bu(t).
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When information about the entire state is not available or not of interest, one
considers the sensed output

y(t) = Cz(t) ∈ Y,

a Hilbert space. The operator C ∈ L(Z, Y ) is called the observation operator. The
infinite dimensional linear dynamical system can then be written as

ż(t) = Az(t) + Bu(t), (1.20)

y(t) = Cz(t), (1.21)

z(0) = z0 ∈ Z. (1.22)

With the variation of parameters formula, the solution to the system (1.20) - (1.22)
is formally given by

z(t) = S(t)z0 +

∫ t

0

S(t− s)Bu(s)ds,

where S(t) generates an analytic semigroup on Z. To set up an optimal control
problem, define the cost functional as

J(u, z) =

∫ ∞
0

{
||Cz(t)||2Y +R||u(t)||2U

}
dt, (1.23)

where R ∈ R represents a cost attributed to the control action.

Definition 1.5.1. Let A : D(A) 7→ Z be the generator of an analytic semigroup
and B ∈ L(U,Z) a bounded control operator. The Infinite Time Horizon Optimal
Control Problem consists of finding an optimal pair (u∗(·), z∗(·)) that minimizes the
cost functional (1.23) subject to the dynamical system (1.20) - (1.22).

Definition 1.5.2. (1) The pair (A,B) is called stabilizable if there exists an op-
erator K : L(Z,U) such that (A− BK) generates a uniformly exponentially stable
semigroup on Z.
(2) The pair (A, C) is called detectable if there exists an operator G : L(Y, Z) such
that (A− GC) generates a uniformly exponentially stable semigroup on Z.

Theorem 1.5.3. ([35],p.486) If (A,B) is stabilizable then the solution to the infinite
time horizon optimal control problem is given by the linear operator K : Z 7→ U , called
the gain operator, such that

u∗(t) = −Kz(t) = −R−1B∗Πz(t),
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where Π satisfies the operator Riccati equation

A∗Π + ΠA− ΠBR−1B∗Π + C∗C = 0. (1.24)

Here, A∗ denotes the adjoint operator of A such that (Az, z) = (z,A∗z) for all z ∈
D(A). By Riesz’ representation theorem4 there exists an integral kernel k(x) ∈ Z,
called functional gain, such that the optimal control can be written as

u∗(t) = −
∫

Ω

k(x)z(t)dx, ∀t ∈ (0,∞). (1.25)

The functional gains are important for the placement of sensors and actuators [48, 47].
For more information on infinite dimensional control, the reader may consult [67].
The concepts which are introduced in the following section for finite dimensional
systems can all be formulated in the infinite dimensional case as well, yet with
great technical detail. In this work, we focus on the finite dimensional case, in part
because certain problems, e.g. Chapter 5, are purely data-based. In the appendix,
we give more detail about the infinite dimensional theory, in particular with respect
to convergence of discretization. As an example, we formulate the coupled Burgers’
equation in detail as an infinite dimensional control problem.

1.5.2 Finite Dimensional Linear Systems Theory

Consider a linear, time invariant system of the form

ẋ(t) = Ax(t) +Bu(t), (1.26)

y(t) = Cx(t) +Du(t), (1.27)

where x ∈ Rn is the state variable, and u(t) in L2[0,∞) is the control function. Here,
A ∈ Rn×n is the system matrix, B ∈ Rn×m is the control input matrix, C ∈ Rp×n is
the observation and D ∈ Rp×m is the control-to-output mapping (“feed-through”).
The above system can arise from discretization of a PDE, or can directly be obtained
through modeling. The Variation of Parameters formula (1.15), provides a closed
form of the input to output mapping in continuous time as

y(t) = CeAtx0 +

∫ t

0

CeA(t−s)Bu(s)ds, ∀t ∈ (0,∞).

4Since Z is a Hilbert space, so Z = Z∗, the mapping K : Z 7→ U = R can be represented as an
inner product (k(x), z)Z .
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On the other hand, the Laplace transform of the state is given by L(x) := x̂(s) =∫∞
0
e−stx(t)dt and it is easily seen that L(ẋ) =

∫∞
0
e−st d

dt
x(t)dt = sL(x)− x(0). The

Laplace transformed system reads as

sx̂(s)− x(0) = Ax̂(s) +Bû(s),

ŷ(s) = Cx̂(s),

which can then be rearranged into

ŷ(s) = C(sI − A)−1Bû(s) + C(sI − A)−1x(0).

Typically, one is interested in the system response to inputs, and hence we neglect
the initial condition (x(0) = 0), so that the mapping from inputs to outputs in the
frequency (Laplace) domain is given by the transfer function G(s) := C(sI −A)−1B
as

ŷ(s) = G(s)û(s) (1.28)

The transfer function is the frequency domain analogue to the closed loop form of
the output equation from above. Assume that the two different inputs û1 and û2 are
given, so that the corresponding outputs can be bounded as

||ŷ1(s)− ŷ2(s)||a ≤ ||G(s)||b ||û1 − û2||a,

where the pair a = 2, b = H∞ give a bound on the least squares error in the output
and the norms a =∞, b = H2 bound the maximum error in the output. Here,

||G||2H2
=

1

2π

∫ ∞
−∞

trace(G∗(iω)G(iω))dω,

and
||G||H∞ = sup

ω∈R
||G(iω)||2

are the corresponding system norms in the Hardy spaces [8, p.132+144]. Many model
reduction methods are designed to minimize the above norms [91].

Another important concept in linear systems theory is the notion of observability
and controllability. In short, these concepts help to determine states of a system
that can be controlled, and observed, respectively. From a practical standpoint,
controllability needs to be ensured by the design and location of actuators, and
similarly for sensors in the concept of observability. From a model reduction point of
view (see next section), it is often sufficient to retain states that are both observable
and controllable.
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Definition 1.5.4. [8, p.73] Given the system (A,B), a (nonzero) state x̄ is control-
lable to the zero state, if there exists an input function u(t) and a finite time T , such
that x(u, x̄, T ) = 0. The controllable subspace of Rn is the set of all controllable
states. The system (A,B) is controllable, if the controllable subspace is all of Rn.

Theorem 1.5.5. [126, p.55] The n-dimensional linear time invariant system ẋ(t) =
Ax(t) + Bu(t), with A ∈ Rn×n, B ∈ Rn×p, is completely controllably of and only if
the controllability matrix

C := [B, AB, A2B, . . . , An−1B] (1.29)

has full column rank.

In the numerical linear algebra community the above space is called a Krylov sub-
space. Below, we give a simple example to illustrate the concept of controllability.

Example 1.5.6. Consider the two dimensional LTI system given by

A =

[
1 0
0 −1

]
, B =

[
1
0

]
.

The solution x(t) = [x1(t), x2(t)]T can be easily computed and x2(t) = e−t. By the
definition above, the system is not controllable, since the is no finite time T such
that x2(T ) = 0. Alternatively, one could also compute the controllability matrix
(note, n = 2), which reads as

C =

[
1 1
0 0

]
,

which does not have full column rank.

Definition 1.5.7. [126, p.65f] Let y(t; t0, x0, u) be the output response of the LTI
system (A,B,C) to the input u(t). The system is called completely observable if for
all t1, there exists a t0, such that if

y(t; t0, x0, u) = y(t; t0, x
′
0, u) ∀u(t) and t0 ≤ t ≤ t1,

then x0 = x′0. In other words, the initial state can be determined after a finite
observation duration of the output.

Theorem 1.5.8. [126, p.67] The n-dimensional LTI system (1.26) - (1.27) is com-
pletely observable if and only if the observability matrix

O := [CT , CTA, . . . , CTAn−1]T (1.30)

has full rank n.
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The reader should observe, that controllability and observability are dual concepts,
see [126, §1.8]. In other words, the pair (A,B) is completely controllable, if and only
if the pair (AT , BT ) is completely observable.

Definition 1.5.9. [126, p.80] The dual system to (1.26) - (1.27) is the linear system

ż(t) = AT z(t) + CTu(t),

y(t) = BT z(t).

In the dual system, the role of the inputs and outputs is switched and the concept
becomes important when considering the duality between controllers and observers
of a system. In Chapter 3, we solve the algebraic Riccati equation based on the dual
equations.

Controllability and observability are intricately related to the system gramians, as
introduced below. Through those gramian matrices, the energy to steer a state to
the zero state, as well as the energy needed to observe those states can be explicitly
computed.

Definition and Theorem 1.5.10. [8, p.78f] For a stable LTI system (1.26) - (1.27),
the controllability gramian Q and the observability gramian X are given by

Q :=

∫ ∞
0

eAtBBT eA
T tdt, X :=

∫ ∞
0

eA
T tCTCeAtdt. (1.31)

The gramians satisfy the continuous time Lyapunov equations

AQ+QAT +BBT = 0, ATX +XA+ CTC = 0. (1.32)

The minimal energy to required to steer x(t) from zero to xf is given by xTfQxf and
the minimal energy produced by observing the output of the system whose initial
state is x0 is given by xT0Xx0.

The gramians provide the key ingredients for the balancing transformation, a change
of basis that makes the states of the new system equally well controllable and observ-
able. This leads to a model reduction technique, called balanced truncation [142],
which guarantees to retain stability in the reduced order model. Balanced truncation
uses the decay of the Hankel singular values defined as

σHk =
√
λk(XQ)

as a truncation criterion. The Hankel singular values are system invariants and
therefore important quantities for the study of linear systems.
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1.5.3 Optimal Control

The goal of optimal control design is to minimize a given cost while obeying the
underlying dynamics exactly or approximately. A key advantage of this theory is
that the feedback is of linear type. However, one should keep in mind that the
control law possesses zero robustness, as shown by J. C. Doyle in [75]. For the
purpose of finite dimensional optimal control theory, we again assume a linear, time
invariant system of the form (1.26) - (1.27).

Definition 1.5.11. The infinite time horizon optimal control problem on Rn is given
as follows: Find the optimal control u∗(·) : [0,∞) 7→ U = Rm and the corresponding
optimal trajectory x∗(·) : [0,∞) 7→ Rn that minimize the cost

J(u(·), x(·)) =

∫ ∞
0

{
||y||2 +R||u(t)||2

}
dt (1.33)

subject to the dynamics in (1.26) - (1.27).

The above problem can be solved by standard constraint optimization methods.
However, it turns out that there is an explicit solution to the above problem, which
assumes the solution of a nonlinear matrix equation, as we shall see below. First, we
give a definition and theorem about stabilizability.

Definition and Theorem 1.5.12. ([126, §1.3.4]) The single input control system
(1.26),(1.27), (1.33) is called stabilizable if its uncontrollable poles are stable. In
other words, there exists a m× n matrix K such that [A− BK] is a stable matrix.
Thus, all roots λi of the characteristic polynomial det(A − BK − λI) = 0 satisfy
<(λi) < 0. Moreover, there are constants M ≥ 1, γ > 0 such that

|x(t)| ≤Me−γt|x0| ∀t > 0.

Conversely, if there is no such matrix K, then the system is not stabilizable and not
controllable.

The following theorem relates the solution of the optimal control problem to solving
the algebraic Riccati equation and explicitly states the cost of the control action.

Theorem 1.5.13. ([126, p.237f]) If (A,B) is stabilizable, then the infinite time hori-
zon optimal control problem from Definition 1.5.11, has a unique solution (u∗(·), x∗(·)).
The linear feedback law reads as

u∗(t) = −Kx∗(t). (1.34)
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The gain matrix is constant and given by

K = R−1BTP∗, (1.35)

where P∗ is the unique non-negative definite solution to the time invariant Riccati
equation

ATP + PA− PBR−1BTP + CTC = 0. (1.36)

With this feedback control, the closed loop system in Rn reads as

ẋ∗(t) = [A−BK]x∗(t)

and is asymptotically stable. Moreover, the minimal cost can be computed as

J(u∗(·), x∗(·)) =

∫ ∞
0

{
||y∗||(t) +R||u∗(t)||2

}
dt =< P∗x0, x0 > . (1.37)

Thus, stabilizability guarantees the existence of a linear quadratic regulator. Systems
are made stabilizable through design: Actuators should be able to influence the
unstable modes, otherwise there is no hope for the system to eventually become
stable. A similar statement can be made about the dual problem of observability.

Remark 1.5.14. The gain matrix K can give crucial insight into the placement of
sensors. The columns of K have the infinite dimensional analogue of functional gains,
which are square integrable functions in space. To illustrate the point, let [x1 x2]T

be the state of a system and K = [1 0], which is equivalent to compact support of
the functional gains in infinite dimensions. For control purposes, there is no need
to sense/observe the component x2, since by u(t) = −Kx(t), this information would
be useless. Generally, in spatial locations where K is “large” in some sense, sensors
should give accurate information about the state, whereas where K is “small”, less
sensing effort can be spent.

In Chapter 3, we develop a new algorithm to solve the algebraic Riccati equation
in high dimensions (n ≈ 100, 000), which leads to an accurately approximated con-
troller. This approach is called “design-then-reduce”, since the controller is first
computed from the high fidelity model and then implemented through a low order
representation. Where this is impractical, or where reduced order models are al-
ready at hand, an alternative is to proceed by “reduce-then-design”, i.e. computing
the control from reduced order models. The latter idea is illustrated in Chapter 2,
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where we use proper orthogonal decomposition for generation of a low dimensional
model, and subsequently compute the feedback law. That chapter highlights the
many computational choices involved in such an approach.

One should note, that linear controllers are frequently used for nonlinear systems,
and the success of such an approach depends on the “order” of the nonlinearity. In
particular, Theorem 1.4.3 (Perron) guarantees, that controllers computed from linear
systems still stabilize weakly nonlinear dynamics.

1.6 Model Reduction

Model reduction is concerned with reducing the dimension and complexity of a (data
or model based) system, so that the reduced order surrogate model is cheap to
execute, while satisfying specified criteria, such as stability, accuracy, structure, etc.
Therefore, model reduction is inherently problem dependent and goal oriented and
one is well advised to consider the following questions for the given application:

• Which are the necessary features the reduced order model should have?

• Do we need to preserve nonlinearities, implement them efficiently, or is lin-
earization appropriate?

• Is it necessary to preserve the structure of high fidelity model?

• What is the hardware environment on which it should be executed?

In summary, there is no “one-size-fits-all” technique in model reduction, since every
problem and environment poses unique challenges. This is reflected in the variety
of available model reduction techniques, where each method, in general, has known
strength and weaknesses.

Proper Orthogonal Decomposition is often the method of choice for nonlinear sys-
tems, when the energy retained in the system is most important for the applica-
tion. Dynamic mode decomposition [156, 162] in contrast is concerned with the
dynamically most relevant modes, and therefore typically selects modes based on a
frequency criterion. Moreover, methods such as balanced truncation [142], balanced
POD [189, 155] or the eigensystem realization algorithm [124], construct reduced
order models that retain the most controllable and observable modes of the system.
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Other ROM methods accurately approximate the input-to-output behavior of the un-
derlying system, rather than focusing on optimally representing the states. The iter-
ative rational Krylov subspace algorithm [91] for linear and bilinear systems achieves
this by optimally interpolating the transfer function of the system. In addition,
there are many other model reduction techniques, such as LQG balanced truncation
[26], reduced basis methods (good for parameter dependent systems) [121], as well
as structure preserving model reduction techniques (for Port-Hamiltonian systems)
[92].

1.6.1 Projection based model reduction

The model reduction techniques considered in this work are based on projections
of the high dimensional dynamics onto a low number of modes that well capture
certain features of the flow. Consider a general nonlinear dynamical system in Rn of
the form

Eẋ(t) = F (x(t)) +Bu(t), (1.38)

y(t) = Cx(t). (1.39)

The goal of model reduction is to approximate the high dimensional state x in an
appropriate bases {φi}i=1,...,r with r � n, so that

x(t) ≈ xr(t) =
r∑
i=1

ai(t)φi.

This is in essence achieved through a change of basis, by diverting from the nonphys-
ical, high-dimensional basis to a data-informed basis. In the new, sparse basis, only a
few functions are needed to capture the desired properties of the system. Rewriting
the above approximation in convenient matrix-vector expressions yields

x(t) = Φa(t), Φ = [φ1, φ2, . . . , φr] ∈ Rn×r.

Inserting the approximation into equations (1.38) -(1.39) and projecting onto the low
dimensional subspace through ΦT yields the r-dimensional system

Erȧ(t) = ΦTF (Φa(t)) +Bru(t),

y(t) = Cra(t),
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with Er = ΦTEΦ, Ar = ΦTAΦ ∈ Rr×r, the reduced control input matrix Br =
ΦTB ∈ Rr×p and the sensing matrix Cr = CΦ ∈ Rm×r. An apparent challenge
in reduced order modeling is the treatment of the nonlinear term, since F (·) still
needs to be evaluated at the full dimension n. The computational effort for the
nonlinearity can be reduced by the empirical interpolation method (EIM) [22] and
the discrete empirical interpolation method (DEIM) in the context of POD [61],
which both interpolate the nonlinear function in a clever way. When dealing with
projection methods, one needs to ensure that stability is preserved under projection.
In particular, if A is a stable matrix, then Ar should also be stable.

Lemma 1.6.1. (Stability Preservation under Projection)[59] Let (E,A,B,C) be a
continuous time system with Re(λ(A+AT )) ≤ 0, where λ(A) denotes any eigenvalue
of A. Let E = ET > 0. Then the projected reduced order model (Er, Ar, Br, Cr) is
stable if V ∈ Rn×r has full column rank.

Note that as a special case, if E = I and the matrix A is normal (symmetric, skew-
symmetric or orthogonal matrices form a subset of normal matrices), then reduced
order models obtained via projection as in Lemma 1.6.1 are stable. Care must
be taken when Petrov-Galerkin projections are computed (different left and right
projection), since stability can be lost in the process.

1.6.2 Proper Orthogonal Decomposition

Proper Orthogonal Decomposition (POD) is a data reduction technique, which ex-
tracts dominant structures from experimental or simulation data. In fact, the method
determines the optimal basis for representing a given dataset with respect to the
mean squared error. The method has been independently rediscovered many times,
see Pearson (1901), Hotelling (1933), Loeve (1945) and Karhuenen (1946) and there-
fore is known under multiple names, such as Karhuenen-Loeve expansion, Principal
Component Analysis and Hotelling transformation. Based on the extracted coherent
structures, POD has been employed to produce reduced order models of Galerkin
type, which are frequently used for simulation, design, and control. In this work, we
are interested in fluid dynamical applications, where the success of POD for has been
overwhelming, see [174, 13, 98, 135, 151, 186] and the references therein. Per defini-
tion, the POD basis depends on the data set from which it was computed. Extensions
of POD to deal with parameter dependent systems can be found in [96, 108], where
sensitivity information with respect to parameters is incorporated into the basis func-
tions. While POD does not guarantee preservation of stability [12, 155, 7], employing
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stable model reduction techniques, such as balanced truncation, is computationally
expensive and limited to linear systems. Extensions of balanced truncation to non-
linear systems were presented in [127, 189, 155]. In Chapter 2, we employ POD to
generate reduced order surrogate models, which can be used for design and control.
As a data based method, POD is not limited to a certain underlying model structure.
As Volkwein [185, p.3] notes “the POD method is a universal tool that is applicable
also to problems with time dependent coefficients and nonlinear systems.... This,
and its ease of use makes POD very competitive in practical use, despite of a certain
heuristic flavor”. In this section, we introduce POD for general finite dimensional
dynamical systems, and refer the reader interested in the infinite dimensional case
to the excellent surveys [99, 185, 186].

The application of POD in this work is to use it as a model reduction technique,
where PDE or ODE models are at hand. Therefore, we assume a dynamical system
of the form

ẋ = F (x), x ∈ Rn,

and solutions x(tk) = xk for k = 1, . . . , s. Proper orthogonal decomposition yields
a basis that optimally represents the given solution data in the least squares sense.
Thus, the data from the (approximate) solution is essential in finding a low order
subspace. Proper orthogonal decomposition solves the optimization problem

min
φi

s∑
j=1

∥∥∥∥∥xj −
r∑
i=1

(xj, φi)φi

∥∥∥∥∥
2

2

s.t. (φi, φj) = δij. (1.40)

In the following, we derive the solution to the POD optimization problem and give
a brief overview of error bounds. By orthogonality of the basis, one has for all i, j
that

0 ≤

∥∥∥∥∥xj −
r∑
i=1

(xj, φi)φi

∥∥∥∥∥
2

2

=

[
xTj −

r∑
i=1

(xj, φi)φ
T
i

][
xj −

r∑
i=1

(xj, φi)φi

]

= xTj xj − 2
r∑
i=1

(xj, φi)
2 +

r∑
i=1

(xj, φi)
2

= ||xj||22 −
r∑
i=1

(xj, φi)
2.
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Therefore, problem (1.40) is equivalent to

max
φi

s∑
j=1

r∑
i=1

(xj, φi)
2 s.t. (φi, φj) = δij. (1.41)

The above optimization problem is solved with the method of Lagrange multipliers,
since the cost and constraints are continuously differentiable, and the cost function
is convex. Let λ be the auxiliary variable and set the Lagrangian as

L(φ, λ) =
s∑
j=1

(xj, φ)2 + λ[1− (φ, φ)],

which has the derivative

dL

dφ
(φ, λ)|φ=φ̂ =

s∑
j=1

2(xj, φ̂)xj − 2λφ̂.

The derivative vanishes, whenever

s∑
j=1

(xj, φ)xj = λφ,

which we shall rewrite into an eigenvalue problem. The snapshots are conveniently
stored in a matrix

X = [x1 x2 . . . xs] ∈ Rn×s, (1.42)

which allows us to rewrite(
s∑
j=1

(xj, φ)xj

)
k

=
s∑
j=1

n∑
l=1

XljφlXkj =
s∑
j=1

Xkj

n∑
l=1

Xljφl = (XXTφ)k,

and hence the eigenvalue problem from above becomes

XXTφi = λiφi. (1.43)

The functions φi are called POD modes (or POD basis functions) and the λi are
the POD eigenvalues. For details concerning the optimality of the basis and the
derivation of the correlation matrix, see [98, Ch.3].
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Method of Snapshots. In certain applications, such as in fluid dynamics, the
state space dimension can be in the order of millions and only a few snapshots are
available, so s � n. A computation of POD modes becomes prohibitively expen-
sive, since it requires an eigenvalue decomposition of an n × n matrix. To remedy
this computational burden, Sirovich [174] introduced the method of snapshots. The
method essentially requires a singular value decomposition of a square matrix of size
s× s. To introduce the idea, let

X = ΦΣΨT

be the singular value decomposition of the data, so that Φ,Ψ are orthogonal and its
respective columns satisfy

Xψi = σiφi, XTφi = σiψi, i = 1, . . . , rank(X).

It follows that

XXT = ΦΛΦT ∈ Rn×n,

XTX = ΨΛΨT ∈ Rs×s, (1.44)

where Λ = Σ2 is the diagonal matrix containing the POD eigenvalues. Consequently,
Ψ contains the eigenvectors of XTX and the columns of Φ are the eigenvectors of
XXT . The method of snapshots first computes (1.44) either via eigenvalue decom-
position or the more stable SVD. Since XΨ = ΣΦ = Λ1/2Φ we have

Φ = Λ−1/2XΨ,

and therefore Φ = [φ1, φ2, . . . , φs] contains the desired POD modes. The proper
orthogonal modes can then be used to study flow features, or, which is the focus of
this present work, to obtain reduced order models. In that case, POD is used in a
Galerkin projection framework.

In some cases, such as when the scaling of entries in X varies by several magnitudes,
the computation of the product XTX or XXT can introduce numerical errors. In
this case, a direct singular value decomposition on X should be used. Alternatively,
mean subtraction can remedy the scaling problem.

Mean Subtraction. It is customary to subtract the data mean from the snapshots
before extracting the POD basis. This eliminates numerical errors when computing
the coefficient of the leading POD mode, which often happens to be close to the
mean, see [181, 107]. Let x̄ = 1

s

∑s
i=1 xi be the data mean. Subtract x̄ from the

columns of X in (1.42) and proceed with the usual steps.
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Selection of Modes. In most cases, not all POD modes are needed and one is
only interested in some modes. Selection of the number r of kept POD modes is
often based on an energy criterion of the form

E(r) :=

∑r
i=1 λi∑s
i=1 λi

.

The tolerance Emin depends on the complexity of the problem and user requirements.
For instance, for simple models Emin = 99.99% is common, yet for a complex 3D
Boussinesq problem, Emin = 90% already requires a large number of basis functions.

Optimality. Here, we give a brief heuristic of optimality in the finite dimensional
setting and state the key theorem. One can reformulate (1.40) as a matrix approxi-
mation problem of the form

min
rank(Pr)=r

‖X − PrX‖2
2 s.t. P 2

r = Pr ∈ Rn×n,

where Pr = ΦrΦ
T
r and Φr ∈ Rn×r. In other words, we are looking for the best rank

r approximation to the data in the L2 sense. The optimality result is hence a direct
consequence of the Schmidt-Eckardt-Young-Mirsky Theorem 1.2.5, which reads as

s∑
j=1

∥∥∥∥∥xj −
r∑
i=1

(xj, φi)φi

∥∥∥∥∥
2

2

= λr+1

and in the Frobenius norm

s∑
j=1

∥∥∥∥∥xj −
r∑
i=1

(xj, φi)φi

∥∥∥∥∥
2

F

=
n∑

k=r+1

λk.

Recent advances in POD optimality results are found in [172].

Remark 1.6.2. POD can be applied to data in multiple space dimensions, such as a
fluid evolving in three dimensional space, as follows. Let u = [ux uy uz] consist of the
components of the fluids velocity field in x, y, z directions. Note, that the quantities
ux, uy, uz itself are vectors of length nx, ny, nz, respectively. These vectors contain
the values of the velocity components at every point of the computational domain
stacked into a vector. POD can then be applied to the vectorized data in the usual
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way.5 However, when the data consists of solutions for multiple time variables, such
as temperature and velocity in Boussinesq flows, special care must be taken when
computing and constructing reduced order models, which is highlighted in Chapter
2.

Further Directions in POD. To conclude this overview, we would like to high-
light three important directions of research about the POD method. First, POD
extends to infinite dimensional systems, which lends itself naturally for application
of PDE’s, see [186, 185]. Second, the issue of snapshot selection to generate the
dataset is an ongoing research topic. Iliescu and Wang [103] recently investigated
POD error bounds when including snapshots of the difference quotients in the data
set. They found that for optimal point-wise convergence in time, the snapshot differ-
ence quotients should be included in the generation of the POD basis, when utilizing
a Galerkin approximation scheme to obtain a reduced order model. Thirdly, observe
that POD is an input dependent model reduction technique, and therefore special
care must be taken when selecting the input functions. One common approach is to
excite the system through various choices of “rich” initial conditions, such as sine
and cosine waves, and discontinuous step functions, which mimic a physical initial
condition (e.g. in mixing flow fields). A second approach is to use external forcing,
fed through either the boundary conditions or a control input. We demonstrate the
success of those methods in Chapter 2.

1.6.3 Dynamic Mode Decomposition

Understanding the dominant features in dynamically evolving systems, such as the
mechanisms triggering bifurcations and instability in flows, is important for both the
construction of reduced order models and flow control. Dynamic Mode Decomposi-
tion (DMD) is yet another method to extract important features (modes) from flow
data. DMD provides a set of complex modes and eigenvalues, which explains the
data through spatial modes oscillating at a single frequency. Therefore, the modes
are fundamentally different from POD modes, which are ranked by energy content.
It has been demonstrated since its beginning in 2009 [156, 162], that the method
can shed a different light onto structures in fluid dynamics, and it has found great
success in this community. In [65], Rowley and co-authors addressed the issue of
mode selection and provided an “optimized DMD” algorithm (mode selection is not

5For further reading, see the introduction with Matlab examples in [135].
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as straightforward as in POD). Optimized DMD was found to outperform standard
DMD in calculating the physically relevant frequencies. Mezić discusses the Koop-
man operator and its applications in the analysis of fluid flows in [140], and compares
DMD to an alternative method to compute the spectrum of the Koopman operator.
For actuated linear time invariant systems, it is still possible to extract the dynamic
modes from the data, and additionally even the control actuator matrix B can be
identified. This, and the relation to system identification can be found in [149].
Whenever low dimensional features are extracted from data, it is natural to build
reduced order models, as done in [177] with a Galerkin projection. Moreover, the au-
thors in [41] use compressive sampling to compute the dynamic mode decomposition
for subsampled data.

The focus of this thesis is on data and model reduction techniques, and therefore
we present DMD in the context of finite dimensional data. While the study of the
Koopman operator and its application to PDE systems in infinite dimensions pro-
vides deep insight into the dynamics of solutions, we omit this topic herein and refer
the interested reader to Mezić [140]. We start with a brief outline of DMD compu-
tation, following the work of Schmid [162]. In particular, the computationally more
desirable implementation with a singular value decomposition and rank truncation
is implemented. Note, that we do not employ the exact DMD, as proposed in [179].

Consider a nonlinear finite dimensional dynamical system

ẋ(t) = F (x), x(0) = x0.

Assume that a collection of snapshots is available and stored in the matrices

Ψ0 =

 | | |
x0 x1 · · · xs−1

| | |

 , Ψ1 =

 | | |
x1 x2 · · · xs
| | |

 , (1.45)

where x(ti) := xi for i = 1, . . . , s. The main hypothesis behind dynamic mode
decomposition is that that there is a linear operator (thought of as Koopman operator
in ergodic theory), that advances the snapshots by one time step. Since the data is
finite dimensional, this operator is represented by a matrix A, such that

Ψ1 = AΨ0. (1.46)

The goal is to approximate the eigenvalues of A from data only, without relying on
the system model. Therefore, DMD provides an entirely data based approach to
extract dynamic information, i.e. spatial modes and their dynamics.
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A second assumption for DMD is that beyond a critical number s, the snapshots
become linear dependent. In other words, the rank of the data matrix Ψ0 cannot
increase beyond s. With this in mind, one cannot expect to resolve all n modes of
the n-dimensional flow field, but aims to compute r ≈ s at best and then selects the
ones which are dynamically most relevant. In a first step, compute the singular value
decomposition of the data Ψ0 = UΣV T . To eliminate rank deficiency or for a more
stable numerical implementation (note, that this is not a significant truncation), one
approximates

Ψ0 ≈ UrΣrV
T
r ,

where Ur, V
T
r are the first r columns of U, V , respectively and Σr is the leading

r × r submatrix of the diagonal matrix Σ, containing the largest singular values in
decreasing order. The reader should observe that the columns of U are nothing but
the POD modes of the system. As is well known [8, p.37], ||Ψ0 − UrΣrV

T
r ||2 = σr+1,

so if the singular values decay rapidly, the truncation error is small. Inserting the
approximation into (1.46) above yields

Ψ1 ≈ AUrΣrV
T
r ,

where the right singular vectors are orthogonal, V T
r Vr = Ir. Rewriting the above

expression yields
UT
r Ψ1VrΣ

−1
r ≈ UT

r AUr

and we define Sr := UT
r Ψ1VrΣ

−1
r . The goal is to obtain the eigenmodes of A without

ever computing A. Therefore, one proceeds by taking the eigenvalue decomposition

Sr = Y ΛY −1.

If one has not performed a significant truncation up to this point, then r ≈ s and
one can assume that UrU

T
r ≈ In. Then,

Y ΛY −1 ≈ UT
r AUr ⇒ UrY Λ ≈ AUrY.

The dynamic modes are defined as Φ := UrY , for they are approximate eigenmodes
of the advance operator

AΦ ≈ ΦΛ. (1.47)

In Schmid [162, Sec 2.5], convergence of the eigenvalues (i.e. growth and frequencies)
of the dynamic modes is discussed and numerically verified by considering a linearized
Navier-Stokes equation. Moreover, numerical examples for a linearized flow problem
and an experimental data set demonstrate that DMD is capable of extracting relevant
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flow features, even from sub-domain data. As an interesting comment, Schmid notes
that “if the sampling frequency is tuned to that of an oscillatory flow, the mapping
from period to period will identify the Floquet matrix whose eigenvalues represent
the Floquet multipliers.”

Overall, the computation of the DMD involves a singular value decomposition of
(economy) size n × s, where s � n, and an eigenvalue decomposition of size s × s
and is therefore computationally tractable for systems of large size. If the system
dimension is yet too large, or only experimental data in a subregion is available, the
modes for the full flow field can be reconstructed from drastically fewer measure-
ments via compressed sensing, as shown in [41].

1.7 Compressed Sensing

Sensing information about complex systems from physical devices is relevant in many
fields of science and engineering for predictive modeling and quantitative assessment
of systems. In 1949, Shannon addressed the classical problem of reconstructing
a signal from finite measurements and found that a signal has to be sampled at
least at twice the maximum frequency present in the signal. In many cases, this
requires sampling a large amount of data, which cannot be stored. For efficient
transmission, the data is often compressed after acquisition, such as in the JPEG2000
image compression algorithm, or the MP3 format for video compression. Although it
is obvious that this approach (sampling 2n frequencies, just to compress it to k � n
data points) is inherently inefficient, it has been a standard of an entire industry,
for lack of a better method. Recent developments in the field of compressed sensing
show promising results and are a hot topic in modern signal processing, see the book
[85] and survey papers [73, 56]. We give a brief overview of this new theory and
state relevant results for the work in this thesis. A discussion about applications and
related work is deferred to Chapter 5.

Sensing and Sparsity. Compressed sensing aims to reconstruct a signal x ∈ Rn

from p� n measurements y ∈ Rp via

y = Cx,

where C ∈ Rp×n denotes a sensing matrix. Clearly, this system is underdetermined
and does have either infinitely many (in this case it is called consistent) solutions,
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or no solution at all. The situation is hopeless without further information about x.
However, if one is interested in a specific solution of the problem, then, by imposing
additional requirements on x (called regularization), a unique solution can be shown
to exist. The assumption that the sensed signal has a certain structure is crucial to
the success of compressed sensing.

Definition 1.7.1. A vector x ∈ Rn is called k-sparse if its support is of cardinality
less or equal to k, i.e. ||x||0 ≤ k. Moreover, a vector x is called k-compressible if it
is well approximated by a k-sparse vector.

In this work, we are particularly interested in dynamical systems describing the
motion of a fluid. It has been observed (theoretically by studying attractors and
quantitatively through data analysis, see [99]) that the governing dynamics of fluids
are often low dimensional. In other words, the signal can be represented in a non-
trivial basis as

x = Φa,

where Φ ∈ Rn×n contains orthonormal basis vectors as columns and we assume that
a ∈ Rn is k-sparse in this basis. In practice, the signal x is often only k-compressible,
such as when Φ is the POD basis, as described in detail in §1.6.2. Another example
is given by images, which can be sparsely represented by a wavelet basis. In light of
the sparse or compressible representation of x, the reconstruction problem becomes

y = CΦa, where ||a||0 ≤ k.

The additional information that only k components of a are nonzero, or relevant (in
the case of compressible signals) is key to the success of the method. For ease of
derivation, let

Θ := CΦ ⇒ y = Θa, (1.48)

where Θ ∈ Rp×n. The situation is graphically depicted in Figure 1.1.
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Figure 1.1: Illustration of sparse reconstruction. The idea behind compressed sensing
is to choose the sensing matrix C and the sparsity basis Φ so that the matrix Θ = CΦ
has ‘ideal’ properties (as described below) for reconstruction of x, the full signal.

Traditionally, one of those solutions can be found through the pseudoinverse a =
(Θ)†y, which minimizes the l2 norm of both vectors. However, this approach rarely
finds a sparse solution. Therefore, certain methods use a posteriori thresholding
techniques, that drop the n − k smallest components of a to make it k-sparse. Un-
fortunately, this offers only an approximate solution, and the merit of compressed
sensing is that one can do better. This raises several questions:

1. Under which conditions on C and Φ can we exactly (optimally) recover the
k-sparse (k-compressible) solution of y = CΦa?

2. How large does p have to be?

3. How does noise present in the sensing influence the results?

4. Which algorithms can we use ?

To address the first question, one should note that p ≥ k is necessary. For a moment,
let Φk ∈ Rn×k be the matrix of the k columns of Φ corresponding to nonzero entries
in a. Pick C = ΦT

k as the sensing matrix. Since Φ is orthonormal, we would
then have y = a and could sense the sparse signal coefficients directly with p = k
measurements! However, this approach is not practical. First, we seem to have
a miraculous knowledge of the locations of the nonzero components in a, which is
typically not the case. Second, from a practical perspective, C = ΦT

k corresponds to
sensing the variable of interest in the entire domain. While this is possible in imaging
(see the single pixel camera http://dsp.rice.edu/cscamera), this is currently out
of reach for fluids.

http://dsp.rice.edu/cscamera
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The developments in compressed sensing or compressive sampling provide answers
to the design of C, while only assuming sparsity of the signal, but not any other
assumption on the basis. In fact, we shall see that the sparsity significantly affects
the acquisition process.

Reconstruction through Regularization. Ideally, one wishes to obtain the
maximally sparse solution to the sensing problem, i.e.,

min ||â||0 subject to y = Θâ.

The above problem is NP-hard and therefore intractable to solve. A major break-
through in compresses sensing occured when Donoho [74, Thm. 2.4] showed that in
many situations, the above solution is equivalent to the relaxed problem

min ||â||1 subject to y = Θâ. (1.49)

This problem can be solved via convex optimization and one can use Compressive
Sampling Matching Pursuit (CoSaMP, [144]) algorithm to solve the `1-problem. The
CoSaMP algorithm has been extended to include additional model assumptions [21],
which is suitable for our work. Several other algorithms have been studied in [182].

We now turn to the question of how to choose C and which conditions need to be
met in order for the optimization to yield a unique k-sparse solution, see [43, §2].
Let a1, a2 be two k-sparse solutions to (1.49), so that Θ(a1− a2) = 0 and (a1− a2) is
at most 2k-sparse. In order to guarantee uniqueness of a k-sparse solution, 2k-sparse
vectors cannot be in the nullspace of Θ, i.e., null(Θ) ∩ {a : ||a||0 ≤ 2k} = {0}. In
other words, the matrix Θ needs to have a column rank of at least 2k to guarantee
uniqueness. Finding a matrix C, such that this rank condition on CΦ is met is of
combinatorial complexity and hence unfeasible for large n. Another key breakthrough
in compressive sampling [58, 57, 73] brought about large classes of sensing matrices,
for which the rank condition is met with high probability.

Definition 1.7.2. (Restricted Isometry Property) [43, Def.2.4]. A matrix
Θ ∈ Cp×n satisfies the restricted isometry property (RIP) of order k, if there is some
constant 0 < δk < 1 such that

1− δk ≤ ||Θâ||22 ≤ 1 + δk (1.50)

for all k-sparse vectors â ∈ Rn with ||â||2 = 1.
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Hence, the matrix Θ is close to an isometry, and therefore almost preserves distances.
Put differently, the columns of Θ almost behave like an orthonormal system. We can
now state an important result, which guarantees exact recovery if Θ satisfies the RIP.

Theorem 1.7.3. ([56, Thm. 3.1]). Assume that the vector a ∈ Rn is k-sparse and
suppose that δ2k + δ3k < 1 for Θ = CΦ in equation (1.50). Then the solution a∗ to
(1.49) is exact.

In reality, not many signals are exactly k-sparse, but k-compressible. Nonetheless, we
shall see that compressive sensing almost recovers the “best” solution. To illustrate
the idea, let a be the sought solution of y = Θa and a∗k its best k-sparse approximation
in the 2-norm, so that a∗k = min||â||0=k ||a− â||2.

Theorem 1.7.4. [56, Thm. 3.2] Assume that a is k-sparse and suppose that δ3k +
δ4k < 2 for Θ = CΦ in equation (1.50). Then the solution a∗ to (1.49) obeys

||a− a∗||2 ≤ γ · ||a− a
∗
k||1√
k

,

where the constant is well behaved for reasonable values of δ4k; e.g. γ ≤ 8.77 for
δ4k = 0.2. Under further assumptions on the RIP constants, we further have

||a− a∗||1 ≤ γ2||a− a∗k||1.

The above theorem shows that even for k-compressible signals, the error of the
solution obtained from the `1-reconstruction is not much worse than the optimal
error, given that we knew a !

Next, we turn to the question of robustness of compressed sensing in the presence of
noise. Therefore, assume that the output is inaccurate

y = Θa+ η,

where η can be either stochastic or deterministic, and be bounded as ||η||2 ≤ ε.
Consequently, the optimization problem (1.49) has to be recast to account for the
disturbance. Consider,

min ||â||1 such that ||Θâ− y||2 ≤ ε. (1.51)
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Theorem 1.7.5. [56, Thm. 4.1] Suppose that a ∈ Rn is arbitrary and y = Θa+ η ∈
Rp is a corrupted measurement. Under the hypothesis of the previous theorem, the
solution a∗ to the noise aware optimization problem (1.51) obeys

||a− a∗||2 ≤ c1 · ε+ c2 ·
||a0 − a0,k||1√

k
,

where the constants c1, c2 are again well behaved. Here, a0 is the optimal solution to
the noise free problem (1.49) and a0,k its best k-sparse approximation.

The above theorem is encouraging for practical applications, since the disturbance
enters the error bound only linearly. Hence, for small noise levels, the `1 optimization
problem almost recovers the true solution of the noise-free problem. Moreover, the
fact that compressed sensing works even under the presence of noise and by removing
the strict k-sparsity assumption is remarkable.

Choices for the Sensing Matrix. In light of the previous paragraph, the re-
maining problem is to find a sensing matrix C, such that CΦ satisfies the RIP. This

problem is of combinatorial nature, with

(
n
k

)
choices, and hence hard to check.

However, the theory of compressed sensing has unraveled large classes of matrices
that satisfy the RIP (or a similar condition) with high probability, see [58, §1.5]. The
following results are particularly interesting to us:

• Gaussian measurements: Assume that the entries of the matrix C ∈ Rp×n are
independent and identically distributed (i.i.d) with mean zero and variance
1/n. Then C satisfies the RIP with probability 1 − O(e−εn) for some ε < 1,
whenever

p ≥ c · k log(n/k). (1.52)

In particular, Gaussian matrices have the property that their product CΦ with
a orthonormal matrix is again Gaussian. Therefore, they offer a perfect choice
for compressed sensing.

• Fourier measurements: Let Φ be a Fourier matrix, i.e. Φl,j = 1√
n

exp(−iπlj/n)
and let C be the matrix that picks p rows of Φ uniformly at random. Then, it
is conjectured that the same order of magnitude of measurements as in (1.52)
is sufficient for reconstruction.
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• Incoherent measurements: In cases where C does not have particular random
structure, there is a computable measure to asses if the sparsity and sensing
basis are suited for sparse recovery algorithms [55]. Assume that Φ is an
orthonormal basis, that C is an orthogonal measurement system and define
the mutual coherence as

µ(C,Φ) := max
i,j
|(ci, φj)|.

The mutual coherence quantizes the similarity between the measurement and
sparsity basis and will take a value between 1 and

√
n. With this in mind, the

`1-reconstruction (1.49) succeeds with overwhelming probability given that

p ≥ c · µ2(C,Φ) · k log(n).

For low coherence pairs, only few measurements are necessary. If, however,
µ =
√
n, then the efficacy of compressed sensing is gone.

The results on compressed sensing are remarkable and initiated a whole body of
research on compressed sensing and applications since its beginnings in 2005. In
Chapter 5 we give more references to applications of compressed sensing and employ
it to design an efficient classification algorithm for complex flows.
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Chapter 2

Reduced Order Models for
Feedback Control

A reduce-then-design approach via POD for feedback control of a coupled Burgers’
equation is presented. The considered model is a hybrid partial differential equation,
and therefore special care must be taken to retain the structure when deriving the
finite element discretization and computing the reduced order model.

Reduced order controllers enjoy a great level of practicality, since they can be im-
plemented on rather simple and cheap hardware. One way to compute the linear
quadratic regulator (controller), is to solve the high dimensional nonlinear algebraic
Riccati equation (1.36). This process is called “design-then-reduce”, since the con-
troller is designed at large-scale, and the system subsequently reduced. In Chapter
3, we develop an algorithm to solve AREs for large systems, and present numerical
results of up to n = 150, 000 variables. This contrasts the “reduce-then-design” ap-
proach, where ROM’s (which are already in place for simulation and design) are used
for control and optimization. In certain cases, this approach can fail to produce a con-
vergent scheme, see [12, 155, 7]. In [63], the authors consider LTI systems, and give
sufficient conditions for the reduce-then-design, and design-then-reduce approaches,
depending on the reduction order r. Those results are not straightforwardly appli-
cable to nonlinear systems, as considered herein. A discussion about the competing
approaches can also be found in [11].

Often, the reduce-then-design approach is computationally cheaper, and cost and
other feasibility reasons, motivate its use. Here, we numerically investigate this ap-
proach on a coupled Burgers’ equation and have a close look at both performance and
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stability. This should convince the reader, that for this type of nonlinear problem,
the reduce-then-design approach can give good results while saving computational
effort.

Up to the authors knowledge, controlling a coupled Burgers’ equation in the form
given below has not yet been considered in the literature (for simulation results,
see the authors previous work in [122]). Nonetheless, the employed computational
methods are well known and the main goal is rather to emphasize the relevant steps
and choices to arrive at a reduced order feedback controller for a hybrid system.
In this sense, this chapter highlights important problems in control of distributed
parameter systems and, by example, motivates much of the work for more complex
systems in later parts of this thesis.

The PDE is discretized with a finite element (FE) method using piecewise linear
basis functions and a reduced order model computed via proper orthogonal decom-
position. Numerical results for the closed loop systems, both linear and nonlinear,
are presented. Interestingly, the feedback gains efficiently control the system even
when used at different parameters than where they were designed. Moreover, we
shall see that the POD feedback acting on the FE system leads to similar results
as full FE controller would produce. Moreover, the robustness of the controllers to
changes in system parameters is investigated.

2.1 The Model - A hybrid 1D nonlinear PDE

The coupled Burgers’ equation is a one dimensional model that incorporates many
interesting questions related to thermal fluid dynamics, commonly modeled by the
two or three dimensional Boussinesq equations. Herein, this model is used to illus-
trate computational aspects of feedback control and approximation of PDE’s, and
as a testbed for numerical studies. Here, we consider the coupled Burgers’ equation

wt(t, x) + w(t, x)wx(t, x) = µwxx(t, x)− κT (t, x), (2.1)

Tt(t, x) + w(t, x)Tx(t, x) = cTxx(t, x) + b(x)u(t), (2.2)

for t > 0 on the one dimensional domain Ω = (0, 1) with boundary conditions

w(t, 0) = 0 wx(t, 1) = ε, (2.3)

T (t, 0) = 0 T (t, 1) = 0, (2.4)



CHAPTER 2. REDUCED ORDER MODELS FOR FEEDBACK CONTROL 44

for some ε > 0 and initial conditions

w(0, x) = w0(x) and T (0, x) = T0(x). (2.5)

Here, w(·, ·) ∈ H2(0,∞; Ω) is a velocity-like function and T (·, ·) ∈ H2(0,∞; Ω) is a
temperature-like function. The parameter κ denotes the coefficient of the thermal
expansion, c is the thermal diffusivity and µ = 1

Re
is the viscosity, the inverse of the

Reynolds number. The function b(x) denotes the location of the control action u(t),
and hence we have a distributed control action on the temperature. Of course, this
adversely controls the velocity through the coupling. As a notational remark, u(t)
denotes an open loop control,disturbance or excitation, and by u∗(t) we denote the
unique optimal control to the quadratic optimization problem introduced below.

Burgers’ equation has been studied intensively as nonlinear convection diffusion prob-
lem to investigate numerical algorithms. To the authors knowledge, the publication
[60] first used proper orthogonal decomposition to obtain reduced order models for
Burgers’ equation. Kunisch and Volkwein [125] successfully applied POD to the LQR
optimal control problem for Burgers’ equation. Numerical issues related to finite pre-
cision arithmetic, sensitivity as well as a discussion of solutions for various boundary
conditions are given in [46, 5, 4]. To improve the POD basis in the parameter space,
[96] proposes two methods incorporating sensitivity analysis in the basis computa-
tion for POD. A numerical study of various sensitivity enhanced POD basis for the
uncontrolled system can be found in [107]. A faster computation of the nonlinearity
in Burgers’ equation via POD, called ‘group’ POD, was proposed by Dickinson and
Singler in [71].

In many practical applications, a first step to design a feedback controller involves
the linearization of the nonlinear system; a rigorous theory for optimal control is
available for linear dynamical systems [126]. The coupled Burgers’ equation (2.1)-
(2.2) is subsequently linearized around its steady state solution. From [5, 4] and the
references therein it is known that the only equilibrium to Burgers’ equation with
homogeneous, mixed Dirichlet-Neumann boundary conditions is the zero solution.
This solution is globally asymptotically stable. By imposing zero Dirichlet boundary
conditions on the heat equation (2.2), the energy eventually dissipates and the system
converges uniformly to the zero steady state, Tss ≡ 0, independent of the initial
condition. Thus, wss = Tss = 0 is an equilibrium to (2.1)-(2.2). To this end, the
velocity and temperature are decomposed into a steady state and fluctuation part as

w(t, x) = wss(x) + w̃(t, x) = w̃(t, x),

T (t, x) = Tss(x) + T̃ (t, x) = T̃ (t, x).
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It is assumed that the fluctuations are small in the H1(Ω) norm, implying w̃ · w̃x ≈ 0.
Thus, the linearized coupled Burgers’ system is given by

˙̃w(t, x) = µw̃xx(t, x)− κT̃ (t, x), (2.6)

˙̃T (t, x) = cT̃xx(t, x) + b(x)u(t), (2.7)

and is also called the fluctuation system.

2.1.1 Abstract Formulation

Here, we give a concrete example of an abstract formulation of the linearized, coupled
Burgers’ equation. Let z(t, ·) = [w(t, ·) T (t, ·)]T ∈ L2(0,∞; Ω)× L2(0,∞; Ω)) be the
state variable of the coupled system. The state space is defined as the Hilbert space

Z := L2(0,∞; Ω)× L2(0,∞; Ω) = (L2(0,∞; Ω))2.

Moreover, define the Hilbert spaces

H1
L(0,∞; Ω) := {v | ∂

∂x
v ∈ L2(0,∞; Ω), v(·, 0) = 0},

and similarly

H1
0 (0,∞; Ω) := {v | ∂

∂x
v ∈ L2(0,∞; Ω), v(·, 0) = 0, v(·, 1) = 0}.

The linear part of the dynamical system is given by the operator

A : D(A) = (H1
L(Ω) ∩H2(Ω))× (H1

0 (Ω) ∩H2(Ω)) 7→ Z,

where A takes the specific form

[Az](t) =

[
µ d2

dx2
−κ

0 d2

dx2

]
z(t).

As in §1.5, consider only a single control action, so that the space of controls is
U = R. The control operator B ∈ L(U,Z) is then given by

[Bu](t) =

[
0
b(x)

]
u(t).
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The linearized system (2.6) - (2.7) takes the abstract form

ż(t) = Az(t) + Bu(t)

z(0) = z0

on the state space Z. With the variation of parameters formula, the solution to the
above system is formally given by

z(t) = S(t)z0 +

∫ t

0

S(t− s)Bu(s)ds,

where S(t) generates an analytic semigroup on Z.

Whenever linear outputs of the states are considered, they are given through

y(t) = Cz(t) ∈ Y = H1(0,∞; Ω).

The quadratic cost functional of interest for the optimal control problem is as before
over an infinite time horizon, and takes the form

J(u, z) =

∫ ∞
0

{
||Cz(t)||2Y +R||u(t)||2U

}
dt, (2.8)

whereR ∈ R represents a cost attributed to the control action. Subsequently, we shall
choose C = IZ to be the identity operator in Z. This implies that one is interested
in the entire state information as an input to the control problem. Therefore, the
filtering problem does not have to be solved.

It can be shown that the operator A is stable, so that according to Theorem 1.5.3, the
optimal control problem has a unique solution given by linear feedback K : Z 7→ U ,
where

u∗(t) = −Kz(t) = −
∫

Ω

kw(x)w(t, x)dx−
∫

Ω

kT (x)T (t, x)dx ∀t ∈ (0,∞),

which follows from Riesz’ representation theorem. Here, kw(t, x) and kT (t, x) are
called feedback gains for the velocity and temperature, respectively.

2.2 Approximation and LQR Control

For the purpose of spatial discretization of the infinite dimensional system, a group
finite element method (GFEM) [84] is used for the linear and nonlinear high fidelity
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models and proper orthogonal decomposition is used to obtain the surrogate model.
We briefly introduce those methods and refer the reader to [71, 122] for advantages
and implementation of the GFEM and a group-POD approximation of the nonlinear
coupled Burgers’ equation (2.1) - (2.5).

2.2.1 Finite Element Method

Here, a brief derivation of the FE model for the linearized system (2.6) - (2.7) is
given. For a detailed treatment of the nonlinear term, see [122]. Piecewise linear
(PWL) finite element basis functions (“hat functions”) are used to approximate the
PDE solutions. The spatial domain Ω = (0, 1) is divided into n + 1 subintervals of
equal length, with step size h = 1

n+1
. The finite element approximation spaces for

the temperature and velocity are

X h
w(Ω) := {ξw ∈ PWL(Ω) | ξw(0) = 0} ,
X h
T (Ω) := {ξT ∈ PWL(Ω) | ξT (0) = ξT (1) = 0} .

Note, that the boundary conditions, equations (2.3) and (2.4), are built in to the FE
approximation spaces. In particular, where a zero boundary condition is specified,
one can omit having a basis function which assumes a nonzero value there. To be
more specific, the temperature and velocity are approximated by

w(t, x) ≈ wn(t, x) =
n+1∑
i=1

αi(t)[ξw]i(x) ∈ X h
w ,

and

T (t, x) ≈ Tn(t, x) =
n∑
i=1

βi(t)[ξT ]i(x) ∈ X h
T .

To simplify notation, let x(·) = [α(·)T β(·)T ]T ∈ R2n+1 be the state variable of the FE
system. We seek to retain the physical meaning of the two dependent variables in the
derivation and the reduced order modeling. After linearization and discretization,
the coupled Burgers’ equation takes the standard, linear time invariant form with a
mass matrix

Eẋ(t) = Ax(t) +Bu(t), (2.9)

Ex(0) = x0, (2.10)
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where the system matrix A has the block structure

A =

[
µAw κQ

0 cAT

]
∈ R2n+1 × R2n+1. (2.11)

Similarly, the mass matrix assumes a block structure with

E =

[
Ew 0
0 ET

]
∈ R2n+1 × R2n+1. (2.12)

The individual matrices can be computed explicitly as

Ew =
1

6(n+ 1)


4 1
1 4 1

. . . . . . . . .

1 4 1
1 2

 , Aw = (n+ 1)


2 −1
−1 2 −1

. . . . . . . . .

−1 2 −1
−1 1

 .

Additionally, ET = [Ew]1:n,1:n, AT = [Aw]1:n,1:n and Q = [Ew]1:n+1,1:n following the
notation introduced earlier. The cost of the optimal control problem is given by
equation (1.33) and we repeat it here for ease of presentation:

J(u(·), x(·)) =

∫ ∞
0

{
||x||2 +R||u(t)||2

}
dt.

The scalar R is chosen as a penalty/weighting term for the control action. The
optimal control problem is then stated as:
Minimize J(u, x) subject to the dynamic constraints (2.9) – (2.10).

The optimal control problem can be solved via the solution of the algebraic Riccati
equation (1.36). Let un(·) be the control function for the n-th dimensional finite
element system. The control function does not need to be discretized in space, but
one should distinguish it from the control obtained from the surrogate model, denoted
by ur(·). In light of Theorem 1.5.13 the solution of the LQR problem is

u∗n(t) = −Kx(t), (2.13)

where the gain matrix K ∈ Rn. Closing the feedback loop on the linearized system
yields

Eẋ(t) = [A−BK]x(t). (2.14)
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With a linear controller, the closed loop nonlinear system reads as

Eẋ(t) = Ax(t) + F (x(t))−BKx(t).

From perturbation theory (Perron’s Theorem 1.4.3), this system is stabilizable via a
linear controller, if the nonlinearity is “weak”.

Remark 2.2.1. The optimal control un(t) was designed using a classical linear
quadratic regulator on the (large) finite element system. The theory for the con-
vergence of the resulting feedback matrix to its infinite dimensional counterpart is
well established. We refer the reader to the appendix, where several related results
are stated, in particular Theorem A.1.7.

2.2.2 Reduced Order Modeling

Here, a reduce-then-design approach via POD is derived to compute the optimal
control, and a convergence study is performed based on the size of the reduced order
model. To assess performance, we are interested in both the robustness of the POD
approximation with respect to parameter changes, as well as the ability of the reduced
order controller to work on the full FE model. Ideally, one would like to see how the
controllers from the reduced order models work in a physical setting. Due to the lack
of an experimental environment,and after a thorough convergence study, we assume
that the FE model is a good representation of the physical system, and henceforth
call it the “truth” (or high fidelity) model.

The method of snapshots as outlined in §1.6.2 is used for POD computations, since
the state space is larger than the number of time snapshots collected. To generate
the solutions, simulate the fully nonlinear coupled Burgers’ system (2.1) - (2.5) with
open loop input as

Eẋ(t) = Ax(t) + F (x(t)) +Bu(t). (2.15)

Let xi = x(ti) for i = 1, . . . , ns be snapshots from simulations of the above system.
Then, the matrix of snapshots is defined, and partitioned, as

X := [x0, x1, . . . , xns ] =

[
Xw

XT

]
.

The reader should observe that the functions w(·, ·) and T (·, ·) have different scaling
and physical meanings, so the POD modes for both functions are computed sepa-
rately. Let Ew and ET be the mass matrices of the FE system. The singular value
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(or eigenvalue) decomposition of the correlation matrices are

[Xw]TEwXw = UwΣw[Uw]T ,

[XT ]TETXT = UTΣT [UT ]T .

Let [uw]i be the ith column of Uw and [σw]i be the diagonal elements of Σw. The
POD basis functions are then computed as

φi =
1

√
ns[σw]i

Xw[uw]i, i = 1, . . . , r1,

ψi =
1

√
ns[σT ]i

XT [uT ]i, i = 1, . . . , r2,

where r1 and r2 are the dimensions of the POD spaces for the velocity and temper-
ature, respectively. The POD basis vectors are stored in matrices

Φ = [φ1, φ2, . . . , φr1 ] ∈ R(n+1)×r1 ,

Ψ = [ψ1, ψ2, . . . , ψr2 ] ∈ Rn×r2 .

The reduced order models are obtained through projection of the finite element
spaces onto lower dimensional POD spaces. Hence,

Ar =

[
Φ 0
0 Ψ

]T [
µAw κQ

0 cAT

] [
Φ 0
0 Ψ

]
, Br =

[
Φ 0
0 Ψ

]T
B, Cr = C

[
Φ 0
0 Ψ

]
.

The mass matrix of the reduced order model is Er = Ir, by virtue of orthogonality
of the POD basis functions. Let xr(·) = [αTr (·), βTr (·)]T be the state variable of the
POD system. Then, the POD-ROM of the linear system (2.9),(2.10), is given by

ẋr(t) = Arxr(t) +Brur(t), (2.16)

with initial conditions

xr(0) = xr,0 =

[
Φ 0
0 Ψ

]T
x0 ∈ Rr1+r2 , (2.17)

and cost function

J(xr(·), ur(·)) =

∫ ∞
0

{
||xr||2 +R||ur(t)||2

}
dt. (2.18)
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The temperature and velocity are approximated by[
w(t, x)
T (t, x)

]
≈
[
Φαr(t)
Ψβr(t)

]
. (2.19)

At this point, we shall mention that the model reduction as outlined above is pre-
serving the structure of the problem; the reduced state has a clear separation of a
temperature and velocity component. We believe this to be an important feature of
the reduced order model.

Solving the LQR problem for the POD system (2.16)-(2.18) as outlined in Theorem
1.5.13 yields the linear feedback law

u∗r(t) = −Krxr(t) (2.20)

which exponentially stabilizes the POD-ROM. As before, the gain matrix is con-
structed from the solution of an algebraic Riccati equation as

Kr = R−1[Br]
TPr,

where Pr is the solution to the algebraic Riccati equation

PrAr + [Ar]
TPr − PrBrR

−1[Br]
TPr + CT

r Cr = 0. (2.21)

The equation (2.21) is of reduced order r1 + r2 � n. This reduces much of the
computational effort to compute the controller and hence to close the loop in the
dynamical system. The gain matrix can be injected into the finite element space via

Kn
r := [KT

w KT
T ]T =

[
Φ 0
0 Ψ

]
Kr.

The closed-loop FE system is given by

Eẋ(t) = [A−BKn
r ]x(t) + F (x(t)). (2.22)

The function u∗r(t) = −Krxr(t) provides an optimal control for the reduced order
model, yet there is no guarantee about its performance on the finite element system.
Therefore, we say that u∗(·) = −Kn

r x(t) provides a “suboptimal” feedback control for
the full order model and investigate its performance in the numerical section below.
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Remark 2.2.2. An alternative would be to not separate the data, and compute
the POD from the data matrix X directly. By using the method of snapshots, the
resulting correlation matrix reads as

XTEX =

([
w
T

]
(ti),

[
w
T

]
(tj)

)
i,j=1,...,ns

= (w(ti), w(tj))Rn+1 + (T (ti), T (tj))Rn .

Consequently, the projection matrix resulting from the POD modes will have the

structure Φ :=

[
Φw

ΦT

]
. Note, that the Φw,ΦT will not be the same as computed

earlier! Using Φ to project the linear system (2.9)-(2.10), the resulting ROM becomes

E
d

dt
ar(t) = Arar(t) + ΦTF (Φar(t)),

where the approximation of the solution in n dimensions is[
w(t)
T (t)

]
≈
[
Φw

ΦT

]
ar(t).

The “states” of the ROM are then ar(t) = [Φw]Tw(t)+[ΦT ]TT (t). Here, the physical
meaning of the states ar(t) is unclear, and moreover it is not possible to allow for
different sizes of basis functions in Φw and ΦT .

2.3 Numerical Results

We present numerical experiments to investigate the performance of “suboptimal”
feedback, computed from reduced order models, on the full finite element model. We
investigate the convergence of Kn

r → K as the reduced basis size increases. Moreover,
the POD feedback gains are used to control the nonlinear FE system. Following, the
robustness of the controllers to parameter changes is studied. The parameters for
the simulation are given in Table 2.1. The reader should observe that the system
matrix, and, correspondingly, the feedback gains are parameter dependent:

Eẋ(t) = [A(µ2)−BKn
r (µ1)]x(t) + F (x(t)), (2.23)

where µ = 1
Re

is the viscosity parameter.
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Parameter Name Value
Thermal conductivity c 0.01
Coeff. of the thermal expansion κ 1.0
Reynolds number Re 120
Distributed control location b(x) x
Domain Ω [0, 1]
Final time T 5s
Snapshots to compute POD ns 300
Cost on control R 0.1

Table 2.1: Parameters for the numerical experiments for the coupled Burgers’ equa-
tion.

2.3.1 Dependence of Gains on Snapshot Data

Proper orthogonal decomposition extracts the most energetic modes from experi-
mental or simulation data of a dynamical system. The nonlinear coupled Burgers’
equation (2.15) is excited with various inputs u(t) ≈ δ(t̂ − t) at some t̂ > 0, and ns
snapshots collected equidistantly in time. In numerical experiments, we found that
impulse excitations provide a richer dataset than exciting the system with nonzero
initial conditions. More precisely, an impulse shortly after start is modeled as

u(t) = cdsin(π(5t− 0.1))eH(1− (5t− 0.1)), (2.24)

where H(·) is the Heaviside function, i.e. H(t) = 0, if t < 0 and H(t) = 1, if t ≥ 0,
and c is a constant. A plot of u(t) is given in Figure 2.1. As previously mentioned,
we restrict ourselves to a scalar input u(t), so B ∈ Rn is a column vector.
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Figure 2.1: Impulse function u(t) with c = 5 in equation (2.24).

The response x(t) over five seconds to the impulse u(t) with c = 5 is plotted in
Figure 2.2. The impulse excitation quickly tends to zero, due to the dissipation of
the system and the zero boundary conditions on the temperature.

0
1

2
3

4
5

0

0.5

1

−0.8

−0.6

−0.4

−0.2

0

tx

w
(t

,x
)

0
1

2
3

4
5

0

0.5

1
0

0.2

0.4

0.6

0.8

tx

T
(t

,x
)

Figure 2.2: Impulse response of the FE system with n = 64 to u(t) with c = 5;
velocity (left) and temperature (right).

The convergence of the feedback gains as n, the discretization parameter of the FE
model, increases, is considered first. Theoretically, the question of convergence of
the FE feedback gains to their infinite dimensional counterparts has been settled by
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Ito [105], see the appendix for more information. A numerical convergence history
of the finite element gains with respect to n is given in Figure 2.3, and Table 2.2.
Convergence of the gains is established by both convergence in norm, as well as
decreasing differences between subsequent gain functions. For comparison purposes,
the gains in Table 2.2 were interpolated onto the finest resolution of n = 128.
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Figure 2.3: Convergence of finite element feedback gains with respect to the mesh
size n; velocity gain (left) and temperature gain (right).

Model size ||Kn
w||2 ||Kn

T ||2
||Kn

w−K
n/2
w ||2

||Kn/2
w ||2

||Kn
T−K

n/2
T ||2

||Kn/2
T ||2

n = 8 36.86 55.85 – –
n = 16 35.88 53.29 0.064 0.088
n = 32 35.35 51.82 0.037 0.063
n = 64 35.09 51.04 0.020 0.040
n = 128 34.95 50.64 0.010 0.023

Table 2.2: Convergence of the feedback gains for velocity Kn
w and temperature Kn

T

as the FE approximation is refined.

2.3.2 Convergence of Gains as Basis Increases

Having confirmed that the finite element gains converge, we now turn our focus to
the convergence behavior of the feedback gains computed from the reduced order
surrogate model. The training data is generated from the nonlinear finite element
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model with n = 64, excited with an impulse u(t) as in equation (2.24), with c = 5. It
should soon become clear, that using a different number of basis functions for both
the temperature and velocity gives great flexibility in achieving good convergence
results with a minimal number of cumulative basis functions. Figure 2.4 shows the
convergence of the gains computed from the low order POD matrices Er, Ar, Br to
the FE feedback gains computed from E,A,B. The gains from the ROM show good
agreement with the finite element gains, when r1 + r2 = 8 overall basis functions
are used. Apparently, more velocity bases are needed than temperature bases. This
is often observed in hybrid systems, where functions can have different scales and
complexity.
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Figure 2.4: Convergence of POD to FE gains (n = 64) when increasing the POD
basis size; velocity gain (left) and temperature gain (right).

We briefly demonstrate, that the value of c in the definition of the impulse influences
the richness of the simulated data. Since u(t) is an approximation of the delta
distribution, it has unit integral, which implies that c = 5. Choosing larger values of
c to generate the training data significantly changes the shape and convergence rate
of the feedback gains. In Figure 2.5, the convergence of the feedback gains computed
from the data generated from a pulse with c = 15 is shown. The left plot shows the
velocity feedback gains and the right plot contains the gains for the temperature. By
pure visual inspection, the gain functions do not converge as quickly as in Figure 2.4,
where the correct impulse is used to excite the data. With this simple example, we
intend to demonstrate that care must be taken in the generation of the training data.
When the reduced order model is used for computation of the feedback gains only,
then an ensemble of high order gains K, computed from various parameter settings,
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Figure 2.5: POD feedback gains for velocity (left) and temperature (right). The
snapshots were generated with a pulse u(t) and c = 15.

and initial conditions can be beneficial, see [12].

Next, a more in depth study of the suboptimal POD feedback gains is provided.
For r1 = 5, r2 = 3, we compare the sub-optimally controlled nonlinear finite element
system (n = 64) with the open loop system. Figure 2.6 shows the open loop dynamics
of the nonlinear FE system over the first five seconds. The initial conditions are
T0(x) = 5 sin(1

2
x) and w0(x) = g(x)− g(1−x), where g(x) = H(x− .3)− (1−H(1

5
−

(x− .3))). Due to the zero Dirichlet boundary conditions on the temperature, even
the open loop system decays to zero quickly. For a better comparison, the average
temperature over time is plotted in Figure 2.7. The controller, as expected, speeds
up the transient to the zero steady state.
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Figure 2.6: Simulation of the nonlinear open loop FE system with n = 64; velocity
(left) and temperature (right).
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Figure 2.7: Average temperature versus time. Open and closed loop nonlinear FE
system (n = 64) with POD controller, computed from r1 = 5, r2 = 3 basis functions.

Stability of the closed loop system is arguably the most important property a con-
troller should achieve. Given a stabilizable dynamical system, the resulting closed
loop dynamical system with optimal control is exponentially asymptotically stable.
This means that all eigenvalues of the closed loop system have negative real part.
Recall, that control via POD gains only produces a suboptimal feedback for the FE
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system of the form
Eẋ(t) = (A−BKn

r )x(t),

and stability of the closed loop system therefore needs to be investigated. The above
problem leads to a generalized eigenvalue formulation

EV = ÃV Λ,

where Λ is a diagonal matrix containing the eigenvalues, and Ã ∈ {A, (A−BKn
r ), (A−

BK)}. The generalized eigenvalues of the open loop FE system at n = 64, and two
closed loop systems are plotted in Figure 2.8. The eigenvalues were computed with
eigs in MATLAB. The reader should observe, that closing the feedback loop indeed
moves the eigenvalues to the left side, as desired. The real parts of the first three
eigenvalues of the open loop FE, closed loop FE and closed loop FE system with a
POD controller are given in Table 2.3.

−2 −1.5 −1 −0.5 0
−0.5

0

0.5

Real part

Im
a
g
in

a
ry

 p
a
rt

 

 

Open loop

Closed loop w. FE controller

Closed loop w. POD controller

Figure 2.8: Eigenvalues of the open loop matrix A, and closed loop FE matrices,
A−BK and A−BKn

r , where n = 64.

System λ1 λ2 λ3

Open loop FE -0.021 -0.099 -0.186
Closed loop w. FE controller -0.165 -0.417 -0.437
Closed loop w. POD controller -0.151 -0.430 -0.430

Table 2.3: Real part of the three eigenvalues closest to the imaginary axis; linear
open and closed loop systems at n = 64.
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The above numerical experiments show that a POD controller applied to the FE
system yields similar results compared to using the FE gains. However, solving the
LQR problem is much cheaper for the ROM, see Table 2.4. The spatial integration
is more expensive for the POD model, since the basis functions are dense in Rn,
whereas they are sparse for the FE model (“hat functions”), hence they can be
quickly integrated.

Model dimension Model assembly Solving LQR
FE 128 0.03s 1.40s
POD 5+3 0.53s 0.02s

Table 2.4: CPU time [s] to build (spatial integration) the FE and POD system, and
to solve the Riccati equation for the feedback gain.

2.3.3 Off-Design Use

In many physical environments, conditions and model parameters change with time.
For instance, when controlling indoor-air environments, the underlying system pa-
rameters, boundary conditions, etc., change during the application of the controller.
Thus, one would like for the controller to be robust to small changes in the param-
eters and operating environment. As noted earlier, the closed loop systems, (2.14)
and (2.22), explicitly depend on parameters:

ẋ(t) = [A(µ2)−BK(µ1)]x(t) + F (x(t)), (2.25)

where µ1 and µ2 are the reciprocals of two different Reynolds numbers. Note, that
the feedback gain is computed using the system matrices A,B,C and the penalty
term R. For A = A(µ) depends on the Reynolds number, the functional gain is
computed for a specific Reynolds number, so we emphasize K = K(µ). Below, we
investigate the performance of a gain K(µ1) on a dynamical system under varying
Reynolds numbers.

Figures 2.9 – 2.10 show the performance of the POD and FE controllers when the
Reynolds number of the open loop system is varied. The full nonlinear FE model at
a baseline Reynolds number of Re2 = 120 is simulated with an impulse u(t), as given
in equation (2.24). Then, the POD-ROM as well as the POD gains are computed
by solving a low order Riccati equation. Subsequently, the Reynolds number Re1

that influences the dynamics of the system is changed. A comparison of the relative
errors in the gains ||K(µ2) −K(µ1)||/||K(µ1)|| and the propagation of these errors
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to the solutions ||x(µ1, K(µ2), t) − x(µ1, K(µ2), t)||/||x(µ1, K(µ1), t)||, as computed
from equation (2.25) is given. Figure 2.9 depicts the result for the controller acting
on the nonlinear system, while Figure 2.10 shows the results for the controlled linear
system.
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Figure 2.9: Nonlinear FE system with n = 64: Relative errors in feedback gains and
solutions as the Reynolds number (Re = 1

µ
) is varied. (left): The effect on the FE

system; (right): POD system.
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Figure 2.11 shows the eigenvalues λ(A(µ2)− BK(µ1)) of the closed loop system for
µ1 = 1

120
and µ2 = 1

80
. Note, that all eigenvalues are bound away from zero in the

open left half plane. However, the eigenvalues did move slightly closer towards zero,
as the feedback is only sub-optimal.
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Figure 2.11: Eigenvalues of the closed loop linear FE system at µ2 = 1
80

with con-
troller computed at µ1 = 1

120
.

2.4 Conclusions

In this part of the thesis, a coupled Burgers’ equation as a simplified model of thermal
fluid dynamics, and numerical testbed, was considered. We illustrated and derived
the computational scheme for designing LQR controllers via reduced order models.
We addressed data generation options (which excitation), and finding a sufficient
size of the ROM. Moreover, we provided a careful, structure-preserving derivation
of the reduced order model, and discussed an alternative, and its drawbacks. An
in depth numerical study comparing performance, robustness and computational
effort to design controllers via proper orthogonal decomposition reduced order mod-
els. The closed loop POD controllers satisfactory controlled the high fidelity model,
remarkably so for off-design parameters. In our assessment, the reduced order con-
trollers performed fairly well in parametric neighborhoods of the training sets from
which they were generated. In particular, the controllers provided a robust stabi-
lization with respect to parametric changes. As we mentioned in the introduction,
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the reduce-then-design approach can fail for certain systems. However, for a system
like the coupled Burgers’ equation considered here, it gave satisfactory performance,
while allowing computational savings at the online stage of the controller.

In the next chapter, we approach the optimal control problem from a different per-
spective, namely the design-then-reduce approach. There, we develop a method
which works on large-scale systems, is also based on POD, and provides a sound
framework for solution of ARE through simulations of linear systems. The algebraic
Riccati equations in the present chapter were computed via rather slow Schur-form
solvers in Matlab, which is unfeasible for large systems.
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Chapter 3

Solution of Large-Scale Riccati
Equations

The solution of large-scale matrix algebraic Riccati equations (AREs) is important
for instance in control design and model reduction and remains an active area of
research. We propose a projection method to obtain low rank solutions of AREs
based on simulations of linear systems coupled with proper orthogonal decompo-
sition (POD). The method can take advantage of existing (black box) simulation
code to generate the projection matrices. Furthermore, simulation methods such
as parallel computation, domain decomposition, and multi-grid methods can be ex-
ploited to increase accuracy and efficiency and to solve large-scale problems. We
present numerical results demonstrating that the proposed approach can produce
highly accurate approximate solutions. We also briefly discuss making the proposed
approach completely data-based so that one can use existing simulation codes with-
out accessing system matrices. Furthermore, a comparison with an extended Krylov
subspace method shows that the proposed approach can give higher accuracy at a
lower approximate solution rank.

3.1 Introduction

Riccati equations play an important role in a variety of problems, including optimal
control and filtering. For instance, the solution to the algebraic Riccati equation
(ARE) determines the optimal feedback control solving the linear quadratic regulator
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problem. Such feedback control laws are used to stabilize a dynamical system and to
steer the dynamics to desired equilibrium states. Moreover, the problem of optimal
state estimation from given measurements of a linear dynamical system also involves
a solution to an algebraic Riccati equation. For details about control and estimation,
see [126, Chapter 4] and [45, Chapter 12] and the many references therein. Solutions
of AREs are also important for certain model reduction algorithms, such as LQG
balanced truncation, [8, §7.5] and [183, 26, 28]. Furthermore, optimizing sensor
and actuator locations in optimal control problems can require the solution of many
AREs; see, e.g., [62, 69, 117, 64]. In this chapter, we consider nonlinear matrix
algebraic Riccati equations of the form

ATPE + ETPA− ETPBBTPE + CTC = 0. (3.1)

Here, A,E ∈ Rn×n, B ∈ Rn×m, and C ∈ Rp×n are given matrices, and P ∈ Rn×n is
the unknown matrix. As can be seen from Theorem 1.5.13, if (E,A,B) is stabilizable,
the exact solution P of the ARE (3.1) exists and is symmetric positive semidefinite.
This chapter is concerned with efficiently solving the above equation, and to provide
a first step for a completely matrix free way of finding the solution P , without having
explicit access to A,B,C, but maybe only to its weak forms, or their action on a
vector, which is suitable for many commercial codes.

We are concerned with approximating the solution of the ARE (3.1) for large-scale
systems, i.e., when n > 10, 000.1 When deriving a spatial discretization of a partial
differential equation in more than one dimension using, e.g., finite element methods
(§1.3), the resulting systems are inevitably large. Dimensions of n� 106 are rather
common for such applications. Even if the matrices E and A are sparse and there are
only few inputs and outputs, m, p� n, the exact solution P of the ARE is a dense
n × n matrix; therefore obtaining or even storing the exact solution is problematic.
Fortunately, the solution P is often of low numerical rank when p,m � n [32, 146]
and many recent solution approaches exploit this by constructing factored low rank
approximate solutions of the form P ≈ ZZT .

Over the past 50 years many methods and techniques have been developed to effi-
ciently solve small or moderate size nonlinear matrix equations of Riccati type; see,
e.g., [37] for an overview. A large amount of recent research has been devoted to the
development and analysis of algorithms for large-scale AREs; see the recent survey

1The definition of “large” is clearly user dependent. Our definition is motivated by the fact that
a great amount of engineering, design and control both in the corporate and academic world is still
performed on standard desktop computers. For a standard desktop computer, matrix decomposi-
tions or solving matrix equations of order n > 10, 000 is challenging.
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[32]. Many of the approaches are inspired by computational linear algebra methods.
The prevalent methods include invariant subspace methods [94, 44, 30], spectral pro-
jection methods [154, 53, 14], Krylov subspace methods in a projection framework
[158, 106, 109, 110, 97, 168], Kleinman-Newton methods [120, 25, 52, 83, 31], and
subspace iterations [132, 27].

The reader should note, that the solution of the algebraic Riccati equation is, for
some applications, merely a detour to obtain the gain matrices K = BTPE. Where
the goal is to obtain feedback gain matrices, solving the Chandrasekhar equations
[116, 133, 50, 49] provides an elegant alternative, since it circumvents the solution
of the algebraic Riccati equation and directly computes the gain matrices through
integration of linear systems. Traditionally, convergence of solutions to the Chan-
drasekhar is rather slow, yet a hybrid method involving Proper Orthogonal Decom-
position for faster computation has been developed by Borggaard and Stoyanov [39].

There has also been interest in developing data-based algorithms that approximate
the solution of the ARE. Such approaches do not require direct access to the matrices
(E,A,B,C). This can be important if one has an existing (possibly complex) simu-
lation code for which it is difficult or impossible to access the relevant matrices. In
such a data-based setting, researchers have not typically focused on approximating
the solution P of the Riccati equation; instead, researchers have primarily focused on
approximating quantities that depend on the Riccati solution. For example, one can
attempt to approximate the feedback gain matrix needed for optimal feedback con-
trol problems, or one can attempt to approximate the optimal control u(t) directly,
without computing the feedback gains. Direct methods to compute the feedback
function for large-scale systems were developed in [148] and successfully applied to a
linearized Navier-Stokes equation, see [163]. However, those methods do not reveal
the structure and shape of K, which can be crucial in the placement of sensors and
actuators.

Other data-based algorithms include approaches based on the aforementioned Chan-
drasekhar equations [39, 2] and a vast variety of model reduction methods (see, e.g.,
[12, 11, 19, 18, 130]). All of these approaches have been used successfully on a variety
of problems, but they can have drawbacks. For example, the iterative optimization
algorithms only provide the optimal control which cannot be used for feedback pur-
poses. Most notably, these methods have typically not aimed to provide highly
accurate approximations of the Riccati solution P .

We propose a new projection based method in §3.4 to solve AREs based on simu-
lations of linear systems coupled with proper orthogonal decomposition (POD) and
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Galerkin projection. The proposed approach is a first step towards an accurate, com-
pletely data-based projection method for solution of AREs, and is particularly for-
mulated for researchers familiar with POD. We refer the readers to §1.6 for an intro-
duction to projection based methods and POD. After describing the POD-projection
approach, we present numerical results in §3.5 indicating that the proposed method
can be used to accurately compute the feedback gain matrices. The method provides
an accurate low rank approximate solution of the ARE, which can be used for model
reduction applications, such as LQG balanced truncation, etc.

We note that a data-based POD approach has been previously coupled with a
Kleinman-Newton iteration in [173] to approximately solve AREs. However, the
recent work [168] indicates that projection methods outperform approaches based on
the Kleinman-Newton iteration.

To relate our numerical findings to state-of-the-art low rank Riccati solution methods
for large-scale problems, we choose an extended Krylov subspace projection method
[168]. In §3.5, we find that the proposed POD approach gives high accuracy for a
fixed approximation rank and is tractable for large-scale applications. The proposed
method generally is not as computationally and storage efficient as Krylov methods
or other computational linear algebra approaches. However, the primary goal of this
work is not to produce the most efficient solver; instead, our goal is to move toward
an efficient, accurate, completely data-based method that can take advantage of
existing simulation codes. In addition, when the matrices come from discretizations
of PDEs, efficient domain decomposition and multigrid techniques can be used to
solve the linear systems, giving the method additional flexibility. Moreover, for
systems with multiple outputs, the required simulations can be run in parallel. The
numerical results suggest that it may be possible to develop a convergence theory
for low rank solutions of algebraic Riccati equations.

3.2 Background on AREs

Throughout this paper, we consider linear time invariant systems (E,A,B,C) given
by

Eẋ(t) = Ax(t) +Bu(t), (3.2)

y(t) = Cx(t), (3.3)

where E,A ∈ Rn×n, B ∈ Rn×m and C ∈ Rp×n and m, p � n. Systems arising from
discretization of of PDE’s with overlapping basis functions have E 6= I. We assume
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the matrix E is invertible, so we explicitly do not consider descriptor systems.

For certain systems, such as those arising in the spatial discretization of the linearized
Navier-Stokes equations (e.g., [6]), the system (3.2)-(3.3) is not stable in the sense
that E−1A has positive eigenvalues. Recall, that a system is called asymptotically
stable if all eigenvalues of E−1A have negative real part. Stabilizing unstable systems
is one important problem in feedback control applications. Whenever the system is
unstable, the observability gramian given by representation (3.6) below does not
exist and certain ad hoc solution strategies for ARE can have poor performance. To
make E−1A stable, one first finds a stabilizing feedback gain K1, for instance via
the algebraic Bernoulli equations [6] or by integrating the Chandrasekhar equations
until a stabilizing feedback gain is obtained [20]. The new matrix E−1(A−BK1) is
then stable.

Henceforth, we assume that E−1A is stable. In light of the preceding discussion, we
emphasize that this is not a necessary assumption. In fact, the assumption of stability
of E−1A solely implies that the stabilizing feedback has already been applied.

Many algorithms to solve Riccati equations exploit the intrinsic connection to the
linear Lyapunov equation

ATXE + ETXA+ CTC = 0. (3.4)

One should note that (3.4) is a linear matrix equation obtained from the algebraic
Riccati equation (3.1) by ignoring the nonlinear term. The connection between
the Riccati and Lyapunov equation can have important implications when devising
algorithms to solve AREs. In this chapter, we generate a subspace spanned by
the singular vectors of an approximate Lyapunov solution to compute approximate
solutions for AREs via projection.

Assuming that E−1A is stable, the solution to Lyapunov equation admits a closed
form. To see this, rewrite the Lyapunov equation (3.4) above as

ÃT X̃ + X̃Ã+ C̃T C̃ = 0, (3.5)

where
X̃ = ETXE, Ã = E−1A, C̃ = C.

It is well known that the solution of the transformed Lyapunov equation (3.5) has
the following integral representation:

Theorem 3.2.1. ([8, Proposition 4.27]) If Ã = E−1A is a stable matrix, then
the Lyapunov equation (3.5) has a unique solution X̃, called the observability
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gramian, which has the representation

X̃ =

∫ ∞
0

etÃ
T

C̃T C̃etÃdt. (3.6)

The solution of the original Lyapunov equation (3.4) can be expressed in a similar
form.

Corollary 3.2.2. If Ã = E−1A is a stable matrix, then the Lyapunov equation (3.4)
has a unique solution X given by

X =

∫ ∞
0

etE
−TAT

E−TCTCE−1etAE
−1

dt.

Proof. The above theorem gives

X =

∫ ∞
0

E−T et(E
−1A)TCTCetE

−1AE−1dt.

Since A is stable, the power series expansion of the exponential matrix converges,
and we have

etE
−1AE−1 =

∞∑
i=0

(tE−1A)iE−1 =
∞∑
i=0

E−1(tAE−1)i = E−1etAE
−1

by virtue of (E−1A)iE−1 = E−1(AE−1)i, for all i. Similarly, one can see that
E−T et(E

−1A)T = etE
−TAT

E−T , which completes the proof.

In a similar fashion, one can rewrite the Riccati equation (3.1) as

ÃT P̃ + P̃ Ã− P̃ B̃B̃T P̃ + C̃T C̃ = 0, (3.7)

where now
X̃ = ETXE, Ã = E−1A, B̃ = E−1B, C̃ = C.

Theorem 3.2.3. [66] If (Ã, B̃) is stabilizable, then the closed form of the unique
positive semidefinite solution to Riccati equation (3.7) is given by the implicit integral
formulation

P̃ =

∫ ∞
0

etÃ
T
(
C̃T C̃ − P̃ B̃B̃T P̃

)
etÃdt.
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This is an important representation of the solution both for analysis and to gain
crucial insight for the design of the approximation scheme.

Corollary 3.2.4. If (Ã, B̃) is stabilizable, then the solution to the Riccati equation
(3.1) is given by

P =

∫ ∞
0

etE
−TAT (

E−TCTCE−1 − PBBTP
)
etAE

−1

dt.

Proof. The proof follows the technique of the previous corollary, i.e.

P =

∫ ∞
0

E−T et(E
−1A)T (CTC − ETPEe−1BBTE−TETPE)etE

−1AE−1dt

=

∫ ∞
0

et(AE
−1)T (E−TCTC − PBBTP )etAE

−1

dt

The reader should note, that the above results are of theoretical nature. In practice,
computing E−1 should be avoided at all cost. Instead, alternative approaches, such as
a change of variables, or successive solution of linear systems should be implemented.

In some problems, it is more natural to work with weighted norms on Rn. For
example, in many PDE systems the natural state spaces are the Hilbert spaces L2 or
H1. Thus, when the system (3.2)-(3.3) arises from a standard finite element spatial
discretization of a partial differential equation system, the matrix E is symmetric
positive definite and the E-weighted norm of a vector equals the L2 norm of the
corresponding finite element function. In general, for a symmetric positive definite
matrix W ∈ Rn×n, let (x, y)W = yTWx denote the W -weighted inner product and

let ‖x‖W = (x, x)
1/2
W = (xTWx)1/2 denote the W -weighted norm.

Remark 3.2.5. An alternative approach to deal with the matrix E that is used
in many works is to perform the following change of variables. Since E is positive
definite, a Cholesky decomposition E = LLT exists and one can transform the system
to

ż(t) = Âz(t) + B̂u(t), y(t) = Ĉz(t), (3.8)

where
z(t) = LTx(t), Â = L−1AL−T , B̂ = L−1B, Ĉ = CL−T . (3.9)

Of course, if E is the identity matrix, then the new system is identical to the original
system. For large-scale systems, the transformed matrices (L−1C)T and L−1B can
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be formed explicitly using linear solves. However, the matrix Â = L−1AL−T may or
may not be computed explicitly, depending on the structure of the problem. With
a standard Cholesky factorization of E, sparsity of A is lost, which is undesirable
for the methods consider in this work. However, with a reordering, a minimal fill in
Cholesky factor can be computed.2 Many methods require that sparse linear solves
can be computed efficiently. In that case, we never need the full matrix Â, but only
its action on a vector z. Therefore, one can compute Âz = L−1(A(L−T z)) which
only requires sparse solves and sparse matrix vector multiplications.

3.3 Direct Projection Methods

Projection methods have been demonstrated to be efficient methods to compute
solutions of Riccati and Lyapunov equations [106, 109, 110, 111, 166, 97, 168], and
can be divided into two steps. The first step is the computation of the approximate
solution of the ARE via a specific algorithm. The second step is a computation of
a matrix residual norm (or other criteria) to test the accuracy of the approximate
solution obtained in the first step. Below, we give an overview of the projection
approach, discuss the choice of a projection matrix, and review residual norms and
approximation errors.

3.3.1 Projection Framework for ARE

For a symmetric positive definite weight matrix W ∈ Rn×n, assume we have a matrix
Vr with full column rank such that

Vr = [v1, v2, . . . , vr] ∈ Rn×r, V T
r WVr = Ir, (3.10)

where vi ∈ Rn for each i and r � n is the reduced order dimension. The matrix
Vr is called a projection matrix. In analogy to the projection based model reduc-
tion in §1.6, but with slightly different notation, one obtains a reduced order model
(Er, Ar, Br, Cr) of the system (E,A,B,C) via

Er = V T
r EVr, Ar = V T

r AVr, Br = V T
r B, Cr = CVr. (3.11)

2In Matlab, the command [L,p,S]=chol(E,’lower’,’matrix’) computes the minimal fill in
Cholesky factor, so that E = SLLTST , where S is a permutation matrix.



CHAPTER 3. SOLUTION OF LARGE-SCALE RICCATI EQUATIONS 72

The reduced order matrices give rise to solving the projected ARE

ATr ΠrEr + ET
r ΠrAr − ET

r ΠrBrB
T
r ΠrEr + CT

r Cr = 0 ∈ Rr×r, (3.12)

which can alternatively be obtained by imposing a Galerkin condition on the residual
matrix. Assuming the low order ARE is well posed, the solution Πr ∈ Rr×r can be
computed using the well developed methods for moderate sized AREs; e.g., the direct
solver care in Matlab. Having solved the low order ARE (3.12), one defines a low
rank approximate solution to the large-scale ARE (3.1) as

Pr := VrΠrV
T
r ≈ P. (3.13)

Projection methods by definition yield low rank factored solutions. As noted earlier,
the solution to the low rank algebraic Riccati equation Πr is symmetric positive
semidefinite. Thus, the eigenvalue decomposition Πr = UrSrU

T
r is used to define the

low rank factor
Zr = VrUrS

1/2
r , (3.14)

which in turn gives Pr = ZrZ
T
r . In practice, only the low rank factors are stored and

used where the solution Pr would be needed.

Steps (3.10)-(3.14) are common to all Galerkin projection methods. The distinctive
feature of a method is the generation of the projection matrix Vr. As we see later,
if the columns of Vr are in the span of the solution to the Lypunov equation (3.4)
then the projection based method for solving an ARE can be very accurate. A
discussion about measures of accuracy of approximate solutions to ARE is given
in §3.3.3 below. Recall from Lemma 1.6.1, that stability of A under projection is
preserved under fairly simple conditions.

3.3.2 The Choice of the Projection Matrix

Below, we give a brief overview of available methods for computing Vr, as they
distinguish the various projection methods. In the next chapter, we propose a new
POD based algorithm to compute the projection matrix.

Regular Krylov Methods

Direct projection methods for solving a Lyapunov equation of the form (3.4) with
E = I were first considered in [158] and variations, including a GMRES method on
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the matrix residual can be found in [106]. Recall, that the explicit solution (3.6)
with E = I to the Lyapunov equation contains etA

T
CT in the integrand. The idea

is that a good approximation of the integrand combined with a suitable quadrature
rule should be sufficient for convergence of the gramian. Therefore, the authors in
[158] used the standard Krylov subspace

Kr(AT , CT ) := span{CT , ATCT , . . . , (AT )r−1CT} (3.15)

to achieve eA
T
CT ≈ pr−1(AT )CT , where pr−1(AT ) is a matrix polynomial of maximum

degree r− 1. Note, that this does not necessarily imply that the matrix exponential
is well approximated by the matrix polynomial, but only imposes a lower bound of
the form

‖eAT

CT − pr−1(AT )CT‖2 ≤ ‖eA
T − pr−1(AT )‖2‖CT‖2.

More sophisticated quadrature rules are considered in [90], where it was shown that
under rather mild assumptions a quadrature with ‘sinc’ quadrature points and ap-
propriate weights yields good low rank approximations of X. It has been widely
noted that the projection matrix Vr has to be of high rank for those methods to
converge.

Extended Krylov Subspace Method

We next describe an improved Krylov subspace method which is widely used for
solving large AREs and Lyapunov equations. Thus, consider the extended Krylov
space

Kr(A
T , CT ) := Kr/2(AT , CT ) +Kr/2(A−T , CT ), (3.16)

with E = I and W = I, and A−T := (A−1)T . For notational convenience, we assume
that r is an even integer. In [78], it was shown that the enriched Krylov subspaces
yield more accurate approximations for pr−1(AT )CT than the standard Krylov space
Kr(AT , CT ) in (3.15). This result has been exploited in the design of an iterative
method for the solution of the Lyapunov equation, see [166]. The proposed Extended
Krylov Subspace Method (EKSM) was found to outperform other methods in terms
of CPU-time and memory requirements.

The direct projection method using the extended Krylov subspace above has been
used to solve Riccati equations in [97]. For certain examples, the projection based
EKSM was found to be better in terms of CPU-time and memory requirement than
the Cholesky factorized-ADI method. A block Arnoldi algorithm was employed to
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generate Vr from the matrices AT and CT . Recall, that the Arnoldi iteration yields

ATVr = VrHr + Tr, where Vr, Tr ∈ Rn×r, Hr ∈ Rr×r. (3.17)

The matrix Hr is then upper Hessenberg and the residual Tr is orthogonal to the
columns of Vr, so V T

r Tr = 0, for r = 1, 2, . . . , n. Additionally, the columns of Vr
are mutually orthonormal, so V T

r Vr = Ir. The extended block Arnoldi procedure is
summarized in Algorithm 1. Note, that this algorithm is built for multi-input multi-
output (MIMO) systems where m, p > 1. In every step of the iteration, a “thin” QR-
decomposition [89, page 230] has to be computed. Essentially, this means that only a
few n-dimensional vectors have to be orthonormalized via a modified Gram-Schmidt
procedure. In Matlab one should call qr(F,0) for the thin QR decomposition of a
tall matrix F .

Algorithm 1 : Extended Block Arnoldi (EBA) Algorithm ([97])

Input: AT ∈ Rn×n, CT ∈ Rn×p and an integer r.
Output: Vr ∈ Rn×r, an orthogonal projection matrix.

1: Compute the QR-decomposition of [CT , A−TCT ], i.e. [CT , A−TCT ] = V1Λ.
2: Set V0 = { }.
3: for j = 1, 2, . . . , r do
4: Set V

(1)
j : first p columns of Vj and V

(2)
j : second p columns of Vj.

5: Vj = [Vj−1, Vj]; V̂j+1 = [ATV
(1)
j , A−TV

(2)
j ].

6: Orthogonalize V̂j+1 with respect to Vj to get Vj+1, i.e.,
7: for i = 1, 2, . . . , j do
8: Hi,j = V T

i V̂j+1 ;

9: V̂j+1 = V̂j+1 − ViHi,j;
10: end for
11: Compute the QR-decomposition of V̂j+1, i.e. V̂j+1 = Vj+1Hj+1,j.
12: end for

At every iteration of Algorithm 1, 2p new columns are added to Vr. The inversion
is implemented by precomputing the decomposition A = LU , where L,U are lower
and upper triangular matrices, respectively. Hence, the inversion only requires solv-
ing triangular systems successively. Other options, including iterative methods and
preconditioning, can be used for inverting A. In [97], Algorithm 1 is used within the
general projection framework outlined above. The authors constructed a computa-
tionally cheap evaluation of the Riccati equation matrix residual, which serves as a
stopping criterion for the algorithm. To achieve this, the Arnoldi recurrence turned
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out to be crucial. With this step, only matrices of size r are required to compute the
stopping criterion.

When the matrix E is not the identity, there are (at least) two approaches to mod-
ifying the above algorithm. The first approach is based on a change of variables,
as mentioned in Remark 3.2.5, and equation (3.9). Using this transformation in the
ARE (3.1) leads to the transformed ARE

ÂT P̂ + P̂ Â− P̂ B̂B̂T P̂ + ĈT Ĉ = 0.

The above extended Krylov approach can be applied to obtain an approximate so-
lution P̂r of the transformed ARE, and an approximation Pr = L−T P̂rL

−1 to the
solution P of the original ARE (3.1) can be recovered by inverting the change of
variables.

In an implementation, the matrix Â is never explicitly formed; instead applications
of Â and Â−1 to a matrix or vector can be accomplished by a sequence of matrix
multiplications and linear solves. It may also be possible to implement this approach
implicitly, i.e., the change of variables is only performed at the last stage of the
computation (c.f. [70, §6.6.5]).

As Benner and Saak note in [32, page 37], this change of variables approach is
required in order to obtain a fast computation of the residual. Also, if E is not
symmetric positive definite, an LU decomposition of E can be used for the change
of variables (see [32, page 37]). Furthermore, note that if A is symmetric, then the
symmetry is retained in the changed variables.

The second approach does not require symmetry of E and simply replaces (AT , CT )
with (E−TAT , E−TCT ) in the extended Krylov approach. Again, the matrix E−TAT

and its inverse can be applied to another matrix or vector by a sequence of matrix
multiplications and linear solves.

We can also enforce orthogonality with respect to a weighting matrix W with the
following modifications of Algorithm 1:

• Replace the QR decomposition in steps 1 and 10 with a W -weighted stabilized
Gram-Schmidt procedure. (See §3.4 for details.)

• Replace step 7 by the W -weighted version Hi,j = V T
i WV̂j+1.

In the second approach, it appears that one loses the fast computation of the residual
(again, see [32, page 37]); instead, the (slower) general purpose QR algorithm for the
residual discussed in §3.3.3 below can be used.
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The authors are not aware of a thorough comparison of these two approaches in
the literature. We tested both approaches on the convection diffusion PDE example
discussed in §3.5. We found that the second approach gave much greater accuracy
when approximating the solution P of the ARE (3.1) in the original variables.

Remark 3.3.1. The presence of the matrices (E−TAT , E−TCT ) in the second ap-
proach can be motivated as follows. First, recall when E = I, the matrices (AT , CT )
correspond to the presence of etA

T
CT in the solution representation of the associated

Lyapunov equation (see Theorem 3.2.1). When E 6= I, the matrices (E−TAT , E−TCT )
now correspond to the solution representation of the associated Lyapunov equation
in Corollary 3.2.2.

Gramian Based Projection

The relationship between the ARE (3.1) and the Lyapunov equation (3.4), motivates
the following projection matrix. The solution of the Lyapunov equation can be
computed with lyap in Matlab as

X = lyap(AT , CTC, [ ], ET ).

Matlab uses the SLICOT SB03MD routine for this problem. At first, the Schur
decomposition of AT is computed and then the new system solved by forward sub-
stitution. The algorithm is backward stable and requires O(n3) operations, therefore
becoming unfeasible for large n. We next compute the singular value decomposition
of the observability Gramian

X = V ΣW T ,

where the columns of V = [v1 v2 . . . vn] span the range space of X. Truncation of
V after r columns yields the projection matrix as Vr = [v1 v2 . . . vr]. Finally, the
projected Riccati equation (3.12) is solved. We include this method for testing on
small problems since it is closely related to the POD projection method proposed in
§3.4.

3.3.3 Residual Computations and Approximation Errors

In order to set stopping criteria or to compare various methods regarding accuracy,
it is necessary to define a quality measure for approximate solutions. A relative
residual is often used as a stopping criteria to select the rank of the approximate
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solution. Many existing approaches to solving the ARE (3.1) are linked with special-
ized algorithms that rapidly compute (or estimate) the residual. We do not attempt
to review these algorithms here; see the survey paper [32] for some details and refer-
ences. Below, we present a QR algorithm from [29] to compute the residual that is
applicable for many low rank ARE solution methods. We use this approach for the
computations in this chapter. The method is not as computationally cheap as the
specialized algorithms mentioned above; however, it is still computationally tractable
and scales to large problems. We also discuss the relationship of the residual to the
actual approximation error.

Let Pr ∈ Rn×n be a symmetric positive semidefinite approximate solution of the
ARE (3.1). The residual is defined as

R(Pr) := ATPrE + ETPrA− ETPrBB
TPrE + CTC. (3.18)

We assume Pr has a low rank factorization Pr = ZrZ
T
r , where Zr ∈ Rn×r and r � n.

Then the residual can be rewritten as

R(Pr) = FGF T , F =
[
CT ATZr ETZr

]
, G =

 I 0 0
0 0 I
0 I −(ZrB)(ZrB)T

 .
We have F ∈ Rn×(2r+p) and G ∈ R(2r+p)×(2r+p), where C ∈ Rp×n. Let F = QR be
the thin QR decomposition of F , see [89, page 230]. Since QTQ = I, we have

‖R(Pr)‖2 = ‖RGRT‖2, ‖R(Pr)‖F = ‖RGRT‖F .

Therefore, computing the norm of the residual matrix R(Pr) (e.g., of size n & 105)
can be reduced to the norm computation of a small square matrix (e.g., of size
2r + p ≈ O(10) or O(100)) using a thin QR decomposition.

Next, we review the connection between the residual and the approximation error.
Let Pr be any approximation to the exact solution of the ARE (3.1). Ideally, one
should use the actual approximate error

ε = ‖P − Pr‖, (3.19)

to assess the accuracy of the approximate solution, where ‖ · ‖ either denotes the
matrix 2-norm or some other matrix norm. Of course, the exact solution is almost
never available and, as mentioned above, the residual is often used instead. To link
the residual norm to the error in the solution, the authors in [119, 175] gave error
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bounds relating (3.19) to the residual when E = I. We state these theorems below.
First, define the linear operator ΩPr : Rn×n 7→ Rn×n by

ΩPr(X) := (A−BBTPr)
TX +X(A−BBTPr).

This operator has the structure of the “Lyapunov operator” in equation (3.4). More-
over, if (A−BBTPr) is stable, then Theorem 3.2.1 implies that ΩPr is invertible (i.e.
the Lyapunov equation has a unique solution), which is crucial for proving the next
theorem.

Theorem 3.3.2. ([119, Theorem 2’]) Let Pr ≥ 0 be an approximation to the unique
symmetric positive semidefinite solution P to the ARE (3.1). If (A − BBTPr) is
stable and

‖P − Pr‖2 ≤
1

3‖Ω−1
Pr
‖2‖B‖2

2

and 4‖Ω−1
Pr
‖2

2 ‖R(Pr)‖2‖B‖2
2 < 1,

then

‖P − Pr‖2 ≤
2‖Ω−1

Pr
‖2‖R(Pr)‖2

1 +
√

1− 4‖Ω−1
Pr
‖2

2 ‖R(Pr)‖2‖B‖2
2

≤ 2‖Ω−1
Pr
‖2‖R(Pr)‖2.

Rewriting the above result yields

‖P − Pr‖2 ≤ c(Pr)‖R(Pr)‖2,

where c(Pr) = 2‖Ω−1
Pr
‖2 depends on the approximate solution Pr. Theoretically, this

inequality bounds the error in the approximate solution by the matrix residual. The
term c(Pr) can be viewed as a condition number of the algebraic Riccati equation.
However, computing the quantity ‖Ω−1

Pr
‖2 = supX 6=0(‖Ω−1

Pr
(X)‖/‖X‖) is not straight-

forward and only computable upper bounds were stated in [119, §3]. Furthermore,
Sun [175] sharpened the above error bound while simultaneously relaxing the as-
sumptions. A statement of those results is beyond the scope of this paper. For the
extended Krylov approach discussed above, a similar error bound is given in [97,
Theorem 3.2].

3.4 POD Projection Method

We propose using POD in the projection framework to approximate solutions to
AREs in an accurate and computationally efficient manner. For a review of POD,
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refer to §1.6.2 in the background material. First, a POD method is employed to
approximate the dominant eigenvectors of the observability gramian X solving the
Lyapunov equation (3.4). Those vectors are used to construct a projection matrix
Vr.

Willcox and Peraire [189] proposed a snapshot based approach to approximate solu-
tions of the Lypunov equation in n dimensions (see also [158, 155]). In particular,
they suggested using snapshots of simulations of linear systems to compute the ob-
servability gramian (3.6). In [169], this idea was extended to infinite dimensional
Lyapunov equations and a rigorous convergence theory was presented. Specifically,
error bounds and convergence of the low rank, finite dimensional solution to the
infinite dimensional gramian were obtained. We follow this approach and first com-
pute an approximation of the observability gramian X and subsequently project the
ARE using the approximate dominant left singular vectors of X. The dimension of
the required singular value decomposition is limited by min(n, ps), with s being the
number of snapshots collected during the simulation of a linear system.

In control and systems theory, the dual equations of the underlying optimal control
problem are

ET żi(t) = AT zi(t), (3.20)

ET zi(0) = cTi , (3.21)

for all i = 1, . . . , p, where CT = [cT1 , c
T
2 , . . . , c

T
p ]. By the theory of ordinary differential

equations, the unique solution to (3.20)-(3.21) is given by zi(t) = etE
−TAT

E−T cTi ,
for i = 1, . . . , p. Due to the representation of the Lyapunov solution in Corollary
3.2.2, the authors in [189] thus suggested to use simulations of the dual equations to
approximate the solution of the observability gramian X.
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When E−1A is stable, the gramian can be rewritten as follows:

X =

∫ ∞
0

etE
−TAT

E−TCTCE−1etAE
−1

dt

=

∫ ∞
0

etE
−TAT

E−T [cT1 , . . . , c
T
p ]

c1
...
cp

E−1etAE
−1

dt

=

∫ ∞
0

etE
−TAT

E−T [cT1 , . . . , c
T
p ]
(
etE

−TAT

E−T [cT1 , . . . , c
T
p ]
)T

dt

=

∫ ∞
0

[z1(t), . . . , zp(t)][z1(t), . . . , zp(t)]
Tdt

=

∫ ∞
0

[Z(t)][Z(t)]Tdt.

We approximate the observability gramian by the finite time integral

X ≈ XT :=

∫ T

0

[Z(t)][Z(t)]Tdt,

where T specifies a final time, chosen so that a good approximation of the infinite
integral is obtained. The finite time integral can be approximated by quadrature,
such that

X ≈ XT,δ :=
s∑
i=1

δi[Z(ti)][Z(ti)]
T , (3.22)

using positive weights δi and a time grid 0 = t1 < t2 < . . . < ts = T . Here, let
si = ti+1 − ti be the step size for the numerical integration scheme at the ith time
step. In matrix form, the approximation reads as

X ≈ XT,δ := Z∆ZT ,

where ∆ is the diagonal matrix of weights and Z contains snapshots of simulations,
as outlined below. The method of snapshots [174] is used for the POD computations,
as briefly reviewed in §1.6.2. We refer the reader to, e.g., [186, Chapters 2–3] for
more detail. We note that the POD computations can be performed using other
approaches; see, e.g., [81, 24]. Some technical details for the implementation of the
POD snapshot based approach to approximate the gramian are listed below.

• For accurate simulation of the dual system (3.20)-(3.21), a proper set of time
steps has to be chosen a priori, or adaptively during the time stepping. In this



CHAPTER 3. SOLUTION OF LARGE-SCALE RICCATI EQUATIONS 81

work, we simulated the test problems with Matlab’s adaptive time stepping
solvers ode45 and ode23s, with default absolute and relative error tolerances.
In most cases, the snapshots are selected at the time steps chosen by the
adaptive solver.

• In case of highly stiff problems, the time steps si are small, which results in a
larger set of snapshots than is needed for computation of Vr. In this case, a
subset of snapshots from the previous step is selected, and the singular value
decomposition computed from this smaller set of vectors. In practice, we found
this approach to not lose significant accuracy, compared to keeping all time
snapshots.

• The final time T is the only parameter that needs to be fixed for the POD
based approach. One possible approach is to choose T so that the norms of
each solution zi(t) are below a certain tolerance. (Solutions of exponentially
stable systems must tend to zero for large enough time.) For certain simulation
codes, it is possible to choose the tolerance and the simulation will determine
the time T . Also, we note that different final times can be taken for each
simulation, but for simplicity we use one final time T .

• In this work, the weights for the approximation of the integral are chosen by
the trapezoidal rule, which yielded high accuracy in the projection framework
as demonstrated in §3.5.

The remainder of this section focuses on the construction of the projection matrix Vr
so that it is orthogonal with respect to a W -weighted inner product, i.e., V T

r WVr = I,
where W is a symmetric positive definite matrix. For a given initial condition E−T cTi ,
simulate system (3.20)-(3.21) and assemble the time snapshots in a matrix

Zi = [zi(t1) zi(t2) . . . zi(T )] ∈ Rn×s.

Simulations starting with every column of E−TCT are concatenated in the matrix

Z = [Z1, Z2, . . . , Zp] ∈ Rn×ps.

Further, the approximate observability gramian in the new variables can be factored
as

XT,δ = Y Y T , Y = Z∆1/2 ∈ Rn×ps.

However, we refrain from ever forming the gramian explicitly. The projection method
only requires the W -orthogonal eigenvectors of XT,δ to construct Vr, so there is no
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need to form the approximate gramian explicitly, and we can work with the factor
Y instead.

For large systems in which the state space dimension exceeds the number of snap-
shots, the well known method of snapshots to compute the eigenvectors proceeds as
follows. First, compute the eigenvalue decomposition

Y TWY = ΦΛΦT ∈ Rps×ps, (3.23)

and rescale (if necessary) the eigenvectors so that they are orthonormal with respect
to the standard inner product, i.e., ΦTΦ = I. Here, Λ = diag(λ1, λ2, . . .), and the
eigenvalues are ordered so that λ1 ≥ λ2 ≥ · · · ≥ 0. The projection matrix Vr is given
by the matrix consisting of the first r eigenvectors of XT,δ, which is given by

Vr = Y ΦrΛ
−1/2
r , (3.24)

where Φr ∈ Rn×r denotes the matrix consisting of the first r columns of Φ, and
Λr = diag(λ1, . . . , λr). The procedure is summarized in pseudocode in Algorithm 2.
Note that the loop computation can be executed in parallel.

Algorithm 2 : POD method to compute projection matrix

Input: E,A,W ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, final time T , maximal order rmax.
Output: Projection matrix Vrmax .

1: for i = 1, 2, . . . , p do
2: Simulate ET żi = AT zi, E

T zi(0) = cTi and place time snapshots of solutions in
the matrices Zi = [zi(t

i
1), zi(t

i
2), . . . , zi(t

i
si

= T )].
3: Compute quadrature weights (see (3.22)), and let ∆i = diag(δi1, δ

i
2, . . . , δ

i
s).

4: end for
5: Y = [Z1, . . . , Zp] · diag(∆1, . . . ,∆p)

1/2.
6: Compute the singular value decomposition Y TWY = ΦΛΦT .
7: Vrmax = Y Φ:,1:rmaxΛ

−1/2
1:rmax,1:rmax

.

In exact arithmetic, the projection matrix Vr is orthonormal with respect to the W -
weighted inner product whenever λr > 0. This can be seen by direct computation:
since ΦT

r Φr = I, we have

V T
r WVr = Λ−1/2

r ΦT
r (Y TWY )ΦrΛ

−1/2
r = Λ−1/2

r ΦT
r (ΦrΛrΦ

T
r )ΦrΛ

−1/2
r = I.

However, as is well known, in finite precision arithmetic accuracy can be lost due to
forming the required matrix products [87, 157]. In the large-scale problem consid-
ered in §3.5 below, we found that V T

r WVr began to deviate significantly from the
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identity matrix as r increased. To deal with the loss of W -orthogonality, we use
a W -weighted stabilized Gram-Schmidt procedure with reorthogonalization to form
a new W -orthonormal matrix Vr with the same span as the Vr matrix constructed
above. To be complete, we present a simple implementation in Algorithm 3 below..

Algorithm 3 : W -Weighted Stabilized Gram-Schmidt with Reorthogonalization

Input: Vr = [v1, v2, . . . , vr] ∈ Rn×r, W ∈ Rn×n.
Output: Vr ∈ Rn×r such that span(Vr) remains unchanged and V T

r WVr = I ∈ Rr×r.

1: for ` = 1, 2 (reorthogonalization) do
2: for i = 1, . . . , r do
3: vi = vi/(v

T
i Wvi)

1/2.
4: for j = i+ 1, . . . , r do
5: vj = vj − (vTj Wvi) vi.
6: end for
7: end for
8: end for

3.4.1 Parallels to Standard and Rational Krylov Subspaces

Rational Krylov subspace techniques (and the related ADI iteration) have been
demonstrated to be efficient for solving Lyapunov equations; see [79] and the re-
cent survey [167]. Moreover, in [168] rational Krylov subspaces were compared with
the EKSM as direct projection methods for the ARE and it was found that both
methods show a similar convergence behavior. In this short section, we highlight
some of the similarities and differences between the projection spaces obtained from
the POD method and rational Krylov subspace methods. A thorough analysis is left
for future work.

Recall, the integral representation of the solution of the Lyapunov equation in
Corollary 3.2.2 motivated us to consider approximating the integral via quadra-
ture using snapshots of the dual differential equation (3.20)-(3.21). Consider a sim-
ple variable step backward Euler scheme for time discretization with a time grid
tk+1 = tk + sk, k = 1, . . . , ns − 1, where si are the time steps. Then, one has

ET xk+1 − xk
sk

≈ ET ẋk+1 = ATxk+1.
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Rearranging terms, one has the simple recursion

xk+1 =
(
I − skE−TAT

)−1
xk = s−1

k

(
s−1
k I − E−TAT

)−1
xk.

The initial condition is given by x0 = E−TCT , so that the following sequence of
snapshots is collected:

SBE =

{
x0, s

−1
1

(
s−1

1 I − E−TAT
)−1

x0, . . . ,
ns−1∏
i=1

s−1
i

(
s−1
i I − E−TAT

)−1
x0

}

of dimension ns. Note that span(SBE) = span(Kns(E
−TAT , x0, s

−1)) is a rational
Krylov subspace, and s−1 = [s−1

1 , s−1
2 , . . . , s−1

ns−1] is the vector of inverted time steps.

If we arrange the columns of SBE in a matrix X and take its singular value decom-
position, then the left singular vectors form an orthonormal basis for the range of X.
The POD approach only uses the r dominant left singular vectors to generate Vr, and
therefore the span of Vr would only approximate the span of SBE. Alternatively, one
can perform a block Arnoldi algorithm on the columns of SBE to obtain Vr. Thus, for
the same set of parameters s, both the POD based approach as well as the rational
Krylov subspace method yield similar results. In other words, the POD approach
with a stable backward Euler scheme approximates a rational Krylov subspace.

However, there are significant differences between the two approaches in practice:

• One would likely use time stepping schemes with higher accuracy than back-
ward Euler in the POD approach. Certain time stepping schemes might pos-
sibly lead to snapshot sets SBE of a type not usually considered in standard
rational Krylov subspace approaches.

• The POD approach generates the large “Krylov subspace” SBE first and then
builds Vr by extracting the dominant singular vectors of the matrix with the
same columns as SBE. In contrast, a rational Krylov approach increases the
rank of the Krylov subspace and Vr iteratively; a residual is used to stop up-
dating the construction.

The last item shows that, in general, the POD approach requires more computational
cost and storage. However, adaptive time stepping algorithms can often achieve high
accuracy with a low number of snapshots. In Examples 2 and 3 in §3.5 the POD
approach with ns ≈ c · r, where c . 5, gave high accuracy. For instance, in Example
3, ns = 130 and at order r = 40 the residual is approximately 10−13. Plus, the
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shift selection is performed by adaptive time stepping routines, which yield accurate
simulation results for linear systems. Thus, other than fixing a final time, T = tns ,
there are no parameters needed for the POD based approach. Moreover, the matrices
A,C are often not explicitly needed for simulations, and weak formulations of PDE’s
can be used in the spatial integration routine. Therefore, the POD based projection
method has an additional level of flexibility and we plan to extend it to a completely
matrix free algorithm.

It is interesting to note that with a forward Euler scheme we obtain another rational
Krylov subspace. In fact, a forward Euler approximation yields the recurrence

xk+1 = (I + siE
−TAT )xk,

so that the collection of snapshots is

SFE =

{
x0, (I + s1E

−TAT )x0, . . . ,
ns−1∏
i=1

(I + siE
−TAT )x0

}
.

One can easily see that

span(SFE) = span
{
x0, (E

−TAT )x0, . . . , (E
−TAT )ns−1x0

}
,

which is the span of the standard Krylov subspace Kns(E
−TAT , x0). Interestingly,

forward Euler frequently requires small time steps for stability, so SFE would be
rather large. Analogously, large rational Krylov subspaces are needed for the projec-
tion framework to give accurate results.

3.5 Numerical Results

In this section, we present numerical results for four different test problems. The first
and second are benchmark problems from structural dynamics, whereas third and
fourth problems arise from spatial discretization of heat transfer and fluid dynamical
problems. The latter two problems have symmetric positive definite mass matrices
E.

Table 3.1 contains details and parameters of the test models. By λmax(A,E) we
denote the (approximate) largest generalized eigenvalue of A. Also, ω(A,E) denotes
the (approximate) generalized numerical abscissa of A, which is the largest general-
ized eigenvalue of (1/2)(A + AT ). These quantities were computed in Matlab with
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eigs(·,1,’LR’) for the generalized eigenvalue problems Ax = λEx and (A+AT )x =
λEx, respectively.

Problem n m p λmax(A,E) ω(A,E) A = AT ? E = I?

space station 270 3 3 −4.8 · 10−2 +7.7 · 10−9 no yes

space station 1412 3 3 −2.1 · 10−3 +9.9 · 10−18 no yes

diffusion 9900 1 1 −6.2 · 10−1 −6.2 · 10−1 yes no

conv.-diff. 122150 1 1 −1.6 · 10−1 +7.5 · 10−1 no no

Table 3.1: Parameters of the four test models for solution of ARE.

All of the examples are stable, however the values of the numerical abscissa indicate
that the uncontrolled problems are quite different from each other. For the first two
problems, half of the values ω(A,E) are on, or very close to the imaginary axis.
The numerical abscissa indicates whether solutions of the system (3.2)-(3.3) with
no control (i.e., u(t) = 0) can experience transient growth before decaying to zero;
this transient growth is possible only if the numerical abscissa is positive; e.g., [178,
§14 and 17]. Also see [16] for more about the numerical abscissa and related matrix
Lyapunov equations.

Recall, the first step for solving ARE with projection methods consists of generating
a projection matrix Vr ∈ Rn×r. Next, the reduced order matrices (Er, Ar, Br, Cr) are
computed via projection and the Riccati equation (3.12) is solved in r dimensions
with care in Matlab. Since the projection is constructed to be orthogonal in the
weighted inner product (·, ·)E, one has that Er = I. The direct solution routine solves
the Hamiltonian eigenvalue problem associated with ARE and is further described
in [10]. The low rank approximation of P is then given by Pr = ZrZ

T
r . A general

projection algorithm following the steps in §3.3 is used to compare the methods, see
Algorithm 4. In all cases, following [166, 97] and the remark in [32, p.9], tol = 10−12

was used for truncation of the singular values of the low rank solution Πr. This
additional rank reduction at the reduced order level targets numerical inaccuracies.

Remark 3.5.1. We also briefly tested setting tol = 0 in two versions of Example 3
below with smaller values of n (generated using coarser finite element meshes). Of
course, there is no further rank reduction in this case. In these tests, the matrix
residual for the POD approach (not shown here) levels off at order 10−15 instead of
order 10−13 when we use the above tolerance. However, this increases the rank of Pr.
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Algorithm 4 : Projection based Riccati solver with residual computation

Input: E,A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, Vr ∈ Rn×r, a tolerance tol > 0.
Output: The low rank factor Zl of Pl = ZlZ

T
l , and residual norm vector [γ1, . . . , γr].

1: for l = 1, 2, . . . r do
2: Let Vl = Vr(:, 1 : l). Compute El = V T

l EVl, Al = V T
l AVl, Bl = V T

l B, Cl =
CVl.

3: Solve ATl ΠlEl + ET
l ΠlAl − ET

l ΠlBlB
T
l ΠlEl + CT

l Cl = 0.
4: Compute (svd or evd): Πl = UΣUT , where Σ = diag[σ1, . . . , σl] and σ1 ≥

. . . ≥ σl.
5: Determine k such that σk+1 < tol < σk; set Σk = diag[σ1, . . . , σk], Uk = U:,1:k

and compute Sl = UkΣ
1/2
k .

6: Zl = VlSl, i.e., the low rank factor of Pl = ZlZ
T
l .

7: Compute γl = ‖R(Pl)‖ as in §3.3.3.
8: end for

Since the first problem is small, for comparison purposes we compute the solution P
via a direct solver (care) and compute the actual error in the solution, ‖P − Pr‖,
for increasing r. Moreover, we examine the convergence of the feedback gains using
the relative error ‖K −Kr‖/‖K‖, where K = BTPE and Kr = BTPrE. For large
problems, we consider the convergence behavior of the residual norm ‖R(Pr)‖ and the
relative change in the feedback gains ‖Kr−Kr−1‖/‖Kr‖. Note that the full matrix Pr
is never explicitly used or stored, and we only work with the low rank factor Zr from
equation (3.14). In particular, the residual computation is performed as in §3.3.3
and the feedback gain matrices are evaluated as Kr = BTPrE = (BTZr)(Z

T
r E).

The first two problems were computed on a 2010 MacBook Pro with a 2.66 GHz
Intel Core i7 Processor and 4GB RAM. Matlab was used as a software in the version
of R2012b. The convection diffusion problem was solved on a computer cluster with
two 6-core Intel Xeon X5680 CPU’s at 3.33GHz. The cluster has a Random-Access
Memory of 48GB and runs on Scientific Linux 6.4 with Matlab in the Version of
2013b. Machine precision on both machines is in accordance with IEEE double
precision standard, eps = 2.210−16.
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3.5.1 Example 1: ISS1R Flex Model

This model describes a structural subsystem of the International Space Station (ISS)
and is taken from [8]. During the assembly process of the ISS many international
partners are involved and robust stability and performance of all stages has to be
certified. Many flexible structures, operational modes, and control systems result
in a complex dynamical system. For robustness and performance assessment, it is
critically important to identify the potential for dynamic interaction between the
flexible structure and the control systems. As more components are added to the
space station, the original symmetry gets lost, which poses additional simulation
challenges. The subsystem 1R is a flex model of the Russian Service Module. For
simulation purposes, the goal is to obtain a reduced order model that matches the
frequency spectrum of the structures well. Solving the algebraic Riccati equation for
this model is important for model reduction, such as LQG balanced truncation, as
well as optimal control design for the overall plant.

The system matrix A is non-symmetric and dense with 63843 nonzero elements, i.e.
88% fill-in. The mass matrix is the identity 3, E = I. The condition number of A
is 1.0 · 102. For r = 2, 4, . . . , 60, we computed low rank Riccati solutions with each
of the described methods and plotted the norm of the matrix residual in Figure 3.1.
For the POD based projection method, the dual system was simulated from t = 0 to
T = 15s and snapshots were taken every 0.02s. This amounts to a combined 2253
snapshots of the three simulations of the system. The residual norm for the solution
P produced by the direct care solver is 1.8 · 10−12. The reader should observe that
not even the direct solver achieves machine precision for the residual norm.

Figure 3.1, left, shows the residual norm ‖R(Pr)‖F and the actual error in the solution
‖P − Pr‖F for the EKSM, POD based method, and the gramian based approach.
Computing the gramian with a direct solver and then projecting performs best in
terms of accuracy. As mentioned earlier, this approach is only feasible for small scale
problems. The POD based method shows a rather monotone convergence behavior
of the residual norm, yet it is several orders of magnitude larger than the gramian
based approach. The extended Krylov subspace method shows oscillations in the
residual norm and has the largest residual norms of the three methods. A monotone
decreasing error is desirable, for it guarantees that extra work for computing an

3The mass matrix of the benchmark model is the identity. The authors are not certain how this
model was obtained, e.g. by finite element/difference or lumped parameter modeling. Therefore,
it is not clear if the modeling introduced an identity mass matrix, or if the nontrivial mass matrix
was inverted.
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increased size reduced order model is not wasted. The reader should observe that in
this example the residual is a good indicator of the accuracy of solutions. In general,
this does not have to be true; see the discussion in [190, §5].

Figure 3.1, right, shows the convergence of the feedback gain matrices. The gains
show a similar convergence behavior compared to the residual norm and solution
error, since Kr = BTPrE. Note that the convergence in both plots is slow for the
POD and EKSM method, which indicates the numerical rank of P is rather large.
In fact, the rank of P is 267 (computed with rank in Matlab) and the decay of the
singular values for determination of the numerical rank is plotted in Figure 3.3 and
commented on below.
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Figure 3.1: ISS1R model. (left): Residual norm ‖R(Pr)‖F and solution error ‖P −
Pr‖F . (right): Convergence of feedback gains ‖K −Kr‖2\‖K‖2.

Recall that the POD method approximates the observability gramian by a numer-
ical quadrature. The number and location of the time samples tj and weights δj
is important for the quadrature to be accurate. Increasing both the final time T
when terminating simulations and the number of snapshots should yield a more ac-
curate approximation of the gramian. Figure 3.2, left, plots the effect of increasing
the final time for simulation of the dual system. Terminating the simulations at
T = 5s does not yield enough data to approximate the gramian X properly and
therefore the method does not perform well. The output of the Matlab simulations
were 2184 snapshots. However, T = 15s yields a significant improvement compared
to the previous result and 4903 snapshots were generated. Lastly, simulating the sys-
tem for 25s yields the richest projection subspace, generated from 6426 snapshots.
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Note that only the singular value decomposition of Y Y T ∈ Rn×n is needed for the
projection, apart from the multiplication, the cost of computing the SVD does not
increase with additional snapshots. Figure 3.2, right, shows the effect of increasing
the time samples, while fixing the final time at T = 15s. With the coarse snapshot
collection of 0 : 0.1 : 15 to compute Vr, the residual shows several jumps, and does
not converge monotone. As we increase the snapshots, the residual convergence be-
comes monotone. Note, that the adaptive snapshot selection (by the solver), denoted
by [015] performs almost identical to the equidistant snapshot selection, labeled as
0 : 0.01 : 15.
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Figure 3.2: ISS1R model, effect on residual norm ‖R(Pr)‖F for the POD method
when time grid is changed. (left): Increasing the final time T for approximation of
the integral in equation (3.22). (right): Fixed final time T = 15s, and more time
snapshots are taken.

As we have seen above, the gramian approach with the lyap solver as described in
§3.3.2 performs very well. In other words, the left singular vectors of the observability
gramian provide a rich subspace for solving ARE with a projection method. To
further investigate this, Figure 3.3, left, shows a plot of the singular values of the
Lyapunov and Riccati solution, obtained using lyap and care. The singular values
of both solutions are close to each other and only separate at approximately 10−10.
This could explain the excellent behavior of the gramian based approach.

Figure 3.3, right plots the quotient of actual error in the approximation, ‖P −Pr‖F ,
and residual, ‖R(Pr)‖F . From theoretical results in §3.3.3, it is known that ‖P −
Pr‖ ≤ c · ‖R(Pr)‖, where c = ‖Ω−1

Pr
‖ depends on the current solution. From a



CHAPTER 3. SOLUTION OF LARGE-SCALE RICCATI EQUATIONS 91

theoretical perspective, it is sufficient for c to be bounded from above. However, when
the residual is used to judge about the accuracy of a computation, the magnitude of
the constant does play a crucial role. For instance,let c = 1000, so the actual error
could be up to 1000 times higher than the residual would suggest. Therefore, we
view the residual as an error “indicator” and are aware of the fact that the actual
error can be nominally higher than the residual norm. It is demonstrated in [190, §5]
that residuals can sometimes fail to be a good indicator of the accuracy of solutions
for Lyapunov equations.
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Figure 3.3: ISS1R model. (left): Normed singular values of the observability gramian
X and Riccati solution P using direct solvers lyap and care. (right): The relation
between residual and actual approximation error, ‖P − Pr‖F/‖R(Pr)‖F .

3.5.2 Example 2: ISS12A Flex Model

This model describes an advanced stage of the international space station. The
matrix A is non-symmetric and has 2118 non-zero entries, so A is sparse. Moreover,
the mass matrix is the identity, E = I.

For the POD based algorithm, the dual system was simulated for all three initial
conditions cTi from t = 0s to T = 20s with a time stepping of 0.02s. This amounts to
a collection of s = 3003 snapshots of simulations. Since only the left singular vectors
of Y with size 1412x3003 are needed, we instead compute the singular value decom-
position of Y Y T of size 1412x1412 for efficiency reasons. The direct computation of
the Riccati solution took 65.3s, whereas the gramian approach took 19.1s, the POD
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method 4.9s and the EKSM only 0.4s.

The behavior of the norm of the residual is compared to the actual error in the
solutions in Figure 3.4, left. This should give an idea how well the residual can
inform the user about the actual convergence of the Riccati solution. All three
projection based methods converge rather slowly, considering that the residual norm
for the exact solution P with the direct ‘care’ solver is 4.3 · 10−12. The EKSM
shows larger residuals, while both the POD and gramian method have two orders
of magnitude smaller residual norms. Figure 3.4, right plots the quotient of actual
error in the approximation, ‖P − Pr‖F , and residual, ‖R(Pr)‖F . Recall, that from
theoretical results in §3.3.3, it is known that ‖P−Pr‖ ≤ c‖R(Pr)‖, where c = ‖Ω−1‖.
However, the “constant” does depend on the current solution, so c = c(Pr), and it is
not at all obvious if the constant is well behaved.
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Figure 3.4: ISS12A model. (left): Residual norm ‖R(Pr)‖F and solution error ‖P −
Pr‖F . (right): The quotient ‖P − Pr‖F/‖R(Pr)‖F provides insight into the actual
information the contains about the convergence to the true solution.

A plot of the singular values for the solution of the Riccati equation and the Lyapunov
equation is given in Figure 3.5, left. The singular values of both solutions are once
more very similar and only separate closer to machine precision. Consequently, the
gramian approach performs very well.

At this point, we have a closer look into convergence of the gain matrix Kr → K,
which is important for control design. From a simple, yet crude, triangular inequality
it can be seen that

‖Kr −K‖2 ≤ ‖B‖2‖Pr − P‖2,
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where it becomes clear that for large ‖B‖2, those errors can be orders of magnitude
apart. For the gains to converge, we need both the norm of the gains ||Kr||2 → const.,
as well as the difference ||Kr,i−1 − Kr,i||2 → 0. Alternatively, since we have the
“true” gain K, it is sufficient to have ||K −Kr||2 7→ 0. For the POD and gramian
approach, the norm of the functional gain matrix converged quickly, after r = 4
to the “true” norm of the optimal gain 2.22 · 10−4 (computed via care). EKSM
showed oscillations around that value, and converged only at r = 16. Figure 3.5,
right, shows the convergence ‖K −Kr‖2 of the approximated gains, Kr = BTPr to
the gain K which is directly computed via care. The POD and gramian methods
converge almost identically.
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Figure 3.5: ISS12A model. (left): Singular values of the observability gramian X
and Riccati solution P using lyap and care. (right): Convergence of the feedback
gains.

3.5.3 A diffusion problem in 2D

We consider the diffusion problem in 2D:

wt = µ(wxx + wyy) + b(x, y)u(t)

on Ω = [0, 1] × [0, 1] with Dirichlet boundary conditions on the bottom, right and
top walls:

w(t, x, 0) = 0, w(t, 1, y) = 0, w(t, x, 1) = 0,



CHAPTER 3. SOLUTION OF LARGE-SCALE RICCATI EQUATIONS 94

and Neumann boundary condition on the left wall:

wx(t, 0, y) = 0.

We choose b(x, y) = 5 if x ≥ 1/2 and b(x, y) = 0 otherwise. The outputs are taken
to be

η(t) =

∫
Ω

5w(t, x, y)dxdy.

After semi-discretization by a standard piecewise bilinear finite element method, a
finite dimensional system with representation (E,A,B,C) is obtained, where n =
9900, m = p = 1. The diffusion parameter is mu = 0.05. In this example, the
system matrix A is symmetric and has a condition number of 6.17 · 103. The dual
system was simulated for 15s using ode23s in Matlab with default error tolerances
and options mass and jacobian set as E and AT , respectively. The norm of the
final snapshot was 3.8 · 10−4. The adaptive time stepping routine returned ns = 104
snapshots of solutions.

As mentioned earlier, the E-weighted norm of a vector equals the L2 norm of the
corresponding finite element function. The L2 norm of a function is a natural measure
of magnitude for such a problem; therefore, we use the E-weighted inner product
and norm for this example. Then, the projection matrix Vr (approximately) satisfies
V T
r EVr = I, and so we simply use an identity matrix in place of the projected matrix
Er = V T

r EVr.

Figure 3.6, left, shows the residual norm of solutions to ARE, using the EKSM and
POD based method, respectively. The residual norm for the POD method decreases
quickly and then levels off at 10−13 when r = 35. As a point of comparison, at
this projection order the residual norm for the extended Krylov space method is at
the order of 10−9. Figure 3.6, right, shows the relative refinement of the feedback
gains with increasing projection order. A similar convergence history as previously
observed before can be seen. Note, that the feedback gain vectors continue to refine
past r = 35, although the residual matrix stagnates.
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Figure 3.6: Diffusion model. (left): Residual norm ‖R(Pr)‖F as the rank of Pr
increases. (right): Convergence of the feedback gain vectors for increasing r.

3.5.4 A convection diffusion problem in 2D

With this example, we consider a convection diffusion equation, which is a common
partial differential equation model arising in fluid dynamics and a variety of other
application areas. The problem is given by

wt = µ(wxx + wyy)− c1(x, y)wx − c2(x, y)wy + b(x, y)u(t),

where c1(x, y) = x sin(2πx) sin(πy) and c2(x, y) = y sin(πx) sin(2πy). The diffusion
parameter is µ = 0.05. The boundary conditions, the function b(x, y), and the
output are chosen as in the previous example. This time, the semi-discretization
by a standard piecewise bilinear finite element method yields a non-symmetric A
matrix with a condition number of 1.0 · 106. The state dimension is n = 122150, and
m = p = 1. The dual system was simulated using ode23s in Matlab with default
error tolerances and options mass and jacobian set as E and AT , respectively.

Since the state space dimension is large for this example, the gramian approach as
well as the computation of the Riccati solution with direct methods are not feasible
on a standard desktop computer. In fact, it was not even feasible on our computer
cluster with specifications given above. Note that for this model, the largest real part
of the eigenvalues of A is approximately −1.6 · 10−6, so simulations were performed
from t = 0 to T = 50s. The generalized eigenvalues are listed in Table 3.1 above. The
norm of the final snapshot was 8.8·10−3. The adaptive ODE solver returned ns = 130
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snapshots of the solution. The mass matrix E is well conditioned, cond(E) ≈ 14.1,
however the same is false for the matrix A since cond(A) ≈ 106.

Figure 3.7, left, shows the residual norm of the ARE solutions obtained from both
the POD based method and the extended Krylov subspace method. The residual
norm for the POD method again decreases quickly and then levels out at order 10−13

when the projection order is r = 40. For comparison, at this projection order the
residual norm for EKSM is at the order of 10−7. Figure 3.7, right, shows the relative
change in the gain vectors computed for every additional two basis vectors, i.e.,
‖Kr −Kr−2‖2/‖Kr−2‖2. When using r = 50 modes for the POD projection method,
the relative change in the gains is approximately 10−13. Again, the relative change
in the gains shows similar trends to the matrix residual convergence.
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Figure 3.7: Convection diffusion model. (left): Residual norm ‖R(Pr)‖F as the rank
of Pr increases. (right): Convergence of the feedback gain vectors for increasing r.

3.6 Conclusion

We presented a new POD based projection approach to compute solutions of al-
gebraic Riccati equations. The method relies on proper orthogonal decomposition
to compute an approximation of the solution to the related Lyapunov equation via
the algorithm in [189, 169]. The resulting dominant left singular vectors are used
in the projection framework to solve algebraic Riccati equations. Numerical results
demonstrate that this POD basis is sufficiently rich for the projection approach to
produce accurate solutions at low solution rank. Currently, no convergence theory
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is available for this method and this will be part of future work, since the numerical
results are very promising.

To put our numerical results in perspective to state-of-the-art low rank ARE solution
methods, we compared this POD projection method to the extended Krylov subspace
method [97]. The POD approach will generally require more computational effort and
storage compared to EKSM, ADI and other similar approaches. It was demonstrated
that the POD projection approach can be efficiently computed and can give high
accuracy at a low solution rank. Again, we emphasize that our primary goal is not
to develop the most efficient solver, but to move toward an efficient, highly accurate,
completely data-based algorithm. We also note that the proposed approach may be
naturally implemented by many researchers in a variety of fields who are already
familiar with POD computations.

In our numerical experiments, we used an adaptive ODE solver in Matlab to approx-
imate the solutions of the required ordinary differential equations. Adaptive time
stepping methods can be found in other existing simulation packages, such as IFISS
[165]. The POD approach will often still be tractable for large-scale systems even
if an adaptive ODE solver is not used; in the literature, POD computations are fre-
quently performed using ODE solvers with a constant time step. The computational
effort and required storage will usually be larger when the time steps are not chosen
adaptively.

POD-based approaches can often be directly applied to systems governed by partial
differential equations. For such problems, one can use existing simulation codes with-
out accessing the matrix approximations of the operators; see, e.g., the discussion
in [169]. A rigorous convergence theory for POD-based approximations to infinite
dimensional Lyapunov solutions is available; see [169]. We believe the ideas in [169]
coupled with the present approach will enable direct approximation of operator Ric-
cati equations arising from partial differential equation systems. It may be possible
to extend the existing theory to obtain rigorous error estimates for Riccati solutions.

It may also be possible to exploit the parallels between the POD method and rational
Krylov subspace techniques (as discussed in §3.4.1) to obtain a thorough analysis of
the method.

As mentioned in the introduction, for certain applications it is of interest to make
the proposed approach completely data-based so that access to system matrices is
not required. This can sometimes be done directly for AREs arising from parabolic
partial differential equations (such as the second and third example problems con-
sidered in §3.5). Briefly, assume the simulation code for the parabolic PDE is based
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on a bilinear form as in finite element methods and other Galerkin methods. Then
one only needs to be able to use the existing simulation code to evaluate the bilinear
form acting on the relevant POD modes to project the A operator (see [170, §3.1]).
Also, it may be possible to modify the techniques from [170] to make the proposed
algorithm completely data-based when the bilinear form is not available or the ARE
does not arise from a parabolic PDE. We intend to explore these issues in more detail
elsewhere.
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Chapter 4

Subspace Based System
Identification

The Eigensystem Realization Algorithm (ERA) is a commonly used data-driven
method for system identification and model reduction of dynamical systems. The
main computational difficulty in ERA arises when the system under consideration
has large number of inputs and outputs, thus requiring to compute a full SVD of a
large-scale dense Hankel matrix. In this work, we present an algorithm that aims
to resolve this computational bottleneck via tangential interpolation. This involves
projecting the original impulse response sequence onto suitably chosen directions.
Numerical examples demonstrate that the modified ERA algorithm with tangen-
tially interpolated data produces accurate reduced order models. At the same time,
computational cost and memory requirements compared to standard ERA are re-
duced significantly.

4.1 Introduction

Control of complex systems can be achieved by incorporating low dimensional sur-
rogate models, which approximate the input-output behavior of the original system
well. Where mathematical models are not at hand, data-driven techniques are used
to approximate the system response to external inputs. The field of subspace based
system identification (SI) provides powerful tools for fitting a linear time invariant
(LTI) system to given input-output responses of the measured system. Applications
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of subspace based system identification arise in many engineering disciplines, such
as in aircraft wing flutter assessment [101, 152], vibration analysis for bridges [72],
structural health analysis for buildings [54], modeling of indoor-air behavior of energy
efficient buildings [38], flow control [102, 136, 115, 187], seismic imaging [139] and
many more. In all applications the identification of LTI systems was crucial for anal-
ysis and control of the plant. An overview of applications and methods for subspace
based system identification can be found in [184] and more recently in [150, 153].

The eigensystem realization algorithm (ERA) by Kung [124] offers one solution to
the system identification problem, while simultaneously involving a model reduction
step. The algorithm uses discrete time impulse response data to construct reduced
order models via a singular value decomposition. Importantly, the obtained reduced
order LTI models retain stability, see §4.2.

Starting with Kung’s work, many variants have been proposed in the literature. [139]
gives a slight modification of Kung’s original algorithm and successfully apply ERA
to seismic imaging problems. In [114], the authors investigated criteria for modal
analysis, such as the modal amplitude coherence and modal phase collinearity, and
applied the algorithm to test data from vibration excitation of the Galileo space-
craft. [147] proposes an alternative version of Kung’s algorithm involving a Hankel
matrix twice as large as the Hankel matrix in Kung’s work. With this approach, all
available data is used to construct the gramians, however the computational bur-
den to compute the singular value decomposition increases further. In [134, 101]
recursive versions of ERA are presented which extend ERA to incorporate initial
response data. In [72] the authors showed that once a ‘maximal’ rank ERA model is
computed, lower order models can be obtained at almost no additional cost, which
resulted from the outer product approximations of system matrices via singular value
decomposition. Rowley and co-authors showed in [136] that ERA is the data-driven
equivalent to balanced truncation. Where applicable (i.e., when system matrices and
their adjoints are available), balanced POD was found to provide superior reduced
order models. The authors in [191] propose a randomized POD technique to reduce
the computational cost of extracting the dominant modes of the Hankel matrix. A
randomized preselection of inputs/outputs/time steps before simulating the primal
and dual systems allows for such computational speedup. Singler [171] generalized
the ERA in a continuous setting to infinite dimensional systems.

Mechanical systems with multiple sensors and actuators are modeled as as multi-
input multi-output (MIMO) dynamical systems. Such systems impose additional
computational challenges for system identification, and ERA in particular. For in-
stance, ERA requires a full singular value decomposition of a structured Hankel
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matrix, whose size scales linearly with the input and output dimension. Moreover,
large Hankel matrices can arise if the dynamics of the system decay slowly.

We propose a system identification and model reduction algorithm for MIMO sys-
tems which reduces the computational effort and storage compared to standard ERA,
see §4.3. The new algorithm projects the Hankel matrix with a carefully chosen left
and right projection onto smaller input and output subspaces. Consequently, we do
not neglect valuable impulse response data. Computing the SVD of the projected
Hankel matrix has then become either feasible or can be executed in shorter time
with fewer storage. Moreover, we show that reduced models obtained via the mod-
ified ERA retain stability. Numerical results in §4.4 demonstrate the accuracy and
computational savings of the modified ERA with projected data.

Remark 4.1.1. A wide range of excellent model reduction techniques for LTI sys-
tems exist in the literature, see [8] for an overview. In particular, we shall men-
tion balanced truncation [142, 143] and balanced proper orthogonal decomposition
[189, 155], the Iterative Rational Krylov Algorithm [91] and Hankel norm approxima-
tions [88]. We do not propose to use ERA as a model reduction technique when state
space matrices are available. We rather suggest to use ERA for the combined task of
system identification and model reduction where only black-box code or experimen-
tal measurements are available. In this case, the aforementioned model reduction
techniques are not applicable.

Remark 4.1.2. In this paper, our data will be restricted to time-domain samples of
the impulse response of the underlying dynamical systems. In the frequency domain,
this corresponds to sampling the transfer function and its derivates around infinity.
For the cases where one has the flexibility in choosing the frequency samples, a
variety of techniques become available such as the Loewner framework [138], Vector
Fitting [95, 76] and various rational least-squares fitting methodologies [161, 36, 77].
However, as stated earlier, our focus here is ERA and to make it computationally
more efficient for MIMO systems with large input and output dimensions.

4.2 Partial Realization and Kung’s Algorithm

We motivate the problem of partial realization, state Kung’s eigensystem realization
algorithm and demonstrate the challenges that come with finding a partial realization
of complex MIMO systems. In practice, experimental measurements and outputs of
black box simulations are sampled at discrete time instances. Therefore, consider
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the discrete time LTI system

xk+1 = Axk +Buk, (4.1)

yk = Cxk +Duk, (4.2)

where xk := x(tk) and tk := k∆t, k ∈ N+
0 is a discrete time instance and ∆t ∈ R

is a sampling time. The initial condition is x(0) = x0 and assumed to be zero in
the remainder - the system shall be excited through external disturbances. Here,
A ∈ Rn×n, B ∈ Rn×m and C ∈ Rp×n are the system, input and output matrices,
respectively. The inputs are uk ∈ Rm and the outputs are yk ∈ Rp. The system
is completely determined by the matrices (A,B,C,D). It is common to define the
Markov parameters

hk :=

{
D, k = 0

CAk−1B, k = 1, 2, . . .

}
∈ Rp×m, (4.3)

so the output response equation for system (4.1) - (4.2) becomes

yk = CAkx0 +
k∑
i=0

hiuk−i.

The first term represents the initial response of the system and the second term is the
response to past inputs. Assuming zero initial conditions, the external description
of the discrete time dynamical system is

yk =
k∑
i=0

hiuk−i, (4.4)

which is known as the external description of the system; it is fully determined by
the Markov parameters.

Definition 4.2.1. [8, Definition 4.1] The external description of a time-invariant,
causal, smooth discrete time system with m inputs and p outputs is given by an
infinite number of p×m matrices

Σ = (h0, h1, . . . , hk, . . .).

From the previous definition one can see that the infinite series of Markov parameters
uniquely defines a dynamical system for all t > 0. From a system identification point
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of view, the definition is impractical since in reality, an infinite amount of data is
never available to describe a system. Thus we have to restrict ourselves to a finite
data set.

Unfortunately, in some cases, the matrices (A,B,C,D) are not available in a practical
setup and rather is the sequence of Markov parameters, describing the reaction of the
system to external inputs. If only the Markov parameters (and therefore the external
description (4.4)) are available through measurements, how can one reconstruct the
internal description (4.1) - (4.2) of a LTI system? This is the classical problem of
partial realization.

Definition 4.2.2. [8, Definition 4.46] Given the finite set of p×m matrices hi, i =
1, 2, . . . , 2s − 1, the partial realization problem consists of finding a positive integer
n and constant matrices A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m such that
(4.3) holds.

A finite sequence of Markov parameters is always realizable and there always exists
a minimal realization of order n = rank(H). The matrix H is called Hankel matrix
and is defined by the 2s− 1 sampled Markov parameters as

H :=


h1 h2 . . . hs
h2 h3 . . . hs+1
...

...
. . .

...
hs hs+1 . . . h2s−1

 ∈ Rps×ms. (4.5)

The size of the Hankel matrix grows linearly with m, p. In this work, we propose
to construct a projected Hankel matrix that is independent of the input and output
dimensions and therefore does not exhibit such growth. For a better understanding of
the algorithms to follow, assume for a moment that the system matrices are known,
so that the Hankel matrix reads as

H =


CB CAB . . . CAs−1B
CAB CA2B . . . CAsB

...
...

. . .
...

CAs−1B CAsB . . . CA2s−1B

 .
It is well known (e.g., [8, Lemma 4.39]) that for a realizable impulse response se-
quence, the Hankel matrix can be factored into the product of the observability
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gramian O and the controllability gramian C:

H =


C
CA

...
CAs−1

 [B AB . . . As−1B] := O C. (4.6)

The shifted observability gramian satisfies

O(f)A = O(l), (4.7)

where O(f) and O(l) denote the first and last s− 1 block rows of O. A similar result
holds for the controllability gramian: AC(f) = C(l).

Silverman [164] proposed an algorithm to construct a minimal realization, which
requires finding a rank n submatrix of the partially defined Hankel matrix. The
algorithm determines the nth order minimal realization directly, and does not involve
a model reduction step. Also, the algorithm does not guarantee to retain stability
in the process. Kung’s Eigensystem Realization Algorithm (ERA), on the other
hand, can be divided into two steps, which are briefly reviewed below. To guarantee
stability, Kung made the following assumption.

Assumption 4.2.3. Assume that 2s− 1 Markov parameters are given and that the
given impulse response sequence is convergent in the sense that

hi → 0 for i > s.

We shall refer to this assumption as the convergence-to-zero property of the Markov
parameters.

The above assumption can be interpreted as follows: The Markov transient dynamics
of the Markov parameters are fully captured, i.e., for non-normal systems, the initial
growth in the outputs is recorded, and after some t̂ = ti, the system decays to zero.

Step 1 of ERA: Low rank approximation of Hankel matrix. Construct the
Hankel matrix (4.5) from the given impulse response sequence (h1, h2, . . . , h2s−1) and
compute its singular value decomposition

H = UΣV T ∈ Rps×ms.

Here, U ∈ Rps×ps and V ∈ Rms×ms are orthogonal matrices, respectively, and
Σ ∈ Rps×ms is a rectangular matrix containing singular values, Σii = σi, i =
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1, . . . ,min{ms, ps} (called Hankel singular values) 1 which are ordered as σ1 ≥ σ2 ≥
. . . ≥ σn > σn+1 = 0. The rank of the Hankel matrix is n, the minimal realization
order with n ≤ min(ms, ps). Letting r ≤ n, the decomposition can also be written
as

H = [Ur U2]

[
Σr 0
0 Σ2

] [
V T
r

V T
2

]
, (4.8)

where Ur ∈ Rps×r contains the leading r columns of U , the square matrix Σr =
diag(σ1, σ2, . . . , σr) and V T

r ∈ Rr×ps. The matrices U2,Σ2, V
T

2 and 0 have appropriate
dimensions. Consequently, UT

r Ur = Ir and V T
r Vr = Ir. From the Schmidt-Eckart-

Young-Mirsky theorem [8, page 37], it follows that

Hr = UrΣrV
T
r

is the best rank r approximation of the Hankel matrix. The approximation error is
given by ‖H −Hr‖2 = σr+1 and ‖H −Hr‖F =

√
σ2
r+1 + . . .+ σ2

n.

Step 2 of ERA: Approximate Realization of LTI System. It is the goal
of this step to find a realization (Ar, Br, Cr) of the approximate Hankel matrix Hr

which is the best rank r approximation to H. Kung suggested that Hr should have
“Hankel structure” as well, so that it can be factored into a product of an approximate
observability and controllability gramian as

Hr = OrCr, where Or = UrΣ
1/2
r , Cr = Σ1/2

r V T
r .

In light of equation (4.6), if Or is the approximation to the observability gramian,
then its first block row can be used to estimate Cr, therefore

Cr = [Ip 0] UrΣ
1/2
r , (4.9)

where Ip is the p × p identity matrix. Similarly, the first block column of Cr yields
an approximation of the control input matrix Br:

Br = Σ1/2
r V T

r [Im 0]T . (4.10)

To estimate the system matrix Ar, the shift invariance property (4.7) is imposed on
the approximate gramians as

O(f)
r Ar = O(l)

r , ArC(f)
r = C(l)

r .

1We use this term to refer to the singular values of the Hankel matrix. Per definition, the Hankel
singular values are the singular values of the underlying Hankel operator ; see, e.g., [8].
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Either equality can be used to solve the least squares problem for Ar. Without loss
of generality, we focus on the first equality involving the observability gramian. The
reader should observe that O(f)

r is a p(s− 1)× r matrix, so a least squares problem

to minimize ‖O(f)
r Ar − O(l)

r ‖ has to be solved. The minimizing solution is given by
the Moore-Penrose pseudo inverse [89, Ch. 5] as

Ar = [O(f)
r ]†O(l)

r .

Note that O(f)
r = U

(f)
r Σ

1/2
r so that Ar is computed as

Ar = Σ−1/2
r [U (f)

r ]TU (l)
r Σ1/2

r . (4.11)

Theorem 4.2.4. [124] If the Markov parameters satisfy Assumption 4.2.3, then the
realization given by (Ar, Br, Cr) from (4.9), (4.10), (4.11) provides a stable discrete
time dynamical system. Then,

2s−1∑
i=1

‖CrAi−1
r Br − hi‖2

F ≤ σr+1

√
r +m+ p.

where p is the number of outputs, m is the number of inputs, r is the order of the
reduced model and σr+1 denotes the first neglected Hankel singular value.

Theorem 4.2.4 reveals that if the original model is stable, then reduced order models
of any order r obtained through ERA are stable, too with an a priori error bound in
the impulse response reconstruction. The rank n of the Hankel matrix is the order of
the minimal realization. However, n can be very large and the resulting model too
big for design and control purposes. Instead, one would like to obtain reduced order
models of order r � n. The choice of r depends on many factors, such as accuracy of
the reduced order model, performance criteria, limitations on implementable model
orders, etc.

Example 4.2.5. This work has been motivated by the need to generate reduced
order models for the indoor-air behavior in buildings, see [38, §IV.B]. The original
model of interest has a large number of inputs and outputs, in particular, we are
given m = 26 control inputs and p = 42 measured outputs. The impulse response
data is sampled over 3600[s] with a Markov parameter measured every 2[s]. With
standard ERA, this requires computing a full SVD of size 37, 800× 23, 400, which is
challenging on a standard desktop machine.
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4.3 Tangential Interpolation of the Markov Pa-

rameters

The main bottleneck of the original eigensystem realization algorithm is the compu-
tation of the singular value decomposition of the Hankel matrix. In many cases it
might not be feasible to compute the SVD for the large matrix H. Even if one can do
so, it might take a significant amount of computation time and memory. Thus, we
propose a way to circumvent this problem by interpolating the Markov parameters
before assembly of the Hankel matrix. The proposed algorithm, denoted by TERA
henceforth, has three stages:

• Compute tangential directions and project the impulse response data, see
§4.3.2.

• Use the ERA on the reduced size Hankel matrix Ĥ and obtain realizations
(Âr, B̂r, Ĉr), see §4.3.3.

• Convert back to the full input and output dimensions and get approximations
(Ar, Br, Cr) of the original impulse response sequence, see §4.3.3.

Our approach is motivated by rational approximation by tangential interpolation, as
illustrated in the next section.

4.3.1 Tangential Interpolation from Data

A thorough treatment of rational interpolation of a given dataset along tangential
directions can be found in [9, §7]. To illustrate the idea, assume for a moment that
a continuous time dynamical system

Eẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),

is given. By applying a Laplace transform, it can be seen that the transfer function
G(s) = C(sI − A)−1B maps the inputs to the outputs in the frequency domain
through ŷ(s) = G(s)û(s). Note that the transfer function in the frequency domain
is the equivalent to the input-ouput description (4.4) by Markov parameters in the
discrete time domain. Model reduction through rational interpolation seeks a reduced
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order transfer function Gr(ω) = Cr(ωI−Ar)−1Br, with A ∈ Rr×r, B ∈ Rr×m and C ∈
Rp×r, such that G(si) = Gr(si) for a set of interpolation points {si : i = 1, 2, . . . , k}.
However, for MIMO systems, this is too restrictive since it imposes p·m conditions for
every interpolation point leading to unnecessarily high reduced orders. The concept
of tangential interpolation eases those conditions by only enforcing interpolation
along certain directions. Assume that transfer function G(s) is sampled at r points
{θi : i = 1, 2, . . . , r} along the right tangential directions ui ∈ Cm and r points
{µi : i = 1, 2, . . . , r} along the left tangential directions vi ∈ Cp; i.e., G(θi)ui and
vTi G(µi) are measured. Then, the Loewner framework [138] produces a reduced
model Gr(s) that tangentially interpolates the given data, i.e.,

vTi G(µi) = vTi Gr(µi) and G(θi)ui = Gr(θi)ui,

The details of how the interpolant Gr(s) = Cr(sEr −Ar)−1Br is constructed can be
found in [138, 9]; here we only show how Er is constructed:

Er(i, j) = −v
T
i (G(µi)−G(θj))uj

µi − θj
, for i, j = 1, . . . , r (4.12)

Er is a divided different matrix (called the Loewner matrix) corresponding to G(s).
However, in filling the entries of Er, not the full-matrix data G(µi) ∈ Cm×p or
G(θi) ∈ Cm×p, but rather the tangential data vTi G(µi)uj ∈ C and vTi G(θj)uj ∈ C
are used; thus the dependence on the input and output dimensions are avoided.
Note that without this modification, the reduced matrix Er would be of dimension
(r ·m) × (r · p) as opposed to r × r. This is the motivation for our modification to
ERA.

Remark 4.3.1. The choice of interpolation points and tangential directions is of
fundamental importance in model reduction by interpolation. Iterative Rational
Krylov Algorithm of [91] provides a locally optimal strategy in the H2 norm. In [23],
IRKA has been recently coupled with the Loewner approach to find optimal reduced
models in a data-driven setting. However; this approach cannot be applied here since
in the ERA setting, the available frequencies are fixed and one can only sample the
Markov parameters, which corresponds to sampling the transfer function at infinity.

4.3.2 Projection of Markov parameters

Inspired by tangential interpolation in the Loewner framework, for systems with high
dimensional input and output spaces we will project the impulse response samples
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hi onto low dimensional subspaces via multiplications by tangential directions. How-
ever, achieving this goal in the ERA set-up comes with major additional difficulties
that do not appear in the Loewner framework. Therein, the elegant construction
of the reduced-model quantities Br and Cr guarantee that the number of rows and
columns still match the original input and output dimensions even when the tan-
gential interpolation is employed. In other words, only the system dimension is
reduced without changing the input/output dimensions. However, in ERA, once the
Markov parameters hi ∈ Rp×m are replaced by the (tangentially) projected quantities
ĥi ∈ R`1×`2 where `1 < p and l2 < m, the reduced model via ERA will have l2 inputs
and `1 outputs; thus the original input and output dimensions will be lost. Therefore,
one will need to carefully lift this reduced model back to the original m-inputs and
p-outputs spaces. The second difficulty arises from the fact that sampling Markov
parameters mean sampling G(s) only around infinity and thus we need to choose the
same tangential directions for every sample. Since selecting a single direction for all
the Markov parameters will be extremely restrictive, we will pick multiple dominant
tangential directions to project all the Markov parameters.

To deal with large input and output spaces, [191] uses a randomized selection of
inputs and outputs and subsequently collect primal and dual simulation data reduc-
ing computational time and storage requirements for the SVD of the Hankel matrix
However, the method assumes that primal and dual simulations can be performed
separately, which is not possible in several situations and which we will not assume.
In [136] and [155], the authors consider fluid dynamical applications, where the out-
put of interest is often the entire state, which is enormous. Hence, standard ERA is
not feasible, especially since the complex dynamical behavior of fluid systems makes
it necessary to sample many Markov parameters. The authors suggest to project the
output space onto a low dimensional manifold, and use ERA subsequently. However,
this is mentioned as a rather short remark without any details and an algorithm to
recover the original output dimension is not given, a crucial difficulty arising in the
ERA setup as mentioned above. Moreover, not only the inputs, but also the num-
ber of outputs, can cause computational challenges. Recall Example 4.2.5, where
both input and output dimensions are large (m = 26 and p = 42), which leads
to a challenging computation of the SVD. Therefore, we propose a modified ERA
method that works with a two-sided projected version of the Markov parameters
while guaranteeing stability of the reduced model endowed with an error bound.

The minimization problem behind the proposed method is to find two projectors P1
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and P2 that solves

min
rank(P1)=`1
rank(P2)=`2

2s−1∑
i=1

||P1hiP2 − hi||2F . (4.13)

Remark 4.3.2. Ideally, one would like to pick individual projectors P
(i)
1 and P

(i)
2 for

every Markov parameter to produce the minimal error
∑2s−1

i=1

∑p
j=`1+1 σ

2
j (hi), where

`1 = `2. However this appears to be impractical since, in an analogy to tangential
interpolation, this would correspond to choosing different tangential directions for
G(s) and G′(s) for example. Therefore we restrict ourselves to finding two orthogonal
projectors, which are used for the entire dataset of Markov parameters. Henceforth,
we shall see that this preserves the structure of the Hankel matrix, at the cost of a
suboptimal error.

The projectors are given via the products of orthonormal matrices, i.e.,

P1 = W1W
T
1 , rank(P1) = `1,

P2 = W2W
T
2 , rank(P2) = `2,

whereW T
1 W1 = I`1 andW T

2 W2 = I`2 . The goal is to find the P1 and P2 by considering
data-streams of Markov parameters. To compute the projection matrices, arrange
the impulse response sequence in a matrix

ΘL := [h1 h2 · · ·h2s−1] ∈ Rp×m(2s−1)

and solve the optimization problem

P1 = arg min
rank(P̃1)=`1

||P̃1ΘL −ΘL||2F . (4.14)

The optimal solution of the optimization problem is given by the singular value
decomposition (SVD) of ΘL = UΣV T , and hence W1 = U(:, 1 : `1), the leading `1

columns of U . This minimum error is then given by ||W1W
T
1 ΘL−ΘL|| = σ`1+1(ΘL),

the (`1 + 1)th singular value of ΘL. To compute the right projector P2, we again
define

ΘR :=


h1

h2
...

h2s−1

 ∈ Rp(2s−1)×m
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and the corresponding optimization problem

P2 = arg min
rank(P̃2)=`2

||ΘRP̃2 −ΘR||2F . (4.15)

Similarly, compute the SVD of ΘR = UΣV T , and the optimal solution is P2 = W2W
T
2 ,

where W2 = V (:, 1 : `2). The error is simply ||W2W
T
2 ΘR − ΘR|| = σ`2+1(ΘR). The

goal is to reduce the size of the Markov parameters, to lessen the cost of the singular
value decomposition of the Hankel matrix. The factors W1 and W2 are employed to
project the Markov parameters as

ĥi = W T
1 hiW2 ∈ R`1×`2 (4.16)

Equation (4.16) can be considered analogous to tangential interpolation where the
transfer function G(si) (si = ∞ in this case) and its derivatives are sampled along
different tangential directions; the columns ofW1 andW2. The projected values ĥi are
subsequently used to construct a reduced size Hankel matrix Ĥ. For this, define the
block diagonal matrices W1 := diag(W1,W1, . . . ,W1) and W2 := diag(W2, . . . ,W2).
Then the projected Hankel matrix becomes

Ĥ =WT
1 HW2 ∈ Rs`1×s`2 . (4.17)

4.3.3 ERA for Projected Hankel Matrix and Recovering Orig-
inal Dimensions

Once the projected Hankel matrix (4.17) is computed, ERA can be applied. However
due to the projected input and output dimensions, control and observation matrices
are identified in the reduced output/reduced input space. Thus, the goal of TERA
is to lift these spaces optimally back to the original dimension recover the full input
and output dimensions. Using the definitions of W1 and W2, we can rewrite (4.17)
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as

Ĥ = [ĥ]ij =

W
T
1

. . .

W T
1



h1 h2 . . . hs
h2 h3 . . . hs+1
...

...
. . .

...
hs hs+1 . . . h2s−1


W2

. . .

W2



=

W
T
1

. . .

W T
1




C
CA

...
CAs−1

 [B AB . . . As−1B]

W2

. . .

W2



=


Ĉ

ĈA
...

ĈAs−1

 [B̂ AB̂ . . . As−1B̂].

where we have defined Ĉ = W T
1 C and B̂ = BW2. This illustrates how to identify

(Â, B̂, Ĉ) from the interpolated Hankel matrix. The best rank r approximation of
the projected Hankel matrix is given by the truncated singular value decomposition

Ĥr = ÛrΣ̂rV̂
T
r = ÔrĈr,

where Ôr = ÛrΣ̂
1/2
r and Ĉr = Σ̂

1/2
r V̂ T

r represent the observability and controllability
matrices, respectively. As before, the first block row of Ôr gives an approximation
for Ĉr, the observation matrix matching the interpolated impulse response, so

Ĉr = [I` 0] ÛrΣ̂
1/2
r ∈ R`1×r.

Analogously, the first block column of Ĉr yields an approximation for B̂r, the control
input matrix for the interpolated impulse response sequence, which reads as

B̂r = Σ̂1/2
r V̂ T

r [I` 0]T ∈ Rr×`2 .

To solve the least squares problem for the system matrix Âr, one proceeds as in the
previous subsection, so that

Âr = [Ô(f)
r ]†Ô(l)

r = Σ̂−1/2
r [Û (f)

r ]T Û (l)
r Σ̂1/2

r , (4.18)
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which is computed as in (4.11) with appropriate matrices. To illuminate the con-
nection between the Ar in (4.11) obtained from standard ERA and the Âr in (4.18)

obtained from the projected sequence, let W̃T
1 denote the matrix obtained from

deleting the last block row and column from WT
1 , and similarly for W̃T

2 . Note that

Ô(f)
r = W̃T

1 O
(f)
r . Then, it readily follows that

Âr = [W̃T
1 O(f)

r ]†W̃T
1 O(l)

r = [O(f)
r ]†W̃1W̃T

1 O(l)
r ,

using the fact that W̃1 is orthogonal. Recall from (4.11) that Ar = [O(f)
r ]†O(l)

r . Thus,

Âr works on the O(l)
r projected onto the range of W̃1. Note that W̃1W̃T

1 6= I unless
W̃1 is square (i.e., when there is no reduction in input and output dimension in which
case one recovers the standard ERA.) The identified system matrices Âr,B̂r and Ĉr
match the projected Markov parameters

ĥi ≈ ĈrÂ
i−1
r B̂r, i = 1, . . . , 2s− 1

in the least squares sense.

Note that while Âr is an r× r matrix (matching the original ERA construction), B̂r

has `2 columns (as opposed to m) and Ĉr has `1 rows (as opposed to p). Therefore,
we need to lift B̂r and Ĉr to the original input/output dimensions. By virtue of
the minimization problem (4.13), the original input-output dimension of the system
can be recovered through injection of ĥi to the Rp×m. Recall that ĥi = W T

1 hiW2.
Therefore {ĈrÂi−1

r B̂r} approximates {W T
1 hiW2} in the least-squares sense. To ap-

proximate the original sequence {hi}, we, then, replace Ĉr with W1Ĉr and B̂r with
B̂rW

T
2 . In other words, the original impulse response sequence is approximated via

hi ≈ W1Ĉr︸ ︷︷ ︸
:=Cr

Âr B̂rW
T
2︸ ︷︷ ︸

:=Br

(4.19)

yielding the final reduced-model quantities

Ar = Σ̂
−1/2
r [Û

(f)
r ]T Û

(l)
r Σ̂

1/2
r

Br = Σ̂
1/2
r V̂ T

r [I`2 0]TW T
2

Cr = W1[I`1 0] ÛrΣ̂
1/2
r

(4.20)

The modified eigensystem realization algorithm for tangentially interpolated data
(TERA) is given in Algorithm 5.
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Algorithm 5 : TERA

Input: Markov parameters h1, h2, . . . , h2s−1;
Reduced model order r;
Number of tangential directions `1, `2 .

Output: State space realization (Ar, Br, Cr).
1: Compute svd: [h1 h2 · · ·h2s−1] = UΣV T .
2: W1 = U(:, 1 : `1).
3: Compute svd: [hT1 hT2 · · ·hT2s−1]T = UΣV T .
4: W2 = V (:, 1 : `2).
5: for i = 1 : 2s− 1 do
6: ĥi = W T

1 hiW2.
7: end for
8: Assemble Hankel matrix Ĥ as in (4.5).
9: Compute svd: Ĥ = ÛΣ̂V̂ T .

10: Ûr = Û(1 : r, :), Σ̂r = Σ̂(1 : r, 1 : r) and V̂r = V̂ (1 : r, :).

11: Û
(f)
r = Û(1 : r, 1 : p(s− 1)( and Û

(l)
r = Û(1 : r, (s+ 1) : ps).

12: Ar = Σ̂
−1/2
r [Û

(f)
r ]T Û

(l)
r Σ̂

1/2
r .

13: Br = Σ̂
1/2
r V̂ T

r [Il 0]TW T
2 .

14: Cr = W1[Il 0] Ûr Σ̂
1/2
r .
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4.3.4 Error Analysis and Stability

Since its original publication by Kung, ERA has enjoyed great popularity, which is
in part because the obtained reduced order models are stable. Hence, we would like
to retain this important feature, and we therefore show first, that stable models yield
stable ROM’s when TERA is applied.

Proposition 4.3.3. If Assumption 4.2.3 holds, i.e., if the underlying dynamical
systems is stable, then the reduced model given by the matrices Ar, Br, Cr in (4.20)
obtained via TERA from the projected data is stable.

Proof. The projected Markov parameters are ĥi = W T
1 hiW2, where W1 ∈ Rp×`1

and W2 ∈ Rm×`2 have orthogonal columns. It follows from Assumption 4.2.3, that
‖hi‖F → 0 when i > s. Therefore,

‖ĥi‖F = ‖W T
1 hiW2‖F ≤ ‖W1‖F‖hi‖F‖W2‖F → 0 for i > s.

It thus follows that ĥi → 0 as i > s. Since the projected impulse response satisfies
the convergence to zero property, Theorem 4.2.4 can be applied for TERA to obtain
that ‖Ar‖ ≤ 1, which completes the proof.

From Theorem 4.2.4 we can directly obtain an error bound for the interpolated
Markov parameters.

Corollary 4.3.4. In the reduced input and output dimensions `, the error in the
Markov parameter sequence is given by

2s−1∑
i=1

‖ĈrÂi−1
r B̂r − ĥi‖2

F ≤
√
r + `1 + `2 · σr+1(Ĥ).

Proof. Note that when ERA is applied to ĥi, it yields a stable reduced order model
as shown in Proposition 4.3.3. Using m = `1 and p = `2 in Theorem 4.2.4, the result
follows directly, by replacing all quantities by the ‘hat’ quantities.

Corollary 4.3.4 gives a bound for the error in the interpolated (projected) Markov
parameters. However, the real quantity of interest is the least-squares in the re-
construction of the original full Markov parameter sequence {hi}. The next results
answers this question.
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Theorem 4.3.5. Let hi be the original sequence of Markov parameters, and let
{ĈrÂi−1

r B̂r} be the identified sequence via TERA. The approximation error is given
by

2s−1∑
i=1

||hi−W1ĈrÂ
i−1
r B̂rW

T
2 ||2F

≤ 4

(
p∑

i=`1+1

σ2
i (ΘL) +

m∑
i=`2+1

σ2
i (ΘR)

)
+ 2
√
r + `1 + `2 · σr+1(Ĥ)

(4.21)

Proof. We begin with splitting the error into two parts

2s−1∑
i=1

||hi −W1ĈrÂ
i−1
r B̂rW

T
2 ||2F =

2s−1∑
i=1

||hi − P1hiP2︸ ︷︷ ︸
=:Ti

+P1hiP2 −W1ĈrÂ
i−1
r B̂rW

T
2︸ ︷︷ ︸

=:Zi

||2F

=
2s−1∑
i=1

||Ti + Zi||2F

≤
2s−1∑
i=1

(||Ti||F + ||Zi||F )2

≤ 2


2s−1∑
i=1

||Ti||2F︸ ︷︷ ︸
ε1

+
2s−1∑
i=1

||Zi||2F︸ ︷︷ ︸
ε2

 ,

where in the last line we used 2||Ti||F ||Zi||F ≤ ||Ti||2F + ||Zi||2F . Subsequently, we give
estimates for the two error terms ε1, and ε2. We begin with ε1:

ε1 =
2s−1∑
i=1

||hi − P1hiP2||2F

=
2s−1∑
i=1

||hi − P1hi + P1(hi − hiP2)||2F

= ||ΘL − P1ΘL + P1(ΘL −ΘLP2)||2F
≤ ||ΘL − P1ΘL||2F + ||ΘL −ΘLP2||2F + 2||ΘL − P1ΘL||F ||ΘL −ΘLP2||F
≤ 2

(
||ΘL − P1ΘL||2F + ||ΘL −ΘLP2||2F

)
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where P2 = diag(P2, . . . ,P2) is block-diagonal, and we used in the last equality that
the Frobenius norm is invariant under orthogonal transformations. For the first term
in the sum, it follows from the definition of P1 in (4.14) (and by the singular value
decomposition) that

||ΘL − P1ΘL||2F =

p∑
i=`1+1

σ2
i (ΘL).

The second term in the sum can be rewritten as

||ΘL −ΘLP2||2F = ||[h1, h2, . . . , h2s−1]− [h1P2, h2P2, . . . , h2s−1P2]||2F
= ||ΘRP2 −ΘR||2F

=
m∑

i=`2+1

σ2
i (ΘR),

where the last equality follows from the definition of P2 in (4.15). Collecting the
terms yields

ε1 ≤ 2

(
p∑

i=`1+1

σ2
i (ΘL) +

m∑
i=`2+1

σ2
i (ΘR)

)
.

The term ε2 can be simplified using the orthogonality of W1 and W2 and by using
Corollary 4.3.4; namely, we obtain

ε2 =
2s−1∑
i=1

||P1hiP2 −W1ĈrÂ
i−1
r B̂rW

T
2 ||2F

=
2s−1∑
i=1

||W1W
T
1 hiW2W

T
2 −W1ĈrÂ

i−1
r B̂rW

T
2 ||2F

=
2s−1∑
i=1

||W T
1 hiW2 − ĈrÂi−1

r B̂r||2F

=
√
r + `1 + `2 · σr+1(Ĥ).

Collecting the terms, we obtain

2s−1∑
i=1

||hi −W1ĈrÂ
i−1
r B̂rW

T
2 ||2F ≤ 2(ε1 + ε2)

≤ 4

(
p∑

i=`1+1

σ2
i (ΘL) +

m∑
i=`2+1

σ2
i (ΘR)

)
+ 2
√
r + `1 + `2 · σr+1(Ĥ),
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which completes the proof.

4.4 Numerical Results

In this section, we present numerical results for TERA (Algorithm 5) and Kung’s
standard ERA. To test these algorithms, a mass spring damper model (MSD) and
a cooling model for steel profiles (Rail) are considered. The main computational
difference between the approaches is the size of the full-SVD that need to computed.
As we will illustrate, TERA offers significant computational savings by working with
the SVD of a reduced Hankel matrix, see Table 4.1.

Example SVD size for ERA CPU SVD size for TERA CPU
4.4.1 (MSD) 15, 000× 15, 000 1216.8s 3, 500× 3, 500 18.0s
4.4.2 (Rail) 6000× 7000 110.0s 4000× 4000 25.2s

Table 4.1: Specifications, CPU times to execute, and time savings for the numerical
examples. Solved on cluster with a 6-core Intel Xeon X5680 CPU at 3.33GHz and
48GB RAM, with Matlab2013b.

Note that ERA assumes a discrete-time model. The examples we consider are
continuous-time dynamical systems, i.e., they have the form

ẋ(t) = Acx(t) +Bcu(t) (4.22)

y(t) = Ccx(t) (4.23)

where the subscripts are used to emphasize the continuous time parameters. We
emphasize that the matrices Ac, Bc, Cc are never used in the algorithm. Both ERA
and TERA have only access to impulse response data. Once the reduced-models
are computed via ERA and TERA, we use the original system dynamics only for
illustration purposes to present a more detailed comparison both in the time-domain
by comparing time-domain simulations and in the frequency domain by comparing
Bode plots. Since we have access to continuous time matrices, the original transfer
function can be compared to Gr(·) obtained from the reduced order models. In
continuous time, the output error between the full and reduced order model is bound
as

‖y − yr‖2 ≤ ‖G−Gr‖H∞‖u‖2,
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where the norm of the transfer function is defined as

‖G−Gr‖H∞ := sup
ω∈R
‖G(iω)‖2.

Note, that ERA assumes a discrete time model, therefore we convert the continuous
models to discrete time via a bilinear transformation (e.g., [3]), mapping the complex
open left half plane into the unit circle in C. Let Ts be the sampling period for the
discrete time system. The bilinear transformation is

z = et∆t =
1 + t∆t

2

1− t∆t
2

,

where z is a discrete time variable, z ∈ C, |z| ≤ 1 and t ∈ (−∞, 0] is the continuous
time variable. The system matrices have to be converted to

A =
∆t

2

(
2

∆t
I + Ac

)(
2

∆t
I − Ac

)−1

,

B =
√

2

(
2

∆t
I − Ac

)−1

Bc,

C =
√

2Cc

(
2

∆t
I − Ac

)−1

,

D = Cc

(
2

∆t
I − Ac

)−1

Bc.

The above conversion is also known as Tustin transformation and is implemented
in Matlab when using the c2d command with the option tustin. The SLICOT
AB04MD routine can alternatively be used for the bilinear transformation.

4.4.1 Mass Spring Damper System

This model is taken from [92] and describes a mass spring damper system with masses
mi, spring constants ki and damping coefficients ci ≥ 0 for i = 1, 2, . . . , n/2. The
state variables are the displacement and momentum of the masses, and the outputs
are the velocities of some selected masses. We refer to [92, §6] for more details about
the model.
The model dimension is n = 1000, which is equivalent to 500 mass spring damper
elements. All masses are mi = 4, the spring constants are ki = 4 and the damping
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coefficients are ci = 0.1 for i = 1, 2, . . . , 500. The number of inputs is equal to the
number of outputs, namely m = p = 30. The largest eigenvalue of Ac is λmax =
3.9 · 10−5, and the system is simulated up to T = 2 · 104s. We collect 2s = 1000
Markov parameters, which corresponds to a sampling period of ∆t = 20s for the
conversion of continuous to discrete time systems. In Figure 4.1, the left plot, decay
of the normalized Markov parameters is plotted, ‖hi‖/‖h1‖. Note the steep initial
decay and then a slower decay after about one hour. The right-plot of Figure 4.1
shows the singular values of ΘL and ΘR.
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Figure 4.1: MSD model. (left): Norm of the Markov parameters. (right): Singular
values of ΘL and ΘR.

Application of the standard ERA requires computing an SVD of size 15, 000×15, 000.
In TERA, we pick `1 = `2 = 7 and with projection through `1 = `2 = 7 directions,
an SVD of size 3500× 3500 has to be computed. Figure 4.2, left, shows the transfer
function of the full model, and the two reduced order models. Both reduced models
have problems matching the resonance at ω ≈ 20Hz. The standard eigensystem
realization algorithm shows high oscillations and does not match the low frequency
behavior of the transfer function. The projected ERA performs better at low fre-
quencies, but also shows obvious mismatches around the resonance frequency.

The leading hundred normalized singular values of both the full Hankel matrix H
and several projected Hankel matrices Ĥ are shown in Figure 4.2, right. Note the
drastic difference in the decay of the singular values. At the truncation order r = 30,
the singular values of Ĥ have already dropped significantly. In contrast, the singular
values of the full Hankel matrix start a rapid decay only after r ≈ 60. We choose
the reduced model order as r = 30, and apply standard ERA and TERA.
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Figure 4.2: MSD model. (left): Transfer function of the full and two reduced models
of order r = 30 (right): Normed singular values of H and Ĥ. Convergence with
respect to the number of interpolation directions `1 = `2.

First, we note that Theorem 4.3.5 via the upper bound in (4.21) can give valuable
insight into the success of TERA. Choosing r = 30, and `1 = `2 = 7, we obtain∑2s−1

i=1 ||hi −W1ĈrÂ
i−1
r B̂rW

T
2 ||2F∑2s−1

i=1 ||hi||2F
= 0.1127

and the upper bound in (4.21) yields

4
(∑p

i=`1+1 σ
2
i (ΘL) +

∑m
i=`2+1 σ

2
i (ΘR)

)
+ 2
√
r + `1 + `2 · σr+1(Ĥ)∑2s−1

i=1 ||hi||2F
= 0.8688,

thus the bound is in the same order of magnitude. The main contribution to the
upper bound results from the truncation of ΘL and ΘR.

To compare ERA and TERA, both reduced models are converted back to continuous
time, yielding

ẋr(t) = Ar,cxr(t) +Br,cu(t), yr(t) = Cr,cxr(t) +Dr,cu(t) (4.24)

The system (4.24) was solved from zero to 60s with zero initial conditions. The
input function was chosen as in [92, Ex.6.3], ui(t) = e−0.05t sin(5t) and the input
vector consists of 30 copies of the input function.

Figure 4.3 shows outputs six and eleven of time domain simulations. Both ERA and
TERA eventually converge to the outputs of the full model, i.e. to the zero steady
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state. The model predictions of the ERA reduced order model are far from the actual
output and hence produce erroneous results in the short term.
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Figure 4.3: MSD model: Outputs of continuous time simulations of the full model,
and reduced models with r = 30. (left): Output No.6. (right): Output No.1.

Figure 4.3 illustrates that the reduced model order r = 30 seems too low for ERA to
produce satisfactory results. Based on the plot of the Hankel singular values, Figure
4.2, the singular values of the full Hankel matrix start decaying at order r ≈ 60.
Figure 4.4, compares the continuous time simulations of the full order model, and
both reduced order models with r = 60 (the left and right interpolation directions
for TERA are kept at `1 = `2 = 7). The outputs of the ERA model have improved in
accuracy compared to the full model. From several numerical experiments, we found
that we had to go up to r = 60 to have a good match of ERA and the full system.
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Figure 4.4: MSD model: Outputs of continuous time simulations of the full model,
and reduced models with r = 80. (left): Output No.6. (right): Output No.1.

In conclusion, TERA produced a better reduced order model than ERA at model
order r = 30 while reducing the effort for the SVD from a 15, 000 × 15, 000 matrix
to a 3, 500× 3, 500 matrix. At reduced model order r = 60, ERA provides a slightly
better match of the in terms of the output of time domain simulations, yet it still
remains expensive to compute. The advantage of computational effort for TERA
is still persistent. Moreover, the reader should note that a careful balance of the
number of interpolation directions `1, `2, and the reduced order model size r, led to
a satisfactory accuracy in the ROM, while saving computational time.

4.4.2 Cooling of Steel Profiles

The model is taken from the Oberwolfach benchmark collection for model reduction
[104] and is further described in [180]. The model describes the cooling process of
steel profiles in a rolling mill. Different steps in the production process require dif-
ferent temperatures of the raw material. In order to achieve a high throughput and
therefore high profitability of the mill, it is necessary to reduce the temperature of
the profile as fast as possible to the required level needed for entering the next pro-
duction phase. However, there are limits to the cooling procedure, so that material
properties such as durability and porosity stay within specified quality standards.
The cooling is achieved by spraying fluids on the surface of the material. The pro-
cess is modeled by a two dimensional heat equation with boundary control input.
A finite element discretization results in a model (E,A,B,C) with n = 1357 states,
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m = 7 outputs and p = 6 outputs. The maximal eigenvalue of the system matrix is
λmax = −1.767 · 10−5, which implies that the Markov parameters will decay slowly.
It is therefore necessary to sample many Markov parameters to capture enough of
the system dynamics.

The physical problem resides at temperatures of approximately 1000 degrees centi-
grade down to about 500-700 degrees depending on calculation time.2 The state
values are scaled to 1000 being equivalent to 1.0. This results in a scaling of the time
line with factor 100, meaning that computer times have to be divided by 100 to get
the real (physical) time in seconds. All plots are given in real time.

Initially, a Cholesky factorization of the mass matrix was performed, E = LLT and a
change of variables yields L−1AL−T 7→ A,L−1B 7→ L and CL−T 7→ C. The model is
converted to a discrete time model through the bilinear transformation, as described
above. The system was simulated for 200, 000s in simulation time and a Markov
parameter sampled every 100s. This is equivalent to 2000s = 33.3m in real time and
collecting snapshots every second.

Figure 4.5, left, shows the normalized decay of the Markov parameters over time,
so ‖hi‖/‖h1‖ for i = 1 : 20 : 2000. The plot can guide the choice of when to
stop collecting data. Figure 4.5, right, shows the normalized singular values of the
matrices ΘL and ΘR, respectively. In addition to computational cost limitations,
the decay of the singular values gives valuable insight into choosing the tangential
truncation orders `1 and `2.

The dimension of the reduced order model was chosen a priori to be r = 20. First,
standard ERA was applied to the sequence of 2s = 2000 Markov parameters in R6×7

requiring an SVD of size 6000 × 7000. The reduced order matrices (Ar, Br, Cr, Dr)
were obtained in discrete time and converted back to continuous time, where the
transfer function Gr(s) = Cr,c(sI −Ar,c)−1Br,c is evaluated. In a second experiment,
the Markov parameters are projected with `1 = `2 = 4 tangential directions, so
that ĥi ∈ R4×4. Therefore, only a singular value decomposition of size 4000 ×
4000 has to be computed. Note, that the singular value decomposition scales cubic
with the matrix dimension n. We applied the TERA and obtained a reduced order
model (Âr, B̂r, Ĉr, D̂r) and again computed the transfer function for the continuous
representation. Figure 4.6, left, shows the transfer functions of the full model, and
both reduced models, producing indistinguishable results. Figure 4.6, right, shows
the convergence of the singular values of the tangentially interpolated Hankel matrix
for various values of `1, `2, as the dimension of the reduced order model r increases.

2Information about the model from IMTEK-simulation [104].
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Figure 4.5: Rail model. (left): Norm of the Markov parameters. (right): Singular
values of ΘL and ΘR.

The continuous time reduced order models (4.24) are simulated with an input vector
u(t) ∈ Rm with ui(t) = 0.2e−.005t, for i = 1, . . . ,m = 7. For time stepping, we used
ode45 in Matlab with standard error tolerances. The outputs are compared to the
outputs of simulations of the full model, equations (4.22)–(4.23). Figure 4.7 shows
outputs one, two and five computed from the full model, as well as the reduced
models obtained through both standard ERA and TERA. In addition to reducing
the computational time and memory requirements of standard ERA, the TERA
framework performs well in time domain simulations.
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Figure 4.7: Rail model. Time domain simulations of the full and reduced order
models. (left): Output No.1. (middle): Output No.2. (right): Output No.5.

The error introduced by the standard eigensystem realization algorithm for the r =
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Figure 4.6: Rail model. (left): Transfer function for full model, ERA reduced model
and TERA reduced model. (right): Convergence of the (normed) singular values of
H and Ĥ for various interpolated models, as r increases.

20 reduced order model (relative to the summed norm of the Markov parameters) is∑2s
i=1 ‖CrAi−1

r Br − hi‖2
F∑2s

i=1 ‖hi‖2
F

= 3.5 · 10−5,

and the error resulting from applying TERA with four tangential directions on both
sides is ∑2s−1

i=1 ||hi −W1ĈrÂ
i−1
r B̂rW

T
2 ||2F∑2s−1

i=1 ||hi||2F
= 3.0 · 10−3

Moreover, the upper bound from Theorem 4.3.5 is

4
(∑p

i=`1+1 σ
2
i (ΘL) +

∑m
i=`2+1 σ

2
i (ΘR)

)
+ 2
√
r + `1 + `2 · σr+1(Ĥ)∑2s−1

i=1 ||hi||2F
= 8.5 · 10−2.

As we can see from this, and the previous example, the upper bound is not sharp.
In fact, Kung’s original upper bound is not sharp as well, as we have seen in com-
putations. The actual error in this example is one order of magnitude smaller than
the upper bound suggest. We shall also mention, that the error of the interpolated
method converges to the original ERA error as the number of tangential directions
is increased.

In both numerical experiments, we also generated tangential directions from a ran-
dom normal distribution. This approach gave unsatisfactory results in several test
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runs and we therefore safely exclude it as a choice for tangential directions. For
illustration purposes, we plotted the results of the continuous time simulations for
output two and six in Figure 4.8, where random interpolation directions were used
for Ĥ.
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Figure 4.8: Rail model. Time domain simulations of the full and reduced order
models. The TERA model was obtained by interpolation with random directions.
(left): Output No.2. (right) Output No.6.

4.4.3 Indoor-Air Model for Thermal-Fluid Dynamics

Here, we give a brief heuristic of the limitations of the above approach. As mentioned
in Example 4.2.5, an application where the tangential interpolation approach would
be beneficial is given by the model for indoor-air behavior [38]. Therein, system
matrices are not at hand (which is usually the case for non-academic settings), and
therefore we cannot provide the same level of detailed comparison. Nonetheless, one
would like to know a priori, whether a tangentially interpolated eigensystem real-
ization would be successful. The tools developed earlier can help us decide whether
TERA could be applied here. As mentioned in Example 4.2.5, there are 1437 Markov
parameters available from simulations of the complex model, which are generated by
FLUENT simulations with an underlying grid of n ≈ 200, 000 finite volume elements
used in a three dimensional domain. The version of the model we consider here has
m = 26 inputs and p = 19 outputs. Figure 4.9, left, shows the decay of the singular
values of ΘL and ΘR to determine the number of necessary interpolation directions.
The reader should compare this to Figures 4.5 and 4.1, where a steeper decay in the
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singular values can be observed. Moreover, since the error bound in Theorem 4.3.5
contains the summed tail of the neglected singular values of ΘR and ΘL, the upper
bound is large. The second ingredient to the error bound in Theorem 4.3.5 is the first
neglected Hankel singular value in the reduced order model. The singular values of
the (interpolated) Hankel matrix are shown in Figure 4.9, right. As in the previous
examples, the Hankel singular values converge to the true values as we increase the
interpolation directions `1 = `2 = `. However, the convergence is noticeably slower
than in the previous two examples. Taken together, one would expect TERA to not
yield satisfactory results for low `1, `2, which could hint at the fact that all inputs
and outputs are highly relevant for this particular model.
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Figure 4.9: Indoor-air model: (left) Singular values of ΘL and ΘR. (right): Conver-
gence of the (normed) singular values of H and Ĥ for various interpolated models,
as r increases.

4.5 Conclusions

We modified the standard Eigensystem Realization Algorithm to handle MIMO sys-
tems efficiently. The input and output dimensions were reduced by tangential in-
terpolation of the impulse response data. The standard ERA was then used on the
low dimensional input and output space. The observation and control matrices were
injected back to the original input and output dimensions. The computational sav-
ings for the necessary singular value decomposition were significant, as demonstrated
in the numerical examples, in particular since the complexity of the SVD grows cu-
bic with the size of the Hankel matrix. Moreover, we provided an error bound for
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the tangentially interpolated version of ERA (called TERA), which clearly showed
how both the truncation of the Hankel matrix, as well as of the input and output
dimension (via ΘL and ΘR) affect the reduced order models.

We would like to note, that there is a significant difference between reducing the
input and output dimension and the state space dimension itself. Model reduction
techniques for state space systems often reduce systems from 105−8 to only a few
hundred modes while retaining a tremendous amount of accuracy. This is partly
because the dynamics of such systems are found to be less complex than the model
order suggests. In contrast, sensors and actuators (often less than 100 each) are
critically important to the design, effectiveness and performance of the plant. In
extreme cases, by removing sensors or actuators, stabilizability and detectability of
the system can be lost, essentially creating subspaces that cannot be controlled or
observed. Thus, input and output projection is a sensitive task and we do not expect
an equally impressive order reduction. In this light, the reduction of the inputs and
outputs in the above examples is completely satisfactory to us, and allowed to achieve
accurate continuous time models. Moreover, we provided an example, where TERA
fails, because the singular values of ΘR and ΘL rarely converge. This is helpful for
practitioners, since it gives a priori information whether TERA should be applied or
not.

The numerical findings demonstrate that TERA identifies accurate reduced order
models from data only. Thus, the algorithm can run with inputs from experiments
or black-box code and accurately identify reduced order dynamics. We shall note
that it may be possible to obtain a error bound in line with Kung’s result. It would
be interesting to see the performance of TERA on experimental data.
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Chapter 5

Compressed Sensing and Regime
Selection

5.1 Introduction

In this chapter, a new, data-driven algorithm for sensing and classification of com-
plex, coupled, thermally driven airflows is presented [33, 34]. The goal is to use online
sensor data, to classify a “dynamic regime” in which the system currently resides.
With the availability of large amounts of data from physical systems, we address the
challenge of using the valuable information in this (online or offline) data for con-
troller and observer design. Using modern compressed sensing methods, we reduce
the amount of online sensor data required for the classification algorithm. Moreover,
we propose a new sensing basis using dynamic mode decomposition, which enables
us to increase the robustness of the sensing method to sensor noise.

The design of a new generation of passive heating, ventilation and air conditioning
(HVAC) systems can tremendously benefit from incorporating airflow dynamics into
the control and sensing mechanisms. Utilizing natural convection in this process
can save hardware, such as fans, and provides proper air circulation. Fortunately,
convective air flows are well studied theoretically (in simple domains), computation-
ally, and experimentally. The Boussinesq approximations are a commonly accepted
mathematical model for the dynamics of buoyancy driven flows, when temperature
differences are small. Moreover, Computational Fluid Dynamics (CFD) and the
availability of vast computational resources allow for accurate simulation of the gov-
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erning equations, even in complex spatial domains. Due to the lack of an experimen-
tal setup, we use CFD simulations to generate data for convective airflows.

Controlling the dynamics of such flows poses numerous challenges. First and fore-
most, computational resources for control in industrial devices are limited due to
space, cost and other feasibility requirements. Thus, in practice, controllers have to
be cheaply computable, which we address by using low dimensional models. Second,
in the indoor environments considered herein, the geometry, boundary conditions
and external disturbances are time-varying. Therefore, controllers and sensing tech-
niques have to be robust to those parametric changes during runtime. Third, real
sensors provide noisy measurements, which has to be addressed through noise-robust
sensing methods. Our goal is to design efficient, low order controllers that are robust
to both parametric changes and noise in the sensing mechanism.

Here, we present a method that takes into account those challenges, and provide nu-
merical results, based on synthetic data, that demonstrate robustness and accuracy
of the proposed sensing method. The interplay of compressed sensing (allows for
cheap hardware, in that it only needs few sensors) and reduced order modeling (en-
ables computationally cheap software implementation) outlines a promising avenue
to this challenging problem. A key to the success of the proposed sensing method is
that the considered flow dynamics settles on low dimensional attractors, thus fulfill-
ing the sparsity assumption in compressed sensing. Another important aspect is that
one only has to sense what is deemed “necessary” for an effective control synthesis,
and not focus on smallest scale phenomena.

The proposed method is summarized as follows: In a first step, we compute the
dominant structures in the flow by using Proper Orthogonal Decomposition (POD)
[13, 98, 135], or Dynamic Mode Decomposition (DMD) [162, 65]. Those structures
represent high energy (POD) or dynamically important (DMD) modes, that are used
to sparsely represent the data. In a second step, we design a flow-regime classification
algorithm based on compressed sensing [57, 58, 73] and sparse representation to
classify and reconstruct flow regimes from few measurements. In particular, we
numerically demonstrate the effectiveness of practical boundary sensing techniques
and compare the results to using a distributed sensor array.

For decades, considerable attention has been devoted to the field of airflow sensing,
observer design and reconstruction from (sparse) measurements. The authors in [1]
used few heuristically located sensors in the wake of a cylinder to reconstruct the
von Karman vortex street flow pattern. This was possible in large part due to the
special structure of this well-known flow field and its dependence on only a few char-
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acteristic quantities. A practical sensing technique is considered in [40], where the
pressure field of a flow past a cylinder is reconstructed from sparse cylinder-surface
measurements. Moreover, the authors in [159, 86] optimize sparse, distributed mea-
surement locations and employ POD to predict the temperature profiles in data
storage centers. Taylor and Glauser [176] derive a framework with POD and Linear
Stochastic Estimation techniques for remote sensing of flow around a pitched air-
foil. The stochastic framework estimates POD coefficients from pressure data on the
boundary of the airfoil, and is demonstrated to estimate the true flow field fairly ac-
curately. The authors in [15] reconstruct the flow data from sparse measurements via
compressed sensing. Moreover, Willcox [188] introduces “gappy POD” for efficient
flow reconstruction, and proposes a sensor selection methodology based on a condi-
tion number criterion. In the references [47, 82], sensor placement strategies based
on optimization of observability gramians and related system theoretic measures are
considered. The resulting locations are distributed in the spatial domain. The the-
ory for those algorithms was developed in the 1970’s, see [145], and the references
therein. Recently, machine learning approaches for optimal placement of sensors in
flow applications have also emerged [118].

5.2 Dynamic Model and Feature Extraction

The model under consideration is given by the Boussinesq equations (1.3)–(1.5) for
thermally driven airflow. We consider two different examples, one model of forced
airflow, and a model of purely boundary-driven natural convection in a differen-
tially heated cavity. Specifications and details for both models follow at the be-
ginning of §5.4, respectively. A common feature of both models is their paramet-
ric dependence, motivating the definition of “dynamic regimes”, i.e. states of the
flow, where solutions are “similar”, in a specified sense. Fortunately, the field of
Computational Fluid Dynamics (CFD) offers a wide range of theory and software
(FLUENT,COMSOL,OpenFOAM,NEK5000,...) for those types of models. Nonetheless,
a high fidelity simulation of the Boussinesq equations (for a few minutes of a flow
solution) can easily take multiple days to compute. To extract the dominant fea-
tures of the flow solutions, we use Dynamic Mode Decomposition (DMD) and Proper
Orthogonal Decomposition (POD), as introduced in §1.6.
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5.3 Regime Classification

As a first step to use reduced order models for controllers and observers of parameter
dependent industrial systems, we focus on the problem of classifying operating con-
ditions. Therefore, the flow patterns arising from different geometric configurations,
boundary conditions, and parameters, are used to define regimes.1 A library of antic-
ipated flow regimes is defined, and compressed sensing is employed to match present
flow conditions to any of those predefined library elements; this step is referred to as
classification.

Definition 5.3.1. Let ŷ ∈ Rp be a (possibly noise corrupted) measurement and
Φ := [Φ1 . . . Φd] ∈ Rn×R be a library of sparsity basis elements. The classification
problem is to find

k̂ = arg min
k=1,...,d

||ŷ − CΦkak||2, (5.1)

where ak denotes the unknown coefficients in the sparsity basis Φk.

In other words, one wants to find the regime in the library that best represents
the data. The problem statement is of course valid for p = n, i.e. for full state
information. In this work, however, we consider partial (sensed) information only,
hence the focus on measurements in the above definition.

5.3.1 Library Generation

The generation of a sparsity basis for the dynamic regimes is accomplished through
POD and DMD. Let Q = {q1, q2, . . . , qd} denote a set of d different configurations
(parameters, boundary conditions, geometry). For each configuration, simulation
data is generated from the Boussinesq (or Navier-Stokes) equations as

X(qi) ∈ Rn×s qi ∈ Q,

where each column of X(q1) is a snapshots of the solution from parameter qi. The
solutions are generated on an equidistant time grid. Through DMD or POD, we
compute ri basis functions for every regime, i = 1, . . . , d, which yields the sparse
library (or dictionary)

Φ := [Φ1 . . . Φd] ∈ Rn×R,

where R =
∑d

i=1 ri and for notational convenience Φ(qk) := Φk.

1A precise definition of dynamic regimes is not available in the current literature and we shall
use the word with a certain vagueness.
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5.3.2 Sensing Matrix

Sensors typically collect local information, therefore motivating the use of point
measurements in a mathematical setting. In particular, for sensing indoor-air flows,
we restrict ourselves to the boundaries of the domain, e.g. walls or ceilings. A point
measurement matrix C is defined as

Ci,j := {0, 1},
n∑
j=1

Ci,j = 1,

p∑
i=1

Ci,j = 1.

In compressed sensing, it is customary to use Gaussian or Bernoulli matrices C, since
they satisfy the restricted isometry property, see §1.7. Unfortunately, such sensor
arrays are impractical for flow sensing applications. At best, averaged velocities over
a small spatial region are sensed, which would lead to a sequence of entries in the
measuring matrix. This is left for further study.

5.3.3 Classification

The problem of identifying the active library block that represents the current data
is discussed below. Assume that a sample of the state xk of the kth-regime is given.
The measurements available for classification are

ŷ = Cxk + η, (5.2)

which are corrupted with white sensor noise η with zero mean. The goal then becomes
to identify the regime best matching the data ŷ, which ideally would be the kth

regime. If for some reason the algorithm chooses another regime, we say that it
confused the regime. To construct an algorithm to achieve minimal confusion, one
has to address the following questions:

• How many measurements (sensors) p are necessary for successful classification?

• How can one make the algorithm robust to sensor noise?

• Which a priori conditions on the dictionary Φ and sensing mechanism C guar-
antee, or give high confidence, that the classification works?

The above questions are addressed in the remainder of this section. First, we begin
with stating the decision algorithm for classification. By using the sparse basis (DMD
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and POD), we can express the unknown state as

xk = Φkak, ak ∈ Crk , rk � n,

where again k labels the regime membership. In a next step, define

Θk := CΦk ∈ Cp×rk ,

which contains the rows of the extracted (low order) features available to the sensing
mechanism. With this definition, the library of sensed regimes becomes

Θ =
[
Θ1 Θ2 . . .Θd

]
. (5.3)

Note that p > rk is a necessary requirement for any sensing algorithm, since all rk
coefficients ak are unknown, and we do not assume additional structure amongst the
coefficients. Consequently, multiplying (5.2) with [Θk]∗ yields

(Θk)∗ŷ = (Θk)∗Θkak + (Θk)∗η,

and (Θk)∗Θk is then invertible, which can be ensured by selecting appropriate sensor
locations. In other words, if linear independent measurements are taken, the matrix
(Θk)∗Θk is invertible. This can be guaranteed with high probability with a random
array of sensors. Thus, the above equation is rewritten as

[(Θk)∗Θk]−1(Θk)∗(ŷ − η) = ak.

The classifier should be defined on the measurement space Rp. The injection into
Rp, reads as

Θk[(Θk)∗Θk]−1(Θk)∗(ŷ − η) = yk,

and yk = Cxk is the uncorrupted measurement. This procedure defines an orthonor-
mal projection onto the space of measurements for the kth regime as

Pk := Θk[(Θk)∗Θk]−1(Θk)∗. (5.4)

To classify a signal to a subspace, consider the norm of the projection to each sub-
space ||Pkŷ||2 and pick the maximum of all the candidates. Then, the estimated
subspace is given as

k̂ = arg max
k=1,...,d

||Pkŷ||2, (5.5)

which then yields the regime that aligns most with the current, noise corrupted data.
Once the best matching library regime is found, the coefficients ak can be recovered
via a least squares solution

ak = (Φk)†ŷ,
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where (Φk)† denotes the Moore-Penrose pseudoinverse of Φk. The above algorithm
produces excellent results in practice and is robust to noise, as we see in §5.4. More-
over, there is a simple sufficient condition, under which this holds true. While this
might give a conservative bound, it provides valuable insight into techniques and
success of the above method. Consider d subspaces {Wk, k = 1, . . . , d} with bases
{Φ1, Φ2, . . . ,Φd} and the corresponding projection matrices {P1, P2, . . . , Pk}, as com-
puted in 5.4. A signal approximately lies in a single subspace, k̂, under the following
model:

x = xin + xout, xin ∈ Wk̂, xout ⊥ Wk̂, (5.6)

where xin and xout denote the in-subspace and the out-of-subspace components,
respectively. For classification, we solve the optimization problem (5.5). For the
following proposition, we define

ηij := max
i 6=j
||PiPj||2 = max

i 6=j

||PiPjx||2
||x||2

, i, j ∈ 1, . . . , d, (5.7)

as a measure for the alignment of two subspaces.

Proposition 5.3.2. Let d subspaces Wk, k = 1, . . . , d be given, and let the signal
x ∈ Wk̂ for some k̂ ∈ 1, . . . , d according to (5.6). Moreover, assume that ‖xout‖2

2 ≤
ε‖x‖2

2, with ε < 1/2 and let ηij be defined as above. Then, if

ηk̂k <

√
1− ε

1− ε
, ∀ k 6= k̂, (5.8)

the classification in (5.5) is successful.

Before proceeding to the proof of the proposition, we would like to comment on this
result. The constant ε is an upper bound for the relative energy of the given signal x
in the subspace Wk̂. The reader should note, that for a given set of d subspaces, the
ηij are computable quantities, and one can compute ηmax = maxi 6=j ηij. Therefore,
one can only expect to be able to classify signals that satisfy (5.8) for ηmax. This
in turn gives a priori guidance, whether a dictionary is suitable for classification, or
if fewer or more appropriate regimes should be included to account for signals that
might be far off any of the present subspaces, in a vector alignment sense. In the
example below, we show that the requirement of which signals to classify influences
the choice of the dictionary.

Example 5.3.3. Let two subspaces, Wk and Wk̂ be given, and consider a signal
with energy of 90% in the subspace Wk̂. Then ε = .1 and ε

1−ε = 1
9
⇒ 1 − ε

1−ε = 8
9
.
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Consequently, if ηk̂k <
√

8
9
≈ .94, we guarantee correct classification of the signal x

to the subspace Wk̂.

Proof. Let x = xin + xout, xin ∈ Wk̂, xout ⊥ Wk̂, as above. Since xout ⊥ Wk̂, the
projection on the correct subspace has norm

‖Pk̂x‖
2
2 = ‖xin‖2

2.

The projection to the other subspaces k is bounded through the obvious

||Pkxout||2 ≤ ||Pk||2||xout||2 = ||xout||2.

Additionally, we have that xin + xout = Pk̂xin + xout, which yields the following
estimate:

‖Pkx‖2
2 ≤ ‖PkPk̂xin‖

2
2 + ‖Pkxout‖2

2 ≤ η2‖xin‖2
2 + ‖xout‖2

2.

The classification is considered accurate (sufficient condition), if the projection onto
regime k̂ retains the most information of the signal, in other words, if

||Pkx||2 ≤ ||Pk̂x||2, ∀k̂ ∈ {1, . . . , d}, k̂ 6= k,

which holds true whenever

||Pkx||2 ≤ η2‖xin‖2
2 + ‖xout‖2

2

!
< ||Pk̂x||2 = ‖xin‖2

2,

and consequently the condition can be rewritten as

‖xout‖2
2 < (1− η2)‖xin‖2

2.

Assume that at most a portion ε of the signal lies out of the correct subspace ‖xout‖2
2 ≤

ε‖x‖2
2, which then yields

‖xin‖2
2 = ‖x− xout‖2 ≥ ‖x‖2 − ‖xout‖2 ≥ (1− ε)‖x‖2

2.

Next, note that (1− η2)‖xin‖2 ≥ (1− η2)(1− ε)‖x‖2, and if we assume that

(1− η2)(1− ε)‖x‖2
2 > ε‖x‖2

2

the sufficient condition holds true and we obtain correct classification. For ε < 1/2,
this is equivalent to

η <

√
1− ε

1− ε
.

Note, that we can define SOR = ε
1−ε , where SOR is the subspace-to-outside ratio,

so η <
√

1− SOR is the sufficient condition.
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5.3.4 Theory of Block Sparse Recovery

The concepts of block-coherence (between different regimes) and sub-coherence (within
each regime) of the sparse library (5.3) can help to understand the classification per-
formance and requirements on the library, as follows. In [80], a theory of block sparse
recovery is considered, and we shall briefly state the relevant results therein. Cast-
ing the recovery problem into the block-sparsity framework, requires the following
definition.

Definition 5.3.4. Let R =
∑d

i=1 ri and a(qi) := ai ∈ Cri be a vector. The block-
wise vector a = [a∗(q1) a∗(q2) . . . a∗(qd)]

∗ ∈ CR is called block k-sparse, if exactly k
of its blocks a(qi) are nonzero.

By the above definition, we have that y = Θa, with only few coefficients in a being
nonzero. We are interested in conditions on the sensed library Θ, such that a block-
sparse recovery of the vector a from k-measurements is possible. However, the results
below apply to the general case of x = Φa of full state reconstruction as well.

Definition 5.3.5. [80] The block-coherence of the library Θ is defined as

µB := max
i,j s.t. i 6=j

[
1

r
σ([Θi]∗[Θj])

]
, (5.9)

where it is assumed that ri = r for i = 1, . . . , d. Moreover, σ(A) denotes the spectral
norm, i.e. the largest singular value of A.

Definition 5.3.6. [80] The sub-coherence is a property of the individual library
blocks, and defined as

ν := max
l

max
i,j s.t. i 6=j

||θ∗i θj||2, s.t. θi = Θl(:, i).

In other words, the sub-coherence is an expression of the orthogonality of the dic-
tionary elements (blocks). Note, that ν = 0 if the bases within each regime are
orthogonal, although this is not required. In particular, when using DMD as a fea-
ture extraction method, the basis functions are not orthogonal, and therefore ν 6= 0.
Given the previous definitions, the main result is quoted below.

Theorem 5.3.7. [80, Thm.3] A sufficient condition2 to recover the k-sparse vector
a from y ∈ Rp measurements via the library Θ ∈ Cp×R is

k · r < 1

2

(
1

µB
+ r − (r − 1)

ν

µB

)
,

2For certain recovery algorithms, such as Block-OMP
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where it is assumed that all library blocks have the same number of elements, namely
r. Since we are interested in k = 1 sparse solutions (classification of one regime), the
above inequality simplifies to

r <
1 + ν

µB + ν
.

Note, that the above result provides a sufficient condition, and might be conservative.

5.3.5 Augmented DMD - Opportunities for Robust Sensing

The dynamic mode decomposition is a model reduction/feature extraction technique
as introduced in §1.6.3. To present the main idea, we first consider a single regime,
say k, and drop the subscripts. Later, we extend the approach to the classification
problem for multiple regimes. Recall from equation (1.47), that Φ = Φk approximates
the eigenvectors of the linear advance operator A, such that

AΦ = ΦΛ, Φ ∈ Rn×r,

where Λ ∈ Cr×r denotes the diagonal matrix of the first r DMD eigenvalues. Here, we
develop a method to incorporate this property into the sensing mechanism. With the
concept of an augmented basis, we use batches (time-trajectories) of data (consecutive
measurements) to classify a single regime. In several numerical experiments, this
approach increases both the classification performance, as well as the robustness of
the process to sensor noise.

Consider a state vector xt = x(t), sampled from the underlying discrete dynamical
system. The state is expressed in the sparse DMD basis as

xt = Φβ,

where β = β(t) is the unknown vector of coefficients.3 It follows from the previous
two equations, that

xt+1 = Axt = AΦβ = ΦΛβ,

and recursively
xt+2 = Axt+1 = AΦΛβ = ΦΛ2β.

3 β 6= a, since the time is picked arbitrary. Moreover, the basis Φ depends on the data and time
sampling frequency ∆t. Therefore, in practical sensing, this sampling should be kept the same as
the one used for generation of the basis.
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By iterating this process one can easily see that xt+j = ΦΛjβ, which we incorporate
into the sensing mechanism. Therefore, subsequent snapshots can be expressed via
the same β. In the classification setting below, this implies that in particular, β
has the same block sparsity pattern over a few time steps, which allows us to use
more data to make a confident classification decision. The above information can be
written in batch-form as

xt
xt+1

...
xt+j

 =


Φβ

ΦΛβ
...

ΦΛjβ

 =


φ1 φ2 . . . φr
λ1φ1 λ2φ2 . . . λrφr

...
...

...

λj1φ1 λj2φ2 . . . λjrφr

 · β.
Next, define the augmented DMD basis vector as

φ̂ji :=


φi
λiφi

...

λjiφi

 ∈ Cjn, with φ̂0
i := φi,

so that the previous equation can be rewritten as
xt
xt+1

...
xt+j


︸ ︷︷ ︸
xt+j
t

=
[
φ̂i φ̂

1
i . . . φ̂

j
i

]︸ ︷︷ ︸
Φ̂

·β.

By considering the outputs of the dynamical system, yt = Cxt, the recursion remains
unchanged. To this end, let C ∈ Rp×r be a given sensing matrix, and define C :=
blkdiag(C, . . . , C) having k copies of C on its diagonal. Similarly, we define yt+jt =
Cxt+jt ∈ Rpj. Recall, that the derivation is for a single dynamic regime say i, so =
Φ̂ = Φ̂i, yielding

yt+jt = CΦ̂iβ.

Extension to the classification problem. The previous approach can be straight-
forwardly extended to the classification problem. Assume that ri DMD modes
Φi = Φri(qi) and eigenvalues Λi = Λri(qi) of each dynamic regime i are computed, so
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that the augmented DMD library reads as

Φ̂ :=


Φ1 Φ2 · · · Φd

Φ1Λ1 Φ2Λ2 · · · ΦdΛd
...

...
...

...

Φ1Λj
1 Φ2Λj

2 · · · ΦdΛj
d

 . (5.10)

The problem of regime classification can then be recast as

î = arg min
i=1,...,d

||yt+jt − CΦ̂iβ||2, (5.11)

and the reader should note, that β ∈ CR is 1-block-sparse and yt+jt ∈ Rpj is the
available data. Therefore, the augmented classification problem incorporates more
system data over time, i.e. dynamics, with the same number of sensors (the states
are sensed at the same spatial locations, and the time evolution of the sensor data
is recorded). The subsequent numerical part demonstrates the effectiveness of this
approach for various airflow sensing test problems.

5.4 Numerical Results

Two test cases are considered herein - A data set from a FLUENT simulation of an
indoor-air environment with forced-convection and a natural convection dataset ob-
tained from spectral element solver NEK5000. Only few results are available in the lit-
erature for classification of dynamic regimes via compressed sensing, see [40] and [42,
Table 6]. Our results compare to those publications, and often show even improved
classification. However, the algorithms were not compared on the same examples.

5.4.1 Two dimensional Navier-Stokes

We consider velocity data u(ti) from a Navier-Stokes simulation in an enclosed do-
main. The physical domain is a room of height H = 16ft, length L = 8ft, and one
inlet on the top left corner and two outlets on the center right (window) and bottom
left, all of height wi = wo = 1ft. A schematic of the room is shown in Figure 5.1
below. We consider a two-dimensional problem, and therefore assume that the di-
mension normal to the plane (z-direction) is much larger than H, and that boundary
effects from the wall in z-direction are negligible. In other words, the cross section
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can be thought of as located in the center of a long z-dimension. The Reynolds
number is defined as Re := uin · (2wi)/ν with ν = µ/ρ is the kinematic viscosity.
Here, µ = 1.7894 · 10−5Ns

m2 and ρ = 1.225 kg
m3 , which are typical values for air, and wi,

the height of the inlet was set as 1ft = 0.3048m. The term 2wi then denotes the
hydraulic diameter. The Reynolds number is the ratio of inertia and viscous forces
so for larger values of Reynolds the impact of viscosity is less pronounced and the
flow is governed by the convective terms in Navier-Stokes equations. The boundary
conditions on the wall are assumed no slip, i.e. u = v = 0. Here, u and v are
the horizontal and vertical components of velocity. On the inlet, the velocities are
prescribed, and the resulting Reynolds numbers are given in Table 5.1, for which
the flow is laminar. Note, that the for regimes two and four, the inflow velocity is
ten times the value of regimes one and three. Those four scenarios define the flow
regimes to be distinguished in the sensing experiment. Initially, there is no flow
and the temperature resides uniformly at 300K. The flow field and contour plots of
a snapshot of the simulations at 600s of the four flow regimes is shown in Figures
5.2–5.3.

Figure 5.1: Geometry for indoor room, inlets, outlets and window.

The reader should note, that despite an open window in case four, the flow does not
leave the room. Due to the large inlet velocity, the velocities in the room are large,
and therefore cause low pressures around the window area, which causes the flow
to continue downstream. However, the formation and arrangement of vortices are
non-trivially different compared to case 2 (window closed).

FLUENT uses an optimized, unstructured spatial grid so solve the Navier-Stokes equa-
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Regime Re Bottom outlet Window
R1 104.3 open closed
R2 1043 open closed
R3 104.3 open open
R4 1043 open open

Table 5.1: 2D Navier-Stokes: Flow regimes are defined via the Reynolds number Re,
where the inflow velocity is varied by a factor of 10.

Figure 5.2: Velocity field to solution of Navier-Stokes equations for regimes R1–R4
(cases), as given in Table 5.1 at 600s.

tions, which can vary across regimes. However, the sensor locations should not be
affected by this, and hence we interpolated the solution data on a regular 49 × 49
grid, whose nodes are possible sensor locations (in case of distributed sensing). As a
technical note, the boundaries of the interpolated grid are chosen slightly away from
the physical domain, in order to sense the flow there (The flow in x, y direction on
the walls would be zero, due to the no-slip boundary condition). DMD and POD
modes were computed from the interpolated data.

Classification of the aforementioned flow scenarios is performed through 100 experi-
ments for every regime. At each experiment per regime, a snapshot of the simulation
data for this regime is picked, and p = 30 measurement locations are chosen at ran-
dom from the set of boundary nodes. At the sensor locations, ux, uy are measured.
Consequently, 2p measured values are available. Moreover, white noise is added with
a signal-to-noise-ratio of SNR = 10. We compare standard DMD and POD for gen-
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Figure 5.3: Contour plot of solution to Navier-Stokes equations for regimes R1–R4
(cases), as given in Table 5.1 at 600s.
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R1 R2 R3 R4
R1 98.0% 2.0% 0% 0%
R2 1.0% 97.5% 0% 1.5%
R3 0.5% 0% 99.5% 0%
R4 0% 0.5% 4.0% 95.5%

Table 5.2: 2D Navier-Stokes: Confusion matrix for classification with p = 30 bound-
ary sensors using DMD basis.

R1 R2 R3 R4
R1 88.5% 0% 11.5% 0%
R2 0% 99.5% 0% 0.5%
R3 9.0% 0.5% 90.5% 0%
R4 0% 0.5% 0% 99.5%

Table 5.3: 2D Navier-Stokes: Confusion matrix for classification with p = 30 bound-
ary sensors using POD basis.

eration of the library. For DMD, ri = 6 basis functions are computed, and for POD,
the energy level is set to Emin = 99.9%, resulting in r1 = 3, r2 = 7, r3 = 3, r4 = 6
POD basis functions in the respective regimes. Tables 5.2 - 5.3 show the confusion
matrices for boundary sensing with POD, and DMD, respectively. The reader should
observe, that the classification performance increases when using the DMD modes,
which we have seen in many experiments.

Effect of Augmented DMD. We investigate the robustness to noise of the basis
functions, where the effect of the augmentation of the DMD basis is particularly
noticeable. Therefore, we increase the sensor noise to SNR = 5, and reduce the
number of flow measurements to p = 10. The confusion matrix in this case is
shown in Table 5.4, and we can see that the confusion between regimes increased
significantly. Below, we demonstrate that augmentation of the DMD basis improves
classification performance in the presence of significant noise.

In Table 5.5 the confusion matrix is shown for the case of j = 4, hence the DMD
basis is augmented as in equation (5.10) by four additional block rows. Moreover,
Table 5.6 shows the confusion matrix for the case of j = 7, i.e. the DMD basis is
augmented by seven more blocks. In other words, seven consecutive time samples
from the dynamical system are taken to classify the current regime, which clearly
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R1 R2 R3 R4
R1 47.5% 27.5% 13.5% 11.5%
R2 10.5% 61.5% 6.0% 22.0%
R3 17.5% 11.5% 52.5% 18.5%
R4 5.0% 13.0% 12.5% 69.5%

Table 5.4: 2D Navier-Stokes: Confusion matrix for classification with p = 10 bound-
ary sensors and high noise using DMD basis.

R1 R2 R3 R4
R1 89.5% 3.5% 6.5% 0.5%
R2 2.5% 88.0% 1.0% 8.5%
R3 7.0% 1.5% 90.0% 1.5%
R4 1.5% 2.5% 1.0% 95.0%

Table 5.5: 2D Navier-Stokes: Confusion matrix for classification with p = 10 bound-
ary sensors, high noise and augmented DMD basis with j = 4 consecutive time
measurements.

contributes to the robustness of the sensing method.

Subsequently, we investigate the convergence behavior of the identification as the
number of measurements p increases, as well as convergence when using a DMD
basis augmented by j block-rows. The parameters for this test problem are set as
follows: The overall state dimension is n = 4801, every library block in DMD contains
ri = 6 basis functions. The number of sensors was increased as p = 5 : 1 : 30 and
the basis was augmented by j = 0 : 1 : 9 blocks. One hundred experiments were
performed, and the results averaged over those. In every element, a random selection
of the boundary nodes for flow sensing was chosen, and the white noise generated

R1 R2 R3 R4
R1 93.5% 2.0% 4.5% 0%
R2 1.5% 96.5% 0% 2.0%
R3 6.5% 0% 93.0% 0.5%
R4 0.5% 3.0% 0.5% 96.0%

Table 5.6: 2D Navier-Stokes: Confusion matrix for classification with p = 10 bound-
ary sensors and high noise using augmented DMD basis with j = 7 consecutive time
measurements.
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with a signal-to-noise-ratio of SNR = 20.
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Figure 5.4: 2D Navier-Stokes: Confusion plot for the four regimes R1–R4 as the
number of boundary sensors p increases, and the DMD basis is augmented with j
additional blocks.

As we can see from Figure 5.4, the identification quality converges rapidly with the
number of sensors as well as the augmentation of the basis function. One should note,
that especially for a small number of measurements, the augmented DMD approach
improves results significantly. For reconstruction (if uniformly and randomly sampled
in domain) the number of required sensors is p ≈ k log10(n/k) ≈ 17 by the theory of
compressed sensing.
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5.4.2 Boussinesq Equations

We consider a coupled thermal-fluid dynamics application, where the focus is on
the interaction of the forced incoming flow (displacement ventilation type) with the
natural convection induced by the buoyancy force. Velocity and temperature distri-
butions of the flow are determined with a finite volume scheme using FLUENT. The
geometry is chosen as in Figure 5.1, with the corresponding values from the previous
example. The bottom floor is heated at 303K and the top floor resides at 297K, the
velocity inlet and outlets are unchanged. The parametric study should evolve around
the Archimedes number Ar := Gr/Re2, as the measure of natural to forced convec-
tion. Here, Gr denotes the Grashoff number, and the simulations are performed for
the same Reynolds numbers as in Table 5.1, with Gr = 1.6 · 1011.

Due to viscous effects a vortex starts to form in the upper part of the room. The
instability of the hot air adjacent to the warm floor at this location will cause another
large circulation to develop which is purely formed due to buoyancy forces. Such a
structure is common in Rayleigh-Benard problems and in some literature referenced
as “mean wind”. For the current parameters, it can be seen that the mean wind
is strong enough to override the upper vortex and merge with it. As a result, after
some time there is a governing vortex at the center of the cavity. In case of mixed
convection examined here, the dynamics is even more complicated because the mean
wind also interacts with incoming flow (interaction of thermal/natural convection
and displacement/forced convection). Therefore, even for regime one with small in-
let velocity the central vortex collapses into two (or even more) vortices at seemingly
random times, which later merge again. By increasing the inlet velocity, i.e. regime
2, the inertial forces increase and thereby the Archimedes number decreases. Funda-
mentally, the formation of flow structures is highly dependent on Ar. Thus, the ratio
of inlet velocity (Re number) and temperature difference between top and bottom
floor (Gr number) result in a variety of regimes, as listed in Table 5.7.

Regime Ar Bottom outlet Window
R1 17.4 open closed
R2 173.8 open closed
R3 17.4 open open
R4 173.8 open open

Table 5.7: 2D Boussinesq: Flow regimes are defined via the Archimedes number Ar.

The coupling of dependent variables can be used for practical flow sensing. Airflow
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R1 R2 R3 R4
R1 1.00 0.45 0.60 0.46
R2 0.45 1.00 0.39 0.37
R3 0.60 0.39 1.00 0.54
R4 0.46 0.37 0.54 1.00

Table 5.8: 2D Boussinesq: Subspace alignment matrix ηij = ||PiPj||2, with Pi =
Φi(Φ

∗
iΦi)

−1Φi for the library of four regimes R1–R4.

has been sensed successfully through pressure measurements, and reconstructing
the velocity map from limited pressure sensor information is possible [40, 15]. In
this example, both the thermal as well as the flow states can be sensed. However,
temperature measurements are easiest to acquire with the current sensor technology,
so the goal is to use a minimal number of velocity sensors. At this point, it is not
obvious if the full velocity field can be classified by using temperature measurements
only, and we shed some light on this through our numerical experiments.

Proper Orthogonal and Dynamic Modes are computed from an interpolated dataset,
and classification with various sensor locations and quantities are performed there-
with. A convergence study of the interpolation grid size with respect to the heat
flux resulted in a 49 × 49 grid (Nusselt number convergence). In each of the 100
experiments, a white noise was added to the signal, to corrupt the measurement and
investigate robustness of the classification algorithm. The POD modes were com-
puted from the stacked data of temperature and velocity snapshots. The goal here
is to retain as much of the coupling in the data as possible, hence we choose not to
compute the modes separately, as done for the structure preserving model reduction
in Chapter 2. The energy contained in the POD basis is Emin = 0.995%, leading to
r = 2, 7, 2, 2 POD modes in the four regimes, respectively. Table 5.8 shows the align-
ment of the subspaces spanned by the full modes, as defined by η in equation (5.7).
In contrast, Table 5.9 gives the alignment of the subspaces spanned by the modes
restricted to the boundary. The reader should note, that subspace alignments are
more pronounced for the full modes Φ in Table 5.8. In other words, that subspaces
are less distinguishable from the boundary content only.

Table 5.10 shows the confusion matrix for the case of boundary sensors with the
DMD basis. The signal-to-noise-ratio is set to SNR = 10, pV = 5 velocity sensor
locations are chosen, and the temperature is sensed at pT = 180 boundary nodes,
which is more than 90% of the available temperature information. As can be seen
from the results, boundary sensing can be highly effective, and classifies regimes
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R1 R2 R3 R4
R1 1.00 0.62 0.60 0.53
R2 0.62 1.00 0.55 0.46
R3 0.60 0.55 1.00 0.48
R4 0.53 0.46 0.48 1.00

Table 5.9: 2D Boussinesq: Subspace alignment matrix for the library of four regimes
R1–R4 after sensing: ηij = ||PiPj||2, with Pi = Θi(Θ

∗
iΘi)

−1Θi, and Θ = CΦ.

R1 R2 R3 R4
R1 91.0% 4.0% 5.0% 0%
R2 0% 100.0% 0% 0%
R3 5.0% 0% 95.0% 0%
R4 0% 1.0% 0% 99.0%

Table 5.10: 2D Boussinesq: Confusion matrix with boundary sensors using DMD for
the four regimes R1–R4.

correctly and robustly with more than 90% success.

In §5.3.5, we introduced a method to use subsequent time sensor measurements to
increase robustness to noise and confidence of the classification, and called it aug-
mented DMD. Here, we show how the classification improves both this the number
of sensors, but also with the amount of subsequent data used in the sensing basis.
Figure 5.5 shows amount of correct classification of each regime, given the number
of velocity and temperature measurements, for various augmented basis. The results
were obtained for a moderate signal to noise ratio of SNR = 10. The identification
improves significantly as the basis is augmented. Note, that for this approach, no
additional sensors are needed required.

5.4.3 Differentially Heated Square Cavity - Direct Numeri-
cal Simulation Data

A model of a differentially heated square cavity is considered, where again the Boussi-
nesq approximation for the Navier-Stokes equations are used. This model is of par-
ticular interest, since a characteristic parameter, the Rayleigh number, defines the
avenue to turbulence, from laminar solutions, to periodic, quasi-periodic and finally
turbulent steady-state solutions. As such, those flow patterns arising from various
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Figure 5.5: 2D Boussinesq: Confusion values for regimes R1–R4 as the velocity
sensors pV , the temperature sensors pT , and the augmentation j increases.

Raleigh numbers can provide a natural way of defining “regimes” for classification,
see Tables 5.11–5.12. The differentially heated square cavity model has been well
studied for laminar regimes in [100, 137] and for unsteady behavior in [129]. Re-
cently, Borggaard and San [160] presented low-order models for the differentially
heated square cavity, and proposed Reynolds-number based closure models for more
complex flow scenarios.

The spatial domain is the unit square, so L = H = 1, and the variables are non-
dimensionalized. A schematic of the domain is shown in Figure 5.6. The cold (left)
and hot (right) walls are isothermal and set as T (x = 0) = 0, and T (x = 1) = 1. The
top and bottom walls are free temperature boundaries. A no-slip boundary condition
on all four walls (i.e. u = v = 0) is imposed.

A natural convection is initiated, as the heated fluid is rising along the hot wall,
while cooled fluid is falling along the cold wall. The Prandtl number is 0.71 (typical
value for air), and the temperature difference and other fluid properties are chosen

such that the Rayleigh number is Ra = ρ2gβ∆TH3

µ2
Pr varies between 10 and 109. The

simulation data is obtained with the spectral element software NEK5000. Direct nu-
merical simulation, as opposed to simulations with turbulence models as in FLUENT
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Figure 5.6: Differentially Heated Square: Schematic of the computational domain
for the DNS example and NEK5000 simulation.

can give deeper insight into the mechanisms causing turbulence and unsteady behav-
ior in flows, as finer scales are resolved in the solution. The mean Nusselt number,
defined as Nu = 1

L

∫ L
0

∂T
∂x
dx, matches results in the literature for various values of

Rayleigh number. The spectral element grid for the simulations is finer for higher
Rayleigh numbers, see Tables 5.11–5.12.

R1 R2 R3 R4 R5 R6 R7 R8 R9
Ra 10 102 103 104 105 106 107 108 1.82 · 108

3n 1728 1728 1728 1728 1728 1728 1728 248,832 110,592

Table 5.11: Differentially Heated Square: Flow regimes R1–R9 with corresponding
Raleigh numbers and spectral grid size.

R10 R11 R12 R13 R14 R15 R16
Ra 1.83 · 108 1.85 · 108 2 · 108 4 · 108 6 · 108 8 · 108 109

3n 110,592 110,592 110,592 110,592 110,592 110,592 248,832

Table 5.12: Differentially Heated Square: Flow regimes R10–R16 with corresponding
Raleigh numbers and spectral grid size.

The velocity and temperature data is stacked into the combined state x = [u v T ]∗ ∈
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R3n, and the matrix X contains the snapshots (in time) as columns. Moreover, the
velocities are scaled by a factor of 5000, to have both temperature and velocity in
the same order of magnitude. This way, the reduced basis computation (via svd) is
not biased towards larger magnitude entries. To circumvent dimensionality issues,
the full simulation data is subsequently interpolated on a 40 × 40 equidistant grid.
Afterwards, the solutions are defined on vector spaces with identical dimension. A
convergence study with respect to the interpolation grid size is performed, to assure
that the important information in the flow solutions is retained. We compute the
DMD eigenvalues from the full and interpolated data, and found that those indeed
converge, and a good agreement and trade-off was given for the 40 × 40 size of the
spectral grid, so 3n = 4800. For regimes R1–R7, the solutions are in fact extrapolated
onto this grid, yet this does not change the eigenvalues considerably. In Figure 5.7,
a plot of the DMD spectrum of the first twenty eigenvalues computed from standard
DMD is given. Importantly, the eigenvalues close to the unit circle (mainly oscillatory
behavior) converge noticeably quick.
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Figure 5.7: Differentially Heated Square: Convergence of the first twenty DMD
eigenvalues computed from the full data, extrapolated (left: R7), and interpolated
(right: R11) data.

For every regime, we compute a DMD basis Φi of size ri = 8, and subsequently
assemble the library of regimes, Φ ∈ R3n×R, where R =

∑16
i=1 ri. Moreover, when a

time series of measurements is taken for better classification, we augment Φ to Φ̂ by
j additional blocks. First, we investigate the alignment and coherence of the regime
library. The measure

γij =
||PiPj||F
||Pi||F

, (5.12)
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where Pi = Φi(Φ
∗
iΦi)

−1Φ∗i gives insight into the alignment of the projections. To
have a second look at the effectiveness of the DMD basis to represent the data, the
scalar

κij =
||PiXj||F
||Xj||F

, i, j = 1, . . . , d, (5.13)

indicates how much of the information of the data is retained in the regimes. When
proper orthogonal decomposition is used as a feature extraction technique, κij at-
tains its maximum, as POD is the optimal basis to represent the data, see equation
(1.41). In contrast, DMD has its merits in representing the dynamics of the system,
and therefore one should have a closer look at its ability to represent the data. Figure
5.8 shows the measure γij as defined in equation (5.12), both for the full projection
onto Φi (left), and the projection onto the boundary modes CΦi only (right). This
measure indicates, how much information is retained, by projecting onto a subspace
first, and subsequently onto another subspace. The diagonal contains ones, and the
off diagonal entries are generally decreasing with the off-diagonal index, indicating
that only neighboring regimes (in terms of Raleigh number) share similar features.
By definition, the matrices are symmetric. Moreover, two blocks of regimes appear,
the first one from Ra = 10 to Ra = 107, and the second block from Ra = 108 to
Ra = 8 · 108. Note, that the last regime for Raleigh number Ra = 109, resulting in
a “chaotic” flow solution, is considerably different from the other regimes. Interest-
ingly, the blue colored fields get darker from full to boundary projection, which gives
better distinction of regimes with large differences in Raleigh number. In contrast,
within the two blocks, the alignment increased. Based on this information, we con-
jecture that through boundary sensing, misidentification slightly gets worse within
the blocks; we also expect to see a confusion matrix similar in structure to Figure
5.8.

Figure 5.9 sheds a different light onto the alignment of the subspaces. The measure
κij, as defined in equation (5.13), indicates how much information is preserved by
projecting on the basis Φi, through the projection Pi. As a first observation, the
projection onto the (non-optimal) DMD modes still retains a high energy content of
the data, in that the diagonal entries are mostly above 98%. Additionally, neigh-
boring regimes share similar features; for instance, the projection of the data from
regime 3 onto the basis of regime 1 retains a high amount of energy (measured in
the Frobenius norm). As before, two groups of regimes appear. In analogy to the
considerations above for the measure γij, the similarity within the two blocks in-
creases (darker red in the right plot with boundary ), and the distinction between
other the blocks increases. Consequently, we expect some confusion between the two
clusters. From a physical point of view, this is not surprising, since a bifurcation
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Figure 5.8: Differentially Heated Square: The subspace alignment measure γij from
definition (5.12).

towards a periodic steady state has been observed in the literature [129] around
Ra ≈ 1.83 · 108. Therefore, flows with Raleigh number close to the bifurcation will
show similar features.
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Figure 5.9: Differentially Heated Square: The subspace alignment measure κij from
definition (5.13).

Next, the results for the classification of the flow regimes are shown. For this task,
pV = 10 velocity, and pT=50 temperature sensors are used, which are placed on the
boundary. For technical reasons (no-slip boundary condition), the velocity is sensed
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on the nearest grid point to the walls. The signal to noise ratio is set to SNR = 20.
The DMD basis is augmented by two block rows. For each regime, one hundred
experiments are performed, where at each test, a snapshot from a given regime is
picked and the best match to one of the 16 regimes is found by projection (5.5).
In Figure 5.10, the confusion matrix for the 16 regimes is plotted. The block with
the highest confusion (worst identification) is between regimes R9–R12, so Raleigh
numbers 1.82 · 108− 2 · 108, which is intuitive from a physical perspective. Moreover,
there appears to be confusion between the regimes one and two, and subsequently
misidentification of the high Raleigh number scenarios. However, this is a local
phenomenon, and typically only confuses neighboring regimes.
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Figure 5.10: Differentially Heated Square: Confusion matrix for flow regimes R1–
R16.

Below, the results for the last nine regimes (second cluster) are presented in more
detail. Tables 5.13–5.14 show the data fit measure κij, as defined in equation (5.13).
Moreover, Tables 5.15–5.16 show the closeness of projections, computed from the
measure γij in equation (5.12). In all cases, the values computed from the full,
spatially distributed DMD modes in Table 5.15 are smaller than the value computed
from the boundary values of the DMD modes CΦ, in Table 5.16. This indicates again,
that one has to expect a slight deterioration of classification when using boundary
information only. Lastly, Table 5.17 shows the confusion values for the nine regimes.
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R8 R9 R10 R11 R12 R13 R14 R15 R16
R8 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.97 0.93
R9 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.97 0.93
R10 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.97 0.92
R11 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.97 0.92
R12 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.97 0.93
R13 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.97 0.92
R14 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.97 0.92
R15 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.93
R16 0.92 0.92 0.92 0.91 0.92 0.92 0.92 0.86 1.00

Table 5.13: Differentially Heated Square: Data fit measure κij from equation (5.13),
where the basis was augmented by two blocks (j = 2), and the projection is computed
from the full modes Φi for every regime. Refer to Tables 5.11–5.12 for the definition
of the regimes.

R8 R9 R10 R11 R12 R13 R14 R15 R16
R8 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.96 0.88
R9 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.97 0.87
R10 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.97 0.87
R11 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.97 0.87
R12 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.97 0.87
R13 0.99 1.00 1.00 1.00 1.00 1.00 0.99 0.97 0.85
R14 0.99 0.99 0.99 0.99 1.00 1.00 1.00 0.97 0.87
R15 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.87
R16 0.88 0.87 0.87 0.85 0.87 0.86 0.87 0.83 0.99

Table 5.14: Differentially Heated Square: Data fit measure κij from equation (5.13),
where the basis was augmented by two blocks (j = 2), and the projection is computed
from the boundary modes CΦi. Refer to Tables 5.11–5.12 for the definition of the
regimes.
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R8 R9 R10 R11 R12 R13 R14 R15 R16
R8 1.00 0.79 0.80 0.78 0.69 0.52 0.49 0.44 0.12
R9 0.79 1.00 0.97 0.86 0.76 0.57 0.55 0.50 0.12
R10 0.80 0.97 1.00 0.87 0.76 0.57 0.55 0.51 0.12
R11 0.78 0.86 0.87 1.00 0.76 0.59 0.55 0.53 0.12
R12 0.69 0.76 0.76 0.76 1.00 0.63 0.61 0.52 0.12
R13 0.52 0.57 0.57 0.59 0.63 1.00 0.72 0.60 0.13
R14 0.49 0.55 0.55 0.55 0.61 0.72 1.00 0.69 0.13
R15 0.44 0.50 0.51 0.53 0.52 0.60 0.69 1.00 0.13
R16 0.12 0.12 0.12 0.12 0.12 0.13 0.13 0.13 1.00

Table 5.15: Differentially Heated Square: Measure for shared projection information
γij from definition (5.12). The projection is computed from the full modes Φi.

R8 R9 R10 R11 R12 R13 R14 R15 R16
R8 1.00 0.84 0.84 0.79 0.76 0.64 0.60 0.53 0.19
R9 0.84 1.00 0.96 0.84 0.82 0.67 0.65 0.60 0.19
R10 0.84 0.96 1.00 0.85 0.83 0.66 0.63 0.59 0.18
R11 0.79 0.84 0.85 1.00 0.77 0.70 0.63 0.61 0.18
R12 0.76 0.82 0.83 0.77 1.00 0.68 0.66 0.60 0.19
R13 0.64 0.67 0.66 0.70 0.68 1.00 0.77 0.64 0.20
R14 0.60 0.65 0.63 0.63 0.66 0.77 1.00 0.74 0.21
R15 0.53 0.60 0.59 0.61 0.60 0.64 0.74 1.00 0.22
R16 0.19 0.19 0.18 0.18 0.19 0.20 0.21 0.22 1.00

Table 5.16: Differentially Heated Square: Measure for shared projection information
γij from definition (5.12). The projection is computed from the boundary modes
CΦi.
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R8 R9 R10 R11 R12 R13 R14 R15 R16
R8 93 3 0 0 3 1 0 0 0
R9 2 27 23 27 20 1 0 0 0
R10 1 19 17 30 30 3 0 0 0
R11 1 23 13 35 23 3 0 2 0
R12 1 17 19 28 32 3 0 0 0
R13 2 2 3 4 5 71 11 2 0
R14 2 1 3 0 1 16 65 12 0
R15 1 0 1 0 1 3 12 82 0
R16 0 0 0 0 0 0 0 0 100

Table 5.17: Differentially Heated Square: Confusion matrix over 100 experiments
with randomly selected boundary sensors (pT = 50 for temperatures and pV = 10 for
velocity). The noise level was around 10% (SNR = 20) and the basis was augmented
by two blocks (j = 2). Refer to Tables 5.11–5.12 for the definition of the regimes.
It is obvious, that the dynamic regimes 9–12 show high confusion, as they dynamics
defined by those Raleigh numbers is similar.

In the previous study, all available data is used for generation of the sparse library,
and subsequently, the same data used for classification. Here, training and testing
data is separated, to investigate the performance of the algorithm to unknown data.
In particular, the library of sparse DMD basis is generated for the regimes given in
Table 5.18.

Reg. R8 R12 R13 R14 R15 R16
Ra 108 2 · 108 4 · 108 6 · 108 8 · 108 109

3n 248,832 110,592 110,592 110,592 110,592 248,832

Table 5.18: Differentially Heated Square: Flow regimes for sparse library with cor-
responding Raleigh numbers and spectral grid size. The regime numbering is kept
consistent with the prior convention in Tables 5.11–5.12.

The corresponding subspace measures (κij and γij) can be read out from Tables
5.13–5.16 above. The testing data is taken from regimes R9, R10, and R11, which
correspond to Raleigh numbers between 1.82 · 108 and 1.85 · 1.85. As noted earlier,
there is a bifurcation [129] of the flow at Ra ≈ 1.83 · 108, which has been observed
both experimentally, as well as numerically. From a physical point of view, one
expects the classification of the testing data to match to regimes R8 or R12. In
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Regime R8 R12 R13 R14 R15 R16
Classification 6% 87% 6% 0% 0% 0%

Table 5.19: Differentially Heated Square: Correct identification of unknown data
(taken from regimes R9–R12) for six regimes at high Raleigh numbers. As expected
from the physics, the data is classified largely as regime R12.

fact, this is very much the case when using the sensing method developed here. We
performed 600 independent experiments, where at each experiment a flow snapshot
(or subsequent snapshots for the augmented sensing algorithm) is taken from the
test data, and classified into the six sparse basis regimes given in Table 5.18. The
signal-to-noise ratio is set to SNR = 20, and pV = 10 flow sensors are used, together
with pT = 50 temperature sensors, all placed on the boundary of the unit square (to
be precise, recall that “boundary” for the velocity sensors means slightly inside the
domain, since the velocity is set zero at the boundaries). For better classification
performance, and more robustness to noise, the DMD basis is augmented by two
blocks, i.e. three subsequent time snapshots are taken for (batch-wise) classification.

Table 5.19 contains the classification results for identifying the regimes from the
unknown data. Note, that the sparse basis library does not contain any of this data.
Nonetheless, the sensing method is able to match the testing data to the (physically)
correct flow patterns. In practice, this is important, since one does not expect the
data to repeat itself in a given situation. Hence, the sensing mechanism needs to be
able to match data to its “closest” subspace in the library collection.

One way to cope with this situation, while not discarding any data, would be to
cluster subspaces. In particular, the subspaces corresponding to R8–R12 share a
considerable amount of similarities, and therefore a subspace clustering algorithm
could be used to combine those into a single basis. This is part of future work.
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5.5 Conclusion

The compressive sensing based classification algorithm developed here, effectively
used boundary data to classify dynamic regimes. This is important for the devel-
opment of regime-based controllers and observers, and we believe it to have great
potential for industrial applications. Through using successive-in-time data from
sensors (batch-data), we were able to improve the robustness to noise, and the clas-
sification performance overall. This comes at no additional cost for sensors.

In the last example, where DNS data from a differentially heated cavity was con-
sidered, we have seen (as expected from the physics), that clusters of data appear.
On the one hand, one could keep a representative regime, and discard the others.
However, this would not incorporate all the available data. Instead, we are interested
in subspace clustering methods, which would retain the most information possible,
and reduce the data to a few relevant clusters. This is particularly helpful, where
the solution behavior and bifurcations with respect to predefined parameters, are not
obvious from a physics based point of view. Hence, data-based clustering algorithms
could work on experimental data, and improve the classification results even further.

Additionally, we presented several measures, such as γij, defined in equation (5.12),
and κij from (5.13), which give a good a priori indication, as to how well the classifi-
cation will work. In essence, those measures quantize the optimality of the projection
of the data onto the DMD modes, and the alignment of the computed subspaces. An
observability result for compressive sensing for linear systems is available in [80, 68].
Combining observability theory and compressive sensing, we plan to obtain results
for optimal sensor placement and classification performance. In particular, these
probabilistic results should be linked to the subcoherence and block-coherence of the
assumed library of sparse basis functions.
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Chapter 6

Conclusions and Future Work

The goal of this thesis was to leverage the advantages of physics and data-based
reduced order models for design, optimization, and control of physical systems. New
data and model reduction algorithms were developed, which are either an improve-
ment of available methods, or a new way to solve a challenging problem with a
particular emphasis on practical applications. Specifically, the following results were
obtained in this dissertation:

• An algorithm to solve Algebraic Riccati equations, which produces higher ac-
curacy at lower solution rank compared to a state of the art Krylov method,
and can use available sparse linear solvers and software. The algorithm was
designed to be easily implementable for practitioners of proper orthogonal de-
composition. Moreover, this provides a first step towards a completely matrix
free approach to solve ARE. This was presented in Chapter 3.

• A method for system identification and model reduction that addresses the
challenges of a large number of inputs and outputs. This circumvents the
computation burden of current algorithms, and makes system identification for
MIMO systems computationally more efficient. A stability result and an error
bound for this algorithm were also developed. This was presented in Chapter
4.

• A method for classification and sensing of parameter dependent data, based on
a library of dynamic regimes. This addresses the challenge of utilizing a large
amount of offline and online data, in the design of sensors and observers. As
an application, we considered thermal-flow data, which depends on parameters



CHAPTER 6. CONCLUSIONS AND FUTURE WORK 163

such as the Reynolds and Rayleigh number. We developed a new, augmented
sensing basis, which improves robustness to noise of the classification method,
and uses only boundary sensor data as inputs to the algorithm. Through the
method of compressed sensing, we were able to reduce the amount of required
online data to classify flow scenarios. This algorithm has great promise for the
use in online-control mechanisms in industrial systems. This was presented in
Chapter 5.

The focus and motivation was to use model reduction and compressive sensing tech-
niques to solve challenging problems in control, estimation and identification of large-
scale systems. In particular, we attempt to combine the advantages of physics-based
models with data-based methods to use “the best of both worlds”. The algorithms
in this dissertation were not designed for implementation on high performance com-
puters, but rather on typical clusters and workstations, which are widely used in
academia and industry.

The results in this dissertation certainly do not “close the chapter” on these problems.
They raise several interesting questions, which remain to be addressed, and where the
author sees potential for further research. The topics of particular interest include:

• Developing a rigorous convergence theory for the Riccati solver from Chapter 3.
As we pointed out, there are parallels between the POD method and rational
Krylov subspace techniques (as discussed in §3.4.1), and this could help to
obtain a thorough analysis of the method.

• Developing subspace clustering algorithms to automatically combine nearby (in
some metric) subspaces. So far, for a simple geometry, a clustering is possible
due to physical insight into the dynamical behavior (bifurcations, transitions)
of the system. For more general geometries and increasingly realistic (hence
complex) boundary conditions, this approach might not be feasible.

• Relating the block- and subcoherence of the sparse dictionary to the success
of classification. Finding sharp necessary and sufficient conditions for the al-
gorithm to classify a given regime correctly.
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Appendix A

Further Technical Results

The appendix adds some further, known technical results, which are meant for the
interested reader. Those are important, but would have distracted from the main
ideas in the above sections.

A.1 Approximation Theory for Control of PDEs

Theorem 1.5.3 guarantees the existence of the optimal controller for the dynamical
system generated by Burgers equation with a bounded control operator. However,
to compute such a control, a discretization scheme is needed. Thus, one seeks a
finite dimensional approximation KN to the gain operator K. This poses the natural
question of convergence. Does the optimal gain KN computed from the discretized
system converge to the infinite dimensional gain operator K? This question is ad-
dressed by K.Ito in [105]. To keep this thesis rather self-contained, we recall the
key results from this paper. With regard to notation, it is customary to use sub-
scripts to denote finite dimensional approximations, hence let x ∈ X be the infinite
dimensional state, and let xn be the approximation in finite dimensions.

πn : X 7→ Xn ⊆ Rn (A.1)

be the orthogonal projection of X onto XN . The projection should satisfy the con-
vergence property

||πnx− x||X ≤Mn−s||x||D(A),
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where M ≥ 0 is a generic constant independent of the state space dimension n and s
is the speed of convergence. Through this projection πn one can define a sequence of
approximating problems (Xn, An, Bn, Cn). The linear, finite rank operators can then
be represented via matrices An, Bn, Cn are matrix representations of appropriate size
of the finite dimensional operators.

Now that the finite dimensional optimal control problem is set up, the issue of con-
vergence of solutions of the finite dimensional Riccati equation (1.36) to the infinite
dimensional solutions of (1.24) shall be addressed. Therefore, suitable assumptions
need to be made. In particular, one needs to assume convergence and dual con-
vergence of the system. Moreover, assumptions on the preservation of exponential
stabilizability and detectability are necessary. In particular, the following assump-
tions are made in [105]:

Assumption A.1.1. (convergence): For each x ∈ X and u ∈ U = R there holds:
(a) eAntπnx→ S(t)x,
(b) Bnu→ Bu,
(c) Cnx→ Cx.

Assumption A.1.2. (dual convergence): For each x ∈ X and y ∈ Y there holds:
(a) eA

∗
ntπnx→ S∗(t)x,

(b) B∗nπnx→ B∗x,
(c) C∗ny → C∗y.

Assumption A.1.3. (preservation of exponential stabilizability/detectability): As-
sume that there is a n0 such that for all n ≥ n0 the following hold:
(a) The family of pairs (An, Bn) is uniformly stabilizable, i.e. there exists a sequence
of operators Kn and positive constants M1 ≥ 1, ω1 > 0 such that sup ||Kn|| <∞ and
the semigroups generated by the closed loop operators An − BnKn are exponentially
bounded as

||e(An−BnKn)tπn|| ≤M1e
−ω1t, t ≥ 0. (A.2)

(b) The family of pairs (An, Cn) is uniformly detectable, i.e. there exists a sequence
of operators Gn and positive constants M2 ≥ 1, ω2 > 0 such that sup ||Gn|| <∞ and
the semigroups generated by the closed loop operators An − GnCn are exponentially
bounded as

||e(An−GnCn)tπn|| ≤M2e
−ω2t, t ≥ 0. (A.3)

Theorem A.1.4. ([105]) Let Assumptions A.1.1 - A.1.3 be satisfied. Then there
exists an integer n0 such that for all n ≥ n0 the Riccati equation has a unique
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nonnegative solution Pn with bounded operator norm, sup ||Pn|| <∞, and there exist
constants ω > 0 (independent of n) and M ≥ 1 such that

||e(An−BnB∗nPn)tπn|| ≤Me−ωt, t ≥ 0. (A.4)

Corollary A.1.5. ([105]) Let Assumptions A.1.1 - A.1.3 be satisfied and (An, Bn)
be stabilizable and (An, Cn) detectable. Then the solution to the finite dimensional
Riccati equation, Pn, converges strongly to Π, the solution to the operator Riccati
equation.

Theorem A.1.6. ([105]) Suppose that B is compact and Bn = πnB and that As-
sumptions A.1.1(a) and A.1.3(a) are satisfied. Then (A,B) is stabilizable.

Theorem A.1.7. ([112],p.116) Let A : D(A) 7→ X be the generator of an analytic
semigroup and B ∈ L(U,Z) a bounded control operator. Moreover, let πn denote the
projection operator in (A.1) associated with the FEM discretization. Under certain
natural assumptions on the approximating scheme, the finite dimensional control law
is

u∗(t) = −Knπnz(t). (A.5)

This linear feedback exponentially stabilizes the dynamical system

ẋ(t) = [A− BKnπn]x(t), x(0) = x0. (A.6)

In other words, under certain assumptions on the FEM, the finite dimensional gain
operator indeed stabilizes the infinite dimensional dynamical system.

A.2 Non-Dimensionalization and Vectorization of

Data

It is customary in the fluid dynamics community to non-dimensionalize the data.
In the first example (FLUENT simulations) of Section 5.4, the flow variables and
temperature are simulated in standard units. The flow is forced through an inflow
velocity (at the upper left corner of the room), which we denote by (uin)i for regime
i. The top wall temperature resides at Tc = 297K and the bottom wall is heated at
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Th = 303K. The number of grid points in x and y direction is denoted by nx and ny,
respectively, and A denotes the area. The spatially averaged temperature is given
by

T̄ (ti) =

∫
T̂ (ti)dA

|A|
=

∑nx·ny

k=0 (T̂ (ti))k∆x∆y∑nx·ny

k=0 ∆x∆y
=

∑n
k=0(T̂ (ti))k

n
,

where nx ·ny = n. The value of the spatially averaged temperature is approximately
300K recorded over 1000s simulation time. The non-dimensionalized variables are
then defined via

ux :=
ûx

[uin]i
, uy :=

ûy
[uin]i

, T (ti) :=
T̂ (ti)− T̄ (ti)

|Th − Tc|
.

For ease of presentation and computation, the data is vectorized in the form

X =

ux(ti)uy(ti)
T (ti)


i=1,..,nt

,

which is the data format we use throughout for feature extraction and sensing
throughout.

A.3 POD - Mean flow averaging

For computation of the POD modes in Section 5.4, the mean of the dataset is removed
before the feature extraction is applied [135, 108]. Note, that the solution to the
dynamical system can be decomposed as

u(t,x) = u0(x) + u′(t,x),

where u0(x) = 1
s

∑s
i=1 u(ti,x) represents the time average of the data. To this end,

let the data be stored in the snapshot matrix

X =

 | | |
u(t0,x) u(t1,x) · · · u(ts,x)
| | |


After subtracting the mean of the dataset,

X̃ =

 | | |
u(t0,x) u(t1,x) · · · u(ts,x)
| | |

−
 | | |

u0 u0 · · · u0

| | |

 ,
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we apply the POD technique to the mean-subtracted data X̃.

Remark A.3.1. Note, that when using Dynamic Mode Decomposition (DMD),
mean flow subtraction is not advisable. If done so, the dynamic modes coincide with
the discrete Fourier modes, implying that the dependence on the specific dataset is
lost, see [65, Sec.4].

A.4 Sparse DMD

Unlike POD, the DMD method does not provide a natural way of ordering modes,
therefore modal selection becomes important. It is customary to use ‘standard’ DMD,
as described in Section 1.6.3. However, there are alternative approaches, that do not
involve a rank reduction at the first step, and rather use a `1 optimization to achieve
sparsity and data-fit. The concept of sparse DMD was introduced in [113]. Since
we pursue this in the future, we include the method here for the interested reader.
The first steps follow the standard steps of DMD, as introduced earlier, except that
the singular value decomposition of Ψ0 is not significantly truncated, and modes are
selected differently. To illustrate the idea, let

Ψ0 = [x0 x1 . . . xs−1] Ψ1 = [x1 x2 . . . xs]

be the snapshot matrices of the simulation data, so that

Ψ1 = AΨ0.

The singular value decomposition of the snapshot matrix yields

X0 = UΣV T ,

and the advance operator A is projected onto r ≈ s (a slight truncation for numerical
rank deficiency can be performed) dimensions as

UT
r AUr =: Sr,

where one should again observe that Ur ∈ Rn×r has the POD basis functions as
columns. We shall emphasize again, that in standard DMD, r � s, and here r ≈ s.
One can decompose Sr via the eigendecomposition into

Sr = Y ΛY −1.
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We can then see, that by the state in r dimensions, denoted by x̂ evolves as

x̂t = Y ΛtY −1x̂0 =
r∑
i=1

yiλ
t
i[yi]

−1x̂0 =
r∑
i=1

yiλ
t
iαi,

and consequently, since Φ := UY are the DMD modes in the original n dimensional
space, one has

xt =
r∑
i=1

φiλ
t
iαi, for t ∈ {0, 1, . . . , s− 1}.

One can interpret the coefficients αi as the contribution of the initial condition to
the dynamics. The authors in [113] propose to use a selection based on the αi to
determine the modes kept for the DMD. Rewriting the above yields

Ψ0 = [x0 x1 . . . xn−1]

≈ [φ1 φ2 . . . φn]


α1

α2

. . .

αr




1 λ1 · · · λn−1
1

1 λ2 · · · λn−1
2

...
... · · · ...

1 λr · · · λn−1
r


:= ΦDαVand(λ),

where Vand(λ) is a Vandermonde matrix. The idea of sparse DMD is to optimize
the coefficients α, so that the approximation best fits the data and the vector α is
sparse, i.e.

min
α
||Ψ0 − ΦDαVand(λ)||2F + γ||α||1.

However, since W T
r Wr = Ir, and X0 ≈ WrΣrV

T and Φr = WrY , we get the smaller
problem

min
α
||ΣrV

T
r − Y DαVand(λ)||2F + γ||α||1.

The above problem can be solved with standard convex optimization routines.

Remark A.4.1. During some preliminary studies, we have used CVX to solve the
optimization, which we observed to be slow. Moreover, the parameter γ, which
imposes sparsity of the solution has to be tuned. This is done by brute-force, i.e.
running a loop over decreasing values of γ. The iteration terminates when a maxi-
mally acceptable error on the data-fit is achieved. Alternatively, one could rewrite
Ψ0−ΦDαVand(λ), which is a linear term in λ as Y −Zλ, and subsequently use faster
`1 optimization tools.
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