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a b s t r a c t

This work presents a nonintrusive physics-preserving method to learn reduced-order models (ROMs) of
canonical Hamiltonian systems. Traditional intrusive projection-based model reduction approaches uti-
lize symplectic Galerkin projection to construct Hamiltonian ROMs by projecting Hamilton’s equations
of the full model onto a symplectic subspace. This symplectic projection requires complete knowledge
about the full model operators and full access to manipulate the computer code. In contrast, the
proposed Hamiltonian operator inference approach embeds the physics into the operator inference
framework to develop a data-driven model reduction method that preserves the underlying symplectic
structure. Our method exploits knowledge of the Hamiltonian functional to define and parametrize
a Hamiltonian ROM form which can then be learned from data projected via symplectic projectors.
The proposed method is gray-box in that it utilizes knowledge of the Hamiltonian structure at the
partial differential equation level, as well as knowledge of spatially local components in the system.
However, it does not require access to computer code, only data to learn the models. Our numerical
results demonstrate Hamiltonian operator inference on a linear wave equation, the cubic nonlinear
Schrödinger equation, and a nonpolynomial sine–Gordon equation. Accurate long-time predictions far
outside the training time interval for nonlinear examples illustrate the generalizability of our learned
models.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Hamiltonian partial differential equations (PDEs) arise as mod-
ls in many science and engineering applications such as the elas-
icity equations in elastodynamics, the Maxwell–Vlasov equations
n plasma physics, the shallow-water equations in climate model-
ng, and the Kuramoto–Sivashinsky equation in chemical reaction
ynamics, see, e.g., [1]. The governing equations in Hamiltonian
ystems possess physical, mechanical and mathematical struc-
ures in the form of symmetries, symplecticity, Casimirs, and
nergy conservation. The conservative nature and the underly-
ng symplectic structure of Hamiltonian systems are considered
undamental to their discretization and numerical treatment.

In the last three decades, the field of geometric numerical
ntegration has produced a variety of numerical methods for
imulating physical systems described by Hamiltonian ordinary
ifferential equations (ODEs), which respect the qualitative fea-
ures of the dynamical system. These structure-preserving ideas
ave also been extended to Hamiltonian PDEs. An overview of the
ield of structure-preserving methods can be found in, e.g. [2,3].

∗ Corresponding author.
E-mail address: hasharma@ucsd.edu (H. Sharma).
ttps://doi.org/10.1016/j.physd.2021.133122
167-2789/© 2021 Elsevier B.V. All rights reserved.
For a thorough exposition, the interested reader may consult
the standard textbooks [4,5] and the references cited therein.
Since many applications of Hamiltonian systems involve long-
time numerical simulations of large-scale systems, reduced-order
models (ROMs) can be employed to obtain surrogate models that
can be integrated in time at much lower computational cost. The
qualitative properties of the surrogate model are critical to the
accuracy of the numerical simulation and reliability of long-time
predictions.

Among the many model reduction approaches, proper or-
thogonal decomposition (POD) with Galerkin projection [6–9]
has proven beneficial in a variety of science and engineering
applications. In projection-based model reduction, the govern-
ing equations are projected onto a low-dimensional subspace
spanned by POD basis vectors. Classical projection-based model
reduction approaches are designed to be minimal-error reduced-
order models (ROMs). These ROMs often violate the underly-
ing geometric structure which leads to unphysical numerical
predictions, see [10]. Therefore, when the original system pos-
sesses specific qualitative features, it is preferable to construct
a ROM that retains those features. The symplectic model reduc-
tion of Hamiltonian systems was introduced in [10], where the

Galerkin projection-based ROM was modified so that the ROM

https://doi.org/10.1016/j.physd.2021.133122
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etains the underlying symplectic structure. Building on this
ork, the symplectic model reduction approach was combined
ith nonorthonormal bases in [11]. A similar structure-preserving
pproach with shifted snapshots was presented in [12] to im-
rove the Hamiltonian approximation. The work in [13] pre-
ented a reduced basis method approach for structure-preserving
odel reduction of parametric Hamiltonian systems. The reduced
asis method has been extended to Hamiltonian systems with
more general Poisson structure in [14]. A dynamical reduced
asis method has been presented in [15] for Hamiltonian systems
ith local low-rank structure. The idea of structure-preservation

s explored at the variational formulation level in [16] to de-
uce important properties about POD-based model reduction of
amiltonian systems. The above methods laid the foundation for
tructure-preserving model reduction for Hamiltonian systems,
ut they do require full access to the computer model, which
s often not possible or feasible when working with proprietary,
r very complex computer code. Data-driven (a.k.a nonintrusive)
educed modeling methods do not require such access, and are
herefore an attractive alternative.

For Hamiltonian systems, a variety of structure-preserving
ata-driven approaches have been developed recently, e.g., Hamil-
onian neural networks [17], symplectic networks [18], Gaussian
rocesses [19], Bayesian system identification [20], and orthogo-
al polynomials [21]. The majority of these approaches are only
oncerned with learning Hamiltonian systems when the data is
oming from very low-dimensional systems, i.e. 3–4 dimensions.
his inability to learn from high-dimensional data limits their
se for learning models from data of large-scale systems such
s semi-discretized PDEs. On the other hand, the combination
f data reduction and model reduction – termed data-driven
educed-order modeling – is a feasible approach for this setting.

For linear systems, a variety of successful data-driven model
eduction approaches have been developed, e.g. the Loewner
ramework [22], eigensystem realization [23–25], vector fitting
26], but methods for learning ROMs for nonlinear systems in
nonintrusive way is still a burgeoning research area. For non-

inear systems, nonintrusive model reduction generally involves
hoosing a particular parametrization of the nonlinear terms. The
oewner approach has been extended to bilinear and quadratic–
ilinear systems in [27,28]. Dynamic mode decomposition (DMD)
as also been used for learning linear ROMs for nonlinear sys-
ems in [29,30]. It is worth mentioning that sparsity-promoting
egression techniques have been used in [31–33] for data-driven
iscovery of governing equations from a dictionary of nonlinear
andidate functions. However, these sparse approximation ap-
roaches are not used for reducing the dimension of large-scale
ystems.
Operator inference for nonintrusive model reduction was in-

roduced in [34] and applied to full-order models (FOMs) that are
inear or have low-order polynomial nonlinear terms. Using lifting
ransformations, the operator inference framework has been ex-
ended to general nonlinear systems in [35–37]. The approach has
lso been extended to a gray-box setting in [38] where analytical
xpressions for the nonpolynomial nonlinear terms are known
nd the remaining operators are learned via operator inference.
onvergence and accuracy certificates were developed in [39,40].
Our goal is to efficiently and stably learn Hamiltonian reduced-

rder models from high-dimensional data. We approach this
roblem by proposing the nonintrusive Hamiltonian operator in-
erence (H-OpInf), a structure-preserving data-driven model
eduction method that preserves the underlying symplectic struc-
ure inherent to Hamiltonian systems. The method can work with
igh-dimensional state-trajectory data from a Hamiltonian sys-
em. We project this data onto a low-dimensional basis via sym-

lectic projection, and learn the reduced Hamiltonian operators

2

from the reduced data using a constrained least-squares operator
inference procedure that ensures that the models preserve the
Hamiltonian nature of the problem.

The remainder of the paper is organized as follows. Section 2
reviews the basics of Hamiltonian PDEs and describes intru-
sive structure-preserving model reduction. Section 3 presents
the proposed structure-preserving operator inference problem
for Hamiltonian systems with nonpolynomial nonlinearities. In
Section 4 we apply our proposed method to three Hamiltonian
systems with increasing complexity: the linear wave equation,
the cubic Schrödinger equation and the sine–Gordon equation.
Our numerical results demonstrate the learned models’ inter-
pretability and ability to provide accurate long-time prediction
beyond the training data. Finally, in Section 5 we provide con-
cluding remarks and future research directions.

2. Background

In this section, we introduce Hamiltonian PDE models and
describe intrusive projection-based model reduction for Hamil-
tonian systems. This provides the necessary background for our
nonintrusive method in Section 3.3. In Section 2.1 we first review
the basics of Hamiltonian PDEs by deriving the governing PDEs,
followed by their structure-preserving space discretization. After
deriving the FOM equations, we closely follow [10] to derive
projection-based Hamiltonian ROMs via symplectic projection in
Section 2.2.

2.1. Hamiltonian systems

We consider a general infinite-dimensional Hamiltonian sys-
tem described by the following evolutionary PDE

∂y(x, t)
∂t

= S
δH
δy
, (1)

where x is the spatial variable, t is time, S is a skew-symmetric
operator, δH

δy is the variational derivative1 of H, and we consider
Hamiltonian functional H defined by

H[y] =

∫ (
Hquad(y, yx, . . .) + Hnl(y)

)
dx, (2)

here yx =
∂y
∂x is the partial derivative of y with respect to

x, Hquad(y, yx, . . .) contains quadratic terms and Hnl(y) contains
spatially local nonlinear terms of the Hamiltonian functional.

Remark 1. Although the partition of the integrand in (2)
(quadratic terms in Hquad as a function of the spatial derivatives,
and spatially local nonlinear terms in Hnl as a function of state
variables) seems very restrictive, the Hamiltonian functional form
covers most (if not all) of the Hamiltonian PDEs found in science
and engineering applications, see [2,41]. Importantly, a quadratic
component exists in almost all Hamiltonian systems.

Hamiltonian PDEs possess important geometric properties and
their numerical simulation consists of two steps: (1) structure-
preserving space discretization that reduces the Hamiltonian PDE
to a system of Hamiltonian ODEs; (2) structure-preserving time
integration of the finite-dimensional Hamiltonian ODE. We will
briefly discuss those in the following.

1 The variational derivative of H is defined through d
dϵH[y + ϵv]|ϵ=0 =

δH , v

⟩
where v is an arbitrary function.
δy
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.1.1. Space discretization of Hamiltonian PDEs
Space-discretized Hamiltonian FOMs are usually derived from

he PDE by finite difference or pseudo-spectral methods. The
ost popular approach to obtain a Hamiltonian FOM from the

nfinite-dimensional Hamiltonian system (1) is to discretize the
pace–time continuous Hamiltonian functional (2) directly. The
ey steps in this approach are discussed in [2,41]. The resulting
inite-dimensional Hamiltonian model can be described by

˙ = Sd∇yHd(y), (3)

where Sd = −S⊤

d and Hd is the space-discretized Hamiltonian
function.

For this work, we will focus on canonical Hamiltonian systems,

i.e. Sd = J2n =

[
0 In

−In 0

]
where In is the n × n identity matrix.

For canonical systems, the state vector y ∈ R2n can be partitioned
as y = [q⊤, p⊤

]
⊤ where q, p ∈ Rn. Both q and p have distinct

physical interpretations, and their relation to each other induces
the canonical symplectic structure. The governing equations for
the semi-discrete canonical Hamiltonian systems are

ẏ =

[
q̇
ṗ

]
= J2n∇yHd(q, p) =

[
∇pHd(q, p)

−∇qHd(q, p)

]
. (4)

In addition to retaining the Hamiltonian character of the given
PDE, the structure-preserving space discretizations often intro-
duce additional mathematical structure in the FOM operators,
see [42]. To illustrate this, we present a simple example of a
Hamiltonian PDE.

Example 1. Consider the one-dimensional nonlinear wave equa-
tion with wave speed c which has the Hamiltonian

H[q, p] =

∫ (
1
2
p2 +

c2

2
q2x + Hnl(q, p)

)
. (5)

Direct discretization of the Hamiltonian functional with n equally
spaced grid points leads to the following space-discretized Hamil-
tonian

Hd(q, p) =

n∑
i=1

⎡⎢⎣1
2
p2i +

c2

2

⎛⎝ n∑
j=1

Mijqj

⎞⎠2

+ Hnl(qi, pi)

⎤⎥⎦ , (6)

where qi := q(t, xi), pi := p(t, xi), and the derivative of q with
respect to x is approximated by an appropriate differentiation
matrix M =

(
Mij
)n
i,j=1, i.e., qx(xi) ≈

∑n
j=1 Mijqj. For ∆x → 0

with n∆x = ℓ, the term Hd(q, p)∆x converges to the space–
time continuous Hamiltonian functional H. The governing FOM
equations for the Hamiltonian system are[
q̇
ṗ

]
=

[
0 In

c2D 0

][
q
p

]
+

[
∇pHnl(q, p)

−∇qHnl(q, p)

]
, (7)

nd regardless of the spatial derivative approximation, the linear
OM operators are always symmetric, i.e., D = M⊤M.

.1.2. Time integration of semi-discrete Hamiltonian systems
Once a Hamiltonian FOM has been formulated, a structure-

reserving method can be applied in time to complete the
tructure-preserving discretization in space and time. The flow
ap for Hamiltonian FOMs (4) preserves the canonical symplectic

orm and conserves the system Hamiltonian Hd, i.e., Hd(q(0), p(0))
Hd(q(t), p(t)) for all t . The field of geometric numerical inte-

ration methods has shown that it is advantageous to use time
ntegrators that preserve these two geometric features. In fact,
ime integrators that do not respect the underlying geometric
tructure lead to unphysical numerical results. The work in [43]
howed that a numerical integrator with a fixed time step cannot
3

preserve the symplectic form and conserve the energy simulta-
neously for general Hamiltonian systems. Based on this result,
structure-preserving time integrators for canonical Hamiltonian
systems can be divided into two categories: (i) energy-preserving
integrators and (ii) symplectic integrators. Both approaches have
their own advantages and the preferred geometric numerical
integration method depends on the Hamiltonian system. Energy-
preserving integrators guarantee that the numerical solution is
restricted to a codimension 1 submanifold of the configuration
manifold whereas symplectic integrators ensure a more global
and multi-dimensional behavior through symplectic structure
preservation.

2.2. Intrusive structure-preserving model reduction

In projection-based model reduction, the semi-discrete model
is projected onto a low-dimensional subspace. The key idea in
structure-preserving model reduction is to preserve the under-
lying geometric structure during the projection. Since the FOM is
a Hamiltonian system with underlying symplectic structure, the
projection step is treated as the symplectic inverse of a symplectic
lift from the low-dimensional subspace to the state space, see
[10]. A symplectic lift is defined by y = Vỹ where V ∈ R2n×2r

is a symplectic matrix, i.e., a matrix that satisfies

V⊤J2nV = J2r . (8)

The symplectic inverse V+ of a symplectic matrix V is defined by

V+
= J⊤2rV

⊤J2n, (9)

and the symplectic projection can be written as ỹ = V+y. The time
evolution of the reduced state ˙̃y is given by
˙̃y = V+ẏ = V+J2n∇yHd(q, p) = J2rV⊤

∇yHd(y) = J2r∇ỹHd(Vỹ) (10)

where we have used the chain rule ∇ỹHd(Vỹ) = V⊤
∇yHd(y) in the

last step. The symplectic Galerkin projection of a 2n-dimensional
Hamiltonian system (4) is given by a 2r-dimensional (r ≤ n)
system
˙̃y = J2r∇ỹH̃(ỹ), (11)

here ỹ is the reduced state vector with the reduced Hamilto-
ian H̃(ỹ) := Hd(Vỹ). While the symplectic Galerkin projection
pproach yields reduced systems that retain the Hamiltonian na-
ure, the reduced Hamiltonian H̃ , through its definition in terms
f FOM Hamiltonian Hd, requires access to FOM operators.
Proper symplectic decomposition (PSD) is a method to find

symplectic projection matrix V that simultaneously minimizes
he projection error in a least-squares sense, i.e.,

min
V

s.t. V⊤J2nV=J2r

∥Y − VV+Y∥F . (12)

here Y := [y(t1), . . . , y(tK )] ∈ R2n×K is the snapshot data matrix,
nd ∥ · ∥F is the Frobenius norm. Since solving (12) to obtain
he symplectic basis matrix V is computationally expensive, we
riefly outline three efficient algorithms, first presented in [10],
or finding approximated optimal solution for the symplectic
atrix V. These algorithms search for a near-optimal solution
ver different subsets of Sp(2r,R2n) where Sp(2r,R2n) is the set
f all 2n × 2r symplectic matrices.

1. Cotangent lift: This algorithm computes SVD of the ex-
tended snapshot matrix
Y1 := [q(t1), . . . , q(tK ), p(t1), . . . , p(tK )] to obtain a POD
basis matrix Φ ∈ Rn×r and then constructs the symplectic

basis matrix V1 =

[
Φ 0
0 Φ

]
with V+

1 = V⊤

1 . The diagonal

nature of V1 ensures that the interpretability of q and p is
retained in the reduced setting.



H. Sharma, Z. Wang and B. Kramer Physica D 431 (2022) 133122

S
s
m
l
w
t
b
m
s
c

3

i
e
f
s
l
m
t
s
t
t
t

3

H

d

w

t
e

y

w
s

l
a
i

T
p
s
1
e

w

2. Complex SVD: This algorithm describes the solution in the
phase space by q(ti) + ip(ti) to build a complex snapshot
matrix Y2 := [q(t1) + ip(t1), . . . , q(tK ) + ip(tK )] and then
computes the complex SVD of Y2 to obtain a basis matrix
Φ + iΨ ∈ Cn×r . The symplectic basis matrix is V2 =[
Φ −Ψ

Ψ Φ

]
with V+

2 = V⊤

2 . Due to the nonzero Ψ matrices

on the off-diagonals in V2, the complex SVD algorithm
loses the distinction between q and p in the symplectic
projection step.

3. Nonlinear programming: This approach starts with an
intermediate symplectic matrix Vint ∈ R2n×2k with n > k >
r obtained by cotangent lift or complex SVD and assumes
that the optimal solution V3 is a linear transformation
of Vint. This assumption simplifies the original nonlinear
programming problem to a smaller nonlinear programming
problem

min
C

s.t. C⊤J2kC=J2r

∥Y − VintCC+V+

intY∥F , (13)

to obtain C. The symplectic basis matrix is V3 = Vint · C. In
addition to being computationally expensive, the nonlinear
programming approach also loses the physical meaning of
the states q and p in the reduced setting.

ince all three PSD approaches restrict to a specific subset of
ymplectic basis matrices, Sp(2r,R2n), the resulting basis matrix
ight be globally suboptimal. A new technique based on an SVD-

ike decomposition to derive a non-orthogonal symplectic basis
as presented in [11]. However, the optimality with respect to
he PSD projection error (12) of this non-orthonormal symplectic
asis is still an open question. More recently, [44] developed Rie-
annian optimization methods for optimization problems with
ymplectic constraints, and these methods have been proven to
onverge globally to critical points of the objective function.

. Hamiltonian operator inference

In this section, we propose H-OpInf, a Hamiltonian operator
nference framework for canonical Hamiltonian PDEs with gen-
ral nonpolynomial nonlinearities as in (2). In Section 3.1 we
irst motivate the need for H-OpInf by demonstrating how the
tandard operator inference from [34] fails to preserve the under-
ying symplectic structure. Based on the observations from this
otivating example, we present H-OpInf in Section 3.2, a nonin-

rusive physics-preserving method to learn ROMs of Hamiltonian
ystems. We then show in Section 3.3 that under certain condi-
ions, the learned operators from nonintrusive H-OpInf converge
o their intrusive projection-based counterparts. We also discuss
he overall computational procedure of H-OpInf in Section 3.4.

.1. Motivation

We revisit the wave equation example from Example 1 with
nl = 0, i.e., the linear wave equation

∂2ϕ

∂t2
= c2

∂2ϕ

∂x2
, (14)

efined on x ∈ [0, ℓ]. With q = ϕ and p = ϕt , the associated
Hamiltonian functional is given by

H(q, p) =

∫ ℓ

0

[
1
2
p2 +

1
2
c2q2x

]
dx, (15)

and the original PDE can be recast as a Hamiltonian PDE

q̇ =
δH
, ṗ = −

δH
. (16)
δp δq
4

With n equally spaced grid points, we use finite difference for
spatial discretization to obtain the space-discretized FOM Hamil-
tonian

Hd(y) =

n∑
1

[
1
2
p2i +

c2(qi+1 − qi)2

4∆x2
+

c2(qi − qi−1)2

4∆x2

]
, (17)

here qi := ϕ(t, xi), pi := ϕt (t, xi), and y = [q1, . . . , qn, p1,
. . . , pn]⊤. For ∆x → 0 with n∆x = ℓ, Hd∆x converges to
he space–time continuous Hamiltonian functional H. The FOM
quations are given by the Hamilton’s equations for Hd,

˙ = J2n∇yHd(y) =

[
0 In

−In 0

][
−c2Dfd 0

0 In

]
y =

[
0 In

c2Dfd 0

]
y,

(18)

here Dfd denotes the finite difference approximation for the
patial derivative ∂xx.
We now set ℓ = 1 and the wave speed to c = 0.1, which

eads to the same linear FOM with periodic boundary condition
s in [10]. To define the initial conditions, we need the following
ngredients. Let s(x) = 10|x −

1
2 |, and consider the following cubic

spline function over s:

h(s) =

⎧⎨⎩
1 −

3
2 s

2
+

3
4 s

3 0 ≤ s ≤ 1,
1
4 (2 − s)3 1 ≤ s ≤ 2,
0 s > 2.

he initial conditions are q(0) = [h(s(x1)), . . . , h(s(xn))], and
(0) = 0. We choose n = 500 grid points leading to a discretized
tate y ∈ R1000. The FOM is numerically integrated until time T =

0 using the implicit midpoint rule, for which the time-marching
quations are

yk+1 − yk
∆t

= J2n∇yHd

(
yk+1 + yk

2

)
, (19)

ith fixed time step∆t . The resulting time integrator is a second-
order scheme and can also be used for dynamical systems that
are not Hamiltonian. For this example, we choose ∆t = 0.01. To
propagate the system forward in time, we need to solve a system
of 2n = 1000 linear equations at every time step.

We apply standard operator inference [34] to the linear wave
equation to demonstrate how violating the underlying symplectic
structure leads to unstable ROMs. Based on the snapshot data Y
from the FOM numerical simulation, we compute the POD basis
V from Y via SVD where the POD basis vectors are columns of the
POD basis matrix

V = [v1, . . . , v2r ] ∈ R2n×2r .

We also obtain the time-derivative data Ẏ from the snapshot data
Y using a finite difference approximation. We then obtain the
reduced state trajectory data Ŷ and the reduced time-derivative
data ˙̂Y via projections onto the POD basis matrix V

Ŷ = V⊤Y, ˙̂Y = V⊤Ẏ.

Based on the linear wave FOM equation, we postulate a linear
model form ˙̂y = D̂ŷ for learning the ROM. Thus, for the linear
wave equation, the standard operator inference problem essen-
tially involves solving the following least-squares problem for D̂

min
D̂

∥
˙̂Y − D̂Ŷ∥F . (20)

Fig. 1(a) shows state approximation error for ROMs of different
sizes. We see that the state error decreases up to 2r = 20 and
oscillates from 2r = 20 to 2r = 40. Although the state error
results over the training data indicate decrease in the state error
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Fig. 1. Linear wave equation: Even though plot (a) shows low approximation error in the training data regime, the corresponding FOM energy error behavior in plot
(b) reveals that the standard operator inference violates the underlying Hamiltonian structure. The black line indicates end of training time interval. See Section 4.1
for numerical implementation details.
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with increasing reduced dimension, the ROMs do not conserve
the space-discretized Hamiltonian Hd. The increasing FOM energy
rror in Fig. 1(b) confirm the fact that the reduced solution trajec-
ories do not conserve the system energy. In fact, the energy error
lot for long-time simulation outside the training data shows that
he learned ROMs lead to unphysical predictions. In addition to
iolating the underlying Hamiltonian structure, the learned op-
rator D̂ contains nonzero matrices on the diagonals (not shown
ere), which also illustrates that the standard operator inference
oes not preserve the block structure that the system should
ave, see (18). The coupling structure in Hamiltonian systems
s intrinsically connected to the physical variables q and p in
he state vector. Standard operator inference loses the physical
eaning of the states q and p in the model reduction process.

.2. Hamiltonian operator inference

In this work, we consider the situation that we have a Hamil-
onian PDE model (1) with canonical structure, and we have
imulated data thereof. The goal of this work is to learn a Hamil-
onian ROM from data of a canonical Hamiltonian system, so that
he learned ROM:

1. is a canonical Hamiltonian system;
2. retains the physical interpretation of the state variables and

preserves the coupling structure;
3. respects the symmetric property of structure-preserving

space discretizations.

n addition to the canonical Hamiltonian structure, we also as-
ume that we have knowledge about Hnl at the PDE level (2),
hich is in line with our gray-box setting. If we consider the gen-
ral wave equation from Section 2.1.1, then the nonlinear com-
onent Hnl(q, p) of the space–time continuous Hamiltonian func-
ional (2) is assumed to be given explicitly, whereas the quadratic
erms in Hquad and details about their spatial discretization are
navailable.
Next, we introduce our new framework. Let y1, . . . , yk be the

olutions of the Hamiltonian FOM at t1, . . . , tk computed with
structure-preserving numerical integration scheme and initial
ondition y0. We define the snapshot matrices[

q · · · q
] n×K [

p · · · p
] n×K
= 1 K ∈ R , P = 1 K ∈ R . (21)

5

Assuming knowledge about Hnl in (2), we define the nonlinear
forcing fq(y) and fp(y) as

fq(y) =

[
∂Hnl
∂p1

(q1, p1) · · ·
∂Hnl
∂pn

(qn, pn)
]⊤

∈ Rn,

fp(y) =

[
∂Hnl
∂q1

(q1, p1) · · ·
∂Hnl
∂qn

(qn, pn)
]⊤

∈ Rn.

(22)

We utilize the explicit form of fp and fq to define the forcing
snapshot matrices

Fq =
[
fq(y1) · · · fq(yK )

]
∈ Rn×K , Fp =

[
fp(y1) · · · fp(yK )

]
∈ Rn×K .

(23)

e also compute the time-derivative data q̇ and ṗ from the state
rajectory data q and p using a finite difference scheme to build
he snapshot matrices of the time-derivative data
˙ =

[
q̇1 · · · q̇K

]
∈ Rn×K , Ṗ =

[
ṗ1 · · · ṗK

]
∈ Rn×K . (24)

iven these snapshot matrices, our goal is to learn a Hamiltonian
OM directly from the data. To learn the reduced operators,
e propose to project FOM trajectories onto low-dimensional
ymplectic subspaces of the high-dimensional state spaces and
hen fit operators to the projected trajectories in a structure-
reserving way. For the symplectic projection step, we choose
he cotangent lift algorithm to generate our symplectic basis
atrix. In addition to being a symplectic basis matrix, the specific
lock structure of the basis matrix allows us to retain physical
nterpretation of q and p variables in the reduced setting, i.e.,[
q
p

]
≈

[
Φ 0
0 Φ

][
q̂
p̂

]
. (25)

e obtain projections of the trajectory snapshot data via the
rojections onto the symplectic basis matrix Vq = Vp = Φ ∈ Rn×r

btained via the cotangent lift algorithm,
ˆ = V⊤

q Q ∈ Rr×K , P̂ = V⊤

p P ∈ Rr×K . (26)

Similarly, we obtain projections of the nonlinear forcing data to
obtain

F̂q = V⊤

p Fq ∈ Rr×K , F̂p = V⊤

q Fp ∈ Rr×K . (27)

We also compute projections of the time-derivative data to obtain
the reduced time-derivative data
˙̂Q = V⊤

q Q̇ ∈ Rr×K ,
˙̂P = V⊤

p Ṗ ∈ Rr×K . (28)

Inspired by the knowledge of the Hamiltonian functional, we
define the following reduced Hamiltonian in terms of the inferred
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educed operators D̂q ∈ Rr×r and D̂p ∈ Rr×r

ˆ (q̂, p̂) =
1
2
q̂⊤D̂qq̂ +

1
2
p̂⊤D̂pp̂ + Ĥnl(q̂, p̂). (29)

ased on the assumed form for Ĥ(q̂, p̂), we derive the ROM
quations of motion

˙̂ =
∂Ĥ
∂p̂

= D̂pp̂ + V⊤

p fq(Vqq̂,Vpp̂),

˙̂p = −
∂Ĥ
∂q̂

= −D̂qq̂ − V⊤

q fp(Vqq̂,Vpp̂).

sing this Hamiltonian ROM form, we propose to solve the fol-
owing optimization problem to compute D̂q and D̂p

min
D̂q=D̂⊤

q ,

D̂p=D̂⊤
p


[

˙̂Q − F̂q(Q̂, P̂)
˙̂P + F̂p(Q̂, P̂)

]
−

[
0 D̂p

−D̂q 0

][
Q̂

P̂

]
F
. (30)

he symmetric constraints on D̂q and D̂p ensure that the learned
educed operators retain the symmetric property of the full-
odel operators introduced during the structure-preserving spa-

ial discretization, see Section 2.1.1. The symmetric reduced op-
rators D̂q and D̂p learned via H-OpInf yield structure-preserving
OMs that are Hamiltonian systems.

emark 2. We have introduced the H-OpInf framework in the
ontext of canonical Hamiltonian systems. Some Hamiltonian
ystems, such as the Korteweg–de-Vries (KdV) equation, Burg-
rs’ equation, and Maxwell’s equations, possess a more general
amiltonian structure, i.e., Sd = −S⊤

d ̸= J2n. Using an even
umber of spatial grid points, the noncanonical Hamiltonian PDE
ields an even-dimensional FOM which can be then transformed
o the canonical form with Sd = J2n using a congruent trans-
ormation. This transformation requires access to FOM operators.
owever, if the FOM is given in the transformed canonical form
hen the H-OpInf framework directly carries over to such trans-
ormed systems. Alternatively, if we assume access to such a
ongruent transformation then our H-OpInf method may be com-
ined with the lifting transformations as in [35–37] to derive
amiltonian ROMs for noncanonical Hamiltonian systems.

.3. Theoretical result

We show that under certain conditions on the time discretiza-
ion, the nonintrusive Hamiltonian ROM operators obtained via
-OpInf converge to the intrusive Hamiltonian ROM operators.
n order to obtain these results, we make the following two
ssumptions on the time discretization of the FOM and ROM.

ssumption 1. The time stepping scheme for the FOM is con-
ergent, i.e.,

max
∈{1,...,T/∆t}

yi − y(ti)

2

→ 0 as ∆t → 0, (31)

here yi is the discrete state of the FOM system at time ti
omputed with a time stepping scheme.

ssumption 2. The derivatives approximated from projected
tates, ˙̂yk, converge to d

dt ŷ(tk) as the discretization time step
t → 0, i.e.,

max
∈{1,...,T/∆t}

 ˙̂yi −
d
dt

ŷ(ti)

2

→ 0 as ∆t → 0. (32)

heorem 1. For a given symplectic basis matrix Vq = Vp = Φ ∈
n×r obtained via the cotangent lift algorithm, let D̃ = V⊤D V
q q q q

6

and D̃p = V⊤
p DpVp be the intrusively projected ROM operators. If the

data matrix has full column rank, then for every ϵ > 0, there exists
2r ≤ 2n and a time step size ∆t > 0 such that for the difference
between the symmetric learned operators D̂q, D̂p and the symmetric
(intrusive) projection-based D̃q, D̃p, we have

∥D̂q − D̃q∥F ≤ ϵ, ∥D̂p − D̃p∥F ≤ ϵ.

Proof. Consider a canonical Hamiltonian system with the follow-
ing governing equations

q̇ = Dpp + fq(q, p), ṗ = −Dqq − fp(q, p), (33)

here Dq,Dp are the linear symmetric FOM operators, and fq, fp
re the nonlinear forcing terms from (22). Given FOM snapshot
ata Q = [q1, . . . , qK ] ∈ Rn×K and P = [p1, . . . , pK ] ∈ Rn×K , we

build Q̇ana = [q̇1,ana, . . . , q̇K ,ana] and Ṗana = [ṗ1,ana, . . . , ṗK ,ana] by
valuating the Hamiltonian FOM vector field (33), i.e.,

˙ k,ana = Dppk + fq(qk, pk), ṗk,ana = −Dqqk − fp(qk, pk), k = 1, . . . , K .

e also define a finite difference operator It which operates on
he FOM snapshot data to approximate the time-derivative data

˙ ana ≈ It (Q), Ṗana ≈ It (P).

sing the definition of the finite difference operator It , the re-
uced time-derivative data from (28) can be written as ˙̂Q =

⊤
q It (Q) and ˙̂P = V⊤

p It (P). The H-OpInf problem of learning the
ymmetric operator D̂q can be written as

min
D̂q=D̂⊤

q

 ˙̂P + D̂qQ̂ + F̂p(Q̂, P̂)

F

= min
D̂q=D̂⊤

q

V⊤

p It (P) + D̂qQ̂ + F̂p(Q̂, P̂)

F

= min
D̂q=D̂⊤

q

V⊤

p It (P) − V⊤

p Ṗana + V⊤

p Ṗana

+

(
D̂q − D̃q

)
Q̂ + D̃qQ̂ + F̂p(Q̂, P̂)


F

= min
D̂q=D̂⊤

q

V⊤

p
(
It (P) − Ṗana

)
+

(
D̂q − D̃q

)
Q̂

+ V⊤

p Ṗana + D̃qQ̂ + F̂p(Q̂, P̂)

F
. (34)

imilarly, the H-OpInf problem of learning the symmetric opera-
or D̂p can be written as

min
D̂p=D̂⊤

p

 ˙̂Q − D̂pP̂ − F̂q(Q̂, P̂)

F

= min
D̂p=D̂⊤

p

V⊤

q
(
It (Q) − Q̇ana

)
−

(
D̂p − D̃p

)
P̂

− D̃pP̂ + V⊤

q Q̇ana − F̂q(Q̂, P̂)

F
. (35)

ombining (34) and (35), the H-OpInf problem can be written as

min
D̂q=D̂⊤

q ,

D̂p=D̂⊤
p


[
V⊤
p 0

0 V⊤
q

]([
Ṗana

Q̇ana

]
−

[
0 −Dq
Dp 0

][VpV⊤
p P

VqV⊤
q Q

]
+

[
VpV⊤

q Fp
−VqV⊤

p Fq

])
  

(I)[
V⊤
p 0
0 V⊤

q

][
It (P) − Ṗana

It (Q) − Q̇ana

]
  +

[
0 D̂q − D̃q

−(D̂p − D̃p) 0

][
P̂
Q̂

]
F
, (36)
(II)
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here we have used D̃q = V⊤
q DqVq and D̃p = V⊤

p DpVp. Since,
we have used the cotangent lift algorithm for projection, we have
Vq = Vp = Φ . Based on the time discretization assumptions, the
terms (I), (II) → 0 for ∆t → 0 and r → n, and thus, the learned
operators D̂q, D̂p converge to the structure-preserving intrusive
operators D̃q, D̃p. Therefore, in the pre-asymptotic case, there
exists for all 0 < ϵ ∈ R a small enough time step ∆t and a large
enough reduced dimension r ≤ n such that we can use the full-
rank condition of Q̂, P̂ to deduce ∥D̂q − D̃q∥F ≤ ϵ, ∥D̂p − D̃p∥F ≤

ϵ. □

The theorem shows that the learned symmetric Hamiltonian
ROM operators converge to the intrusive symmetric Hamiltonian
ROM operators as r → n. However, this result does not provide
a convergence rate, and in our practical experience there are
numerical examples where the difference in reduced operators
might not monotonically decrease for low-dimensional Hamil-
tonian ROMs, such as the linear wave example in Section 4.2.
In such cases, the FOM energy error becomes a crucial metric
to assess the reliability of nonintrusive Hamiltonian ROM for
long-time predictions. The continuous-time intrusive Hamilto-
nian ROM due to its specific choice of the reduced Hamiltonian,
i.e., H̃(ŷ) := Hd(Vŷ), always conserves the FOM Hamiltonian
Hd. In contrast, continuous-time nonintrusive Hamiltonian ROM
conserves the reduced Hamiltonian Ĥ . Using the theoretical re-
sult, we can interpret the learned reduced Hamiltonian Ĥ as a
perturbation of the intrusive reduced Hamiltonian H̃ , i.e., Ĥ =

H̃ + ∆H̃ . Since the nonlinear component is the same for both
nonintrusive and intrusive Hamiltonian ROMs, the perturbation
can be written as

∆H̃ =
1
2
q̂⊤(D̂q − D̃q)q̂ +

1
2
p̂⊤(D̂p − D̃p)p̂.

Thus, the nonintrusive Hamiltonian ROM trajectories simulate a
perturbed intrusive Hamiltonian ROM Hamiltonian system and
the perturbation ∆H̃ depends on the difference in reduced op-
erators.

3.4. Computational procedure

Due to the canonical nature of the reduced model form, the
original optimization problem (30) can be broken down into
separate, symmetric linear least-squares problems of the form

min
D̂p=D̂⊤

p

 ˙̂Q − F̂q(Q̂, P̂) − D̂pP̂

F
, min

D̂q=D̂⊤
q

 ˙̂P + F̂p(Q̂, P̂) + D̂qQ̂

F
.

(37)

iven reduced state data Q̂, P̂ and residual data R̂q = −
˙̂P −

ˆp(Q̂, P̂), R̂p =
˙̂Q− F̂q(Q̂, P̂), our goal is to find symmetric reduced

perators D̂q = D̂⊤
q and D̂p = D̂⊤

p that minimize
Q̂⊤D̂q − R̂⊤

q


F

nd
P̂⊤D̂p − R̂⊤

p


F
respectively. Both problems are symmetric

inear least-squares problems, so let us consider the optimization
roblem for inferring D̂q. We formulate the symmetric linear
east-squares problem

min
ˆ q=D̂⊤

q

Q̂⊤D̂q − R̂⊤

q

2
F
, (38)

s a constrained optimization problem with the following La-
rangian

(D̂q,Λ) :=

Q̂⊤D̂q − R̂⊤

q

2 + ⟨Λ, D̂q − D̂⊤

q ⟩, (39)

F

7

where Λ ∈ Rr×r is the Lagrange multiplier and ⟨·, ·⟩ is the ele-
mentwise inner product, i.e., ⟨Λ, D̂⟩ := Tr(Λ⊤D̂). Differentiating
the Lagrangian with respect to D̂q and Λ, we obtain the following
matrix equations

2Q̂(Q̂⊤D̂q − R̂⊤

q ) + Λ − Λ⊤
= 0,

D̂q − D̂⊤

q = 0,

where the second equation is simply the symmetric constraint
condition. Rewriting the first matrix equation as

Q̂(Q̂⊤D̂q − R̂⊤

q ) = −
1
2

(
Λ − Λ⊤

)
, (40)

reveals that Q̂(Q̂⊤D̂q − R̂⊤
q ) is a skew-symmetric matrix, i.e.,

ˆ (Q̂⊤D̂q − R̂⊤

q ) = −

(
Q̂(Q̂⊤D̂q − R̂⊤

q )
)⊤

. (41)

Rewriting the above equation, we can obtain the following Lya-
punov equation

(Q̂Q̂⊤)D̂q + D̂q(Q̂Q̂⊤) = Q̂R̂⊤

q + R̂qQ̂⊤. (42)

imilarly, the symmetric reduced operator D̂p solves

P̂P̂⊤)D̂p + D̂p(P̂P̂⊤) = P̂R̂⊤

p + R̂pP̂⊤. (43)

hus, the original inference problem for D̂q and D̂q can be broken
own into separate symmetric linear least-squares problems and
ubsequently, the symmetric reduced operators can be obtained
y solving Lyapunov equations (42) and (43). Algorithm 1 sum-
arizes H-OpInf for Hamiltonian systems with nonpolynomial
onlinearities.

Algorithm 1 Hamiltonian operator inference for canonical
Hamiltonian systems
Input: Nonlinear component of Hamiltonian functional Hnl,

snapshot data Q, P ∈ Rn×K , and reduced dimension 2r .
Output: Symmetric reduced operators D̂q and D̂p.
1: Use knowledge of Hnl to identify correct model form for the

reduced Hamiltonian Ĥ (29).
2: Compute forcing snapshot data Fq, Fp ∈ Rn×K (23).
3: Compute time-derivative data Q̇, Ṗ ∈ Rn×K (24) from state

trajectory data Q, P using the finite-difference scheme (44).
4: Build symplectic basis matrix V ∈ R2n×2r from M = [Q, P]

using the cotangent lift algorithm, see Section 2.2.
5: Project to obtain reduced state data Q̂, P̂ ∈ Rr×K (26), reduced

time-derivative data ˙̂Q, ˙̂P ∈ Rr×K (28), and reduced nonlinear
forcing data F̂q, F̂p ∈ Rr×K (27).

6: Solve separate symmetric linear least-squares problems
via Lyapunov equations (42)–(43) to nonintrusively infer
symmetric reduced operators D̂q and D̂p.

4. Numerical results

In this section, we study the numerical performance of H-
OpInf for three Hamiltonian PDEs with increasing level of com-
plexity. We revisit the linear wave equation from Section 3.1
and demonstrate that H-OpInf works for different structure-
preserving space discretizations. We then study the nonlinear
Schrödinger equation, a Hamiltonian PDE with cubic nonlinear-
ity, to investigate the numerical performance of H-OpInf for
nonlinear systems. Finally, we apply our structure-preserving
operator inference approach to the sine–Gordon equation to un-
derstand its numerical performance for PDEs with nonpolynomial
nonlinearities.
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.1. Numerical implementation details

We compare the quality of the learned Hamiltonian ROM with
he intrusive proper symplectic decomposition (PSD), a Hamilto-
ian ROM obtained via the cotangent lift algorithm as outlined in
ection 2.2. Below we give some information about our FOM and
OM numerical simulations:

• For numerical time integration, we use the implicit midpoint
rule (19) for all FOMs and ROMs. The implicit midpoint
rule is a symplectic scheme for Hamiltonian systems which
preserves the symplectic structure and exhibits bounded
energy error for both FOM and ROM simulations. The sym-
plectic structure preservation also implies exact preserva-
tion of any quadratic invariants of the motion. The implicit
midpoint rule satisfies Assumption 1; details about the nu-
merical properties of this symplectic time integrator can be
found in [4,5].

• To compute time-derivative data from the snapshot data we
use the following fourth-order finite difference scheme

ẏk ≈
−yk+2 + 8yk+1 − 8yk−1 + yk−2

12∆t
. (44)

For first two and last two points, we used first-order for-
ward and backward Euler approximations, respectively. The
finite difference scheme used in this work for computing
time-derivative data satisfies Assumption 2.

• All numerical examples are computed with MATLAB version
2020b. The Lyapunov equations (42)–(43) are solved using
the in-built lyap function in MATLAB.

• All the state error plots in this section compute the following
relative error

∥Y − VŶ∥2

∥Y∥2
(45)

where Ŷ is either obtained from nonintrusive Hamiltonian
ROM or intrusive Hamiltonian ROM. For state approximation
error in training data, we only consider trajectories up to the
training time interval and for test data plots, we consider
trajectories from the full ROM simulation.

• All FOM energy error plots in this section compute the
following error

|Hd(Vŷ(t)) − Hd(Vŷ(0))| (46)

where ŷ is either obtained from nonintrusive Hamiltonian
ROM or intrusive Hamiltonian ROM. For ROM energy er-
ror plots, we compare |Ĥ(ŷ(t)) − Ĥ(ŷ(0))| for nonintrusive
Hamiltonian ROMs of different sizes.

.2. Linear wave equation

.2.1. Finite difference discretization
We revisit the linear wave example from Section 3.1 with

inite difference spatial discretization. Using the H-OpInf frame-
ork, we infer symmetric reduced operators D̂q, D̂p ∈ Rr×r for

2r = 40 using Algorithm 1. Nonintrusive Hamiltonian ROMs of
size 2w with 2w < 2r are constructed by extracting submatri-
ces of size w × w, corresponding to the first w basis vectors,
from D̂q and D̂p. Thus, our structure-preserving approach requires
performing H-OpInf with Algorithm 1 only once.

Fig. 2(a) compares the errors of the intrusive Hamiltonian
ROMs and nonintrusive Hamiltonian ROMs over the training time
interval of T = 10. Compared with Fig. 1(a), we observe that
the state errors shown in Fig. 2(a) do not display oscillations.
The nonintrusive Hamiltonian ROM shows a similar behavior to
the intrusive Hamiltonian ROMs for the linear wave example up
 f

8

to 2r = 32. However, as 2r increases further, the error for the
nonintrusive Hamiltonian ROMs levels off. This leveling off of the
state error is because the projected trajectories correspond to
non-Markovian dynamics in the reduced setting even though the
FOM state trajectories and the corresponding FOM dynamics are
Markovian, see [39]. Fig. 2(b) compares the state approximation
error over the testing time interval of T = 100 where both
Hamiltonian ROMs demonstrate similar error up to 2r = 20. For
2r > 20, the intrusive Hamiltonian ROM errors decrease more
rapidly compared to nonintrusive Hamiltonian ROM.

In Fig. 3(a), we compare the FOM energy error for different
nonintrusive ROMs. The system is simulated for T = 100, thus
predicting the numerical behavior for 900% past the training
interval. Due to its specific choice of reduced Hamiltonian, the
intrusive Hamiltonian ROM conserves the energy with the same
accuracy as the FOM simulation. The nonintrusive Hamiltonian
ROMs exhibit bounded energy error for different ROM sizes due
to their Hamiltonian nature. The bounded energy error 900% past
the training interval shows that the nonintrusive Hamiltonian
ROMs simulate a perturbation of the intrusive Hamiltonian ROM
exactly and thus, the FOM energy error for nonintrusive ROMs
remains bounded well beyond the training data. This shows a
true strength of the proposed H-OpInf, namely that if the struc-
ture is respected in every aspect of discretization and the learn-
ing method, long-term stable predictions are possible. Fig. 3(b)
compares ROM energy error for nonintrusive Hamiltonian ROMs
where both reduced models demonstrate similar energy error
behavior. The bounded energy error plots in Fig. 3(b) affirm
the Hamiltonian nature of the nonintrusive ROMs for different
r . Additionally, these nonintrusive ROM energy error plots also
serve as an indicator of long-time stability of simulations of our
learned ROM.

Remark 3. The state error leveling-off for operator inference has
been resolved by a sampling scheme based on re-projection in
[39]. If the data is sampled with that scheme, then we recover
the intrusive ROMs preasymptotically from data under certain
conditions. However, re-projection in its current formulation only
works for fully discrete systems with explicit or linearly implicit
time-marching schemes. Nonlinear Hamiltonian systems, on the
other hand, require fully implicit time integrators to preserve the
underlying geometric structure. Thus, the re-projection sampling
cannot be used for Hamiltonian systems. Extending this algorithm
for use with H-OpInf remains a topic of further investigation.

4.2.2. Pseudo-spectral discretization
We now consider the linear wave example with the same

setup as in Section 3.1, except that the linear wave PDE is spa-
tially discretized with the pseudo-spectral method. Spatial dis-
cretization using the pseudo-spectral method involves two key
steps.

1. Construct space-discretized representation of the solution
through interpolating trigonometric polynomial of the so-
lution at collocation points in the domain.

2. Derive space-discretized FOM equations for the discrete
values of the solution from the PDE by finding an approx-
imation for the differential operator ∂xx in terms of the
discrete values from the space-discretized representation.

The FOM is represented by the following Hamiltonian ODE system

ẏ = J2n∇yHd(y) =

[
0 In

−In 0

][
−c2Dps 0

0 In

]
y =

[
0 In

c2Dps 0

]
y,

here Dps denotes the pseudo-spectral approximation for ∂xx.
ote that the FOM equations have the same coupling structure
or the pseudo-spectral discretization as in (18) for the finite
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Fig. 2. Linear wave equation (finite difference discretization): nonintrusive Hamiltonian ROMs obtained with H-OpInf presented in Section 3.3 achieve similar state
error performance to that of intrusive Hamiltonian ROMs. For test data, the state approximation error for learned Hamiltonian ROMs does not decrease as favorably
with increase in reduced dimension for 2r > 20.
Fig. 3. Linear wave equation (finite difference discretization): Plot (a) shows bounded FOM energy error around 10−9 for nonintrusive Hamiltonian ROMs. The
ntrusive Hamiltonian ROM, on the other hand, shows exact energy preservation due to its specific choice of reduced Hamiltonian. The black line indicates end of
raining time interval. Plot (b) shows similar ROM energy error for both nonintrusive Hamiltonian ROMs with marginal improvement in the error magnitude for
r = 40.
Fig. 4. Linear wave equation (pseudo-spectral discretization): Plots show that H-OpInf is able to produce accurate nonintrusive Hamiltonian ROMs even if the PDE
is discretized with pseudo-spectral method in space.
difference discretization and hence, the same ROM model form
will be used for learning the symmetric reduced operators for this
case.

The state error plots for the pseudo-spectral discretization
ase in Fig. 4 are similar to the finite difference case. In Fig. 4(a),
9

the state error for the nonintrusive Hamiltonian ROM is nearly
same as the intrusive Hamiltonian ROM for 2r ≤ 30. However
in test data regime, the state error comparison in Fig. 4(b) show
that the state error for nonintrusive Hamiltonian ROM does not
decrease as favorably after 2r = 20, similar to the case in
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l

Fig. 5. Linear wave equation (pseudo-spectral discretization): Plot (a) shows bounded FOM energy error for both nonintrusive Hamiltonian ROMs with marginally
ower error for 2r = 40. The black line indicates end of training time interval. Plot (b) shows similar ROM energy error for nonintrusive ROMs.
Fig. 6. Linear wave equation (pseudo-spectral discretization): Plots show the numerical approximation of the linear wave equation using low-dimensional (2r = 40)
intrusive and nonintrusive Hamiltonian ROM at different t values. Despite higher state approximation error compared to intrusive Hamiltonian ROM in the test data
regime, the nonintrusive Hamiltonian ROM captures the correct wave form at t = 100, which is remarkable because after t = 10 the Hamiltonian ROM simulations
are purely predictive.
t
i

T
J
H

H

I
q

M

4

[

Section 4.2.1. In the FOM energy error plots in Fig. 5(a), we ob-
serve bounded energy error for 900% past the training time inter-
val which shows the stability of the learned Hamiltonian ROMs.
The ROM energy error comparison in Fig. 5(b) shows the energy
error eventually stabilizes around 10−10 for both nonintrusive
Hamiltonian ROMs. The ability of H-OpInf to handle different
structure-preserving spatial discretizations is the key takeaway
from this study. Fig. 6 compares the state vector solution at t = 7,
t = 41.5, and t = 100. Both intrusive and nonintrusive Hamil-
tonian ROMs accurately capture the solution profile, well beyond
the training data regime. These results demonstrate the ability
of the learned Hamiltonian ROM to provide reliable long-time
predictions.

4.3. Nonlinear Schrödinger equation

The nonlinear Schrödinger equation (NLSE) is one of the most
important integrable Hamiltonian PDEs, and it is used in a wide
variety of wave phenomena in physics, including nonlinear op-
tics, gravity waves, Langmuir waves, quantum mechanics, and
condensed matter physics. The one-dimensional NLSE considered
here is a nonlinear variation of the Schrödinger equation and
is one of the universal equations that describe the evolution of
slowly varying wave packets in weakly nonlinear media with
dispersion.
10
4.3.1. PDE formulation
We consider the cubic Schrödinger equation

iψt + ψxx + γ |ψ |
2ψ = 0, (47)

where ψ is a complex-valued wave function and i =
√

−1 is
he imaginary unit. Writing the complex-valued wave function
n terms of its real and imaginary parts as ψ = p + iq, yields

pt = −qxx − γ (q2 + p2)q,

qt = pxx + γ (q2 + p2)p.

he coupled PDEs admit a canonical Hamiltonian PDE form yt =
δH
δy for y = [p, q]⊤ with the following space–time continuous
amiltonian H

(q, p) =

∫
1
2

[
p2x + q2x −

γ

2
[q2 + p2]2

]
dx.

n addition to the energy conservation, the NLSE also possesses
uadratic mass and momentum invariants

1(q, p) =

∫ [
p2 + q2

]
dx, M2(q, p) =

∫
[pxq − qxp] dx.

.3.2. FOM implementation
We consider the nonlinear Schrödinger equation over x ∈

−L/2, L/2] with L = 2
√
2π and γ = 2. The boundary con-

ditions are periodic and the initial conditions are p(x, 0) =
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.5 (1 + 0.01 cos(2πx/L)) and q(x, 0) = 0. The nonlinear PDE is
spatially discretized using n = 64 equally spaced grid points lead-
ing to a discretized state y ∈ R128. We employ finite difference
for spatial discretization to obtain the FOM Hamiltonian

Hd(y) =
1
2

n∑
i=1

[(
qi+1 − qi
∆x

)2

+

(
pi+1 − pi
∆x

)2

−
γ

2

(
q2i + p2i

)2]
∆x,

where pi := p(t, xi), qi := q(t, xi), and y = [p⊤ q⊤
]
⊤. The FOM is

represented by the following Hamiltonian ODE system

ṗ = ∇qHd(p, q) = −Dfdq − γ

⎡⎢⎢⎣
...

p2i qi + q3i
...

⎤⎥⎥⎦ , q̇ = −∇pHd(p, q) = Dfdp + γ

⎡⎢⎢⎣
...

p3i + q2i pi
...

⎤⎥⎥⎦.
The space-discretized NLSE system conserves the following mass
and momentum invariants

M1,d(y) =

n∑
i=1

[
q2i + p2i

]
∆x,

M2,d(y) =

n∑
i=1

[(
pi+1 − pi
∆x

)
qi −

(
qi+1 − qi
∆x

)
pi

]
∆x.

he FOM is numerically integrated using the symplectic midpoint
ule with ∆t = 0.005. The resulting time-marching equations
equire solving a system of 2n = 128 coupled nonlinear equations
t every time step. We build the snapshot matrix by collecting the
napshots for total time T = 20.

.3.3. Results
In Fig. 7, we compare the numerical performance of intrusive

nd nonintrusive Hamiltonian ROMs. The state error plots in
ig. 7(a) over the training time interval of T = 20 show that
he learned ROM performs similar to the intrusive Hamiltonian
OM up to 2r = 10. For 2r > 10, we observe the leveling-off
or the learned ROM where the state accuracy does not improve
ith increasing reduced dimension. For the test data regime of
= 100, both intrusive and nonintrusive Hamiltonian ROMs

ave the same state error up to 2r = 10 in Fig. 7(b). For 2r >
0, intrusive Hamiltonian ROM exhibits significantly lower state
rror compared to nonintrusive Hamiltonian ROM.
The FOM energy error plots in Fig. 8(a) show that both in-

rusive and nonintrusive ROMs have similar bounded energy be-
avior. Unlike the exact energy conservation for the linear wave
quation, the symplectic integrator for NLSE exhibits bounded
nergy error and hence, nonintrusive and intrusive Hamiltonian
OMs have the same level of FOM energy accuracy. Both Hamil-
onian ROMs are simulated until T = 100, which is 400% longer
han the training interval. Due to the nonlinear nature of the
roblem, both nonintrusive Hamiltonian ROMs in Fig. 8(b) also
xhibit the same energy accuracy. Given the coupled nature of
he governing nonlinear PDEs, the competitiveness of the learned
OM with the intrusive Hamiltonian ROM outside the training
ata is remarkable.

.3.4. Conservation of invariants for NLSE
In quantum mechanics, the quantity |ψ(x, t)|2 represents the

robability of finding the system in state x at time t . We have
ompared |ψ(x, t)|2 approximation from the nonintrusive Hamil-
onian ROM with the FOM simulation in Fig. 9. The learned
amiltonian ROM captures the correct distribution of |ψ(x, t)|2,
ven 400% outside the training time interval. In Fig. 10, we
ompare the conservation of mass and momentum invariants for
he two Hamiltonian ROMs. Due to the specific choice of the
educed Hamiltonian, the intrusive Hamiltonian ROM preserves
oth quadratic invariants exactly. The learned Hamiltonian ROM
xhibits bounded error for the mass invariant and interestingly,
11
onserves the momentum invariant exactly. The numerical re-
ults in Figs. 9 and 10 demonstrate the physics-preserving nature
f our H-OpInf method.

.4. Sine–Gordon equation

We consider a special nonlinear wave equation, called the
ine–Gordon equation. This nonlinear hyperbolic PDE appears in a
umber of physical applications such as Josephson junctions be-
ween superconductors, dislocations in crystals, relativistic field
heory, and mechanical transmission lines. Although this equa-
ion was originally introduced in the 19th century, it came to
rominence in 1970s due to the presence of soliton solutions. A
oliton solution is a self-reinforcing wave that maintains its shape
hile it propagates at a constant velocity in the medium. These
pecial wave forms are caused by a cancellation of nonlinear and
ispersive effects in the medium.

.4.1. PDE formulation
The sine–Gordon equation

tt = ϕxx − sin(ϕ), (48)

as a canonical Hamiltonian formulation for q = ϕ and p = ϕt .
he Hamiltonian functional

(q, p) =

∫
1
2

[
p2 + q2x + (1 − cos(q))

]
dx,

ith the canonical Hamiltonian PDE form yt = J δH
δy for y =

q, p]⊤ leads to

t =

[
qt
pt

]
=

[
0 1

−1 0

][ δH
δq
δH
δp

]
=

[
p

qxx − sin(q)

]
.

4.4.2. FOM implementation
We study the sine–Gordon equation over x ∈ [−L/2, L/2] with

L = 40. For the FOM simulations, we consider periodic boundary
conditions with the following initial conditions

q(x, 0) = 0, p(x, 0) =
4

cosh(x)
. (49)

he nonlinear PDE is spatially discretized using n = 200 equally
spaced grid points leading to a discretized state y ∈ R400. We
discretize the Hamiltonian functional which yields the following
space-discretized Hamiltonian Hd

Hd(y) =

n∑
i=1

[
1
2

(
qi+1 − qi
∆x

)2

+
p2i
2

+ (1 − cos(qi))

]
∆x,

where qi := q(t, xi), pi := p(t, xi), and y = [q⊤ p⊤
]
⊤. The resulting

FOM is represented by the following Hamiltonian ODE system

q̇ = ∇pHd(p, q) = p, ṗ = −∇qHd(p, q) = Dfdq −

⎡⎢⎢⎣
...

sin(qi)
...

⎤⎥⎥⎦ .
The FOM is numerically integrated for total time T = 10 using
symplectic midpoint rule with ∆t = 0.005. The resulting time-
marching equations require solving a system of 2n = 400 coupled
nonlinear equations at every time step.

4.4.3. Results
Fig. 11 shows relative state approximation error for both

Hamiltonian ROMs with increasing ROM order. For the training
time interval of T = 10 in Fig. 11(a), both intrusive and nonintru-
sive approaches yield ROMs of comparative accuracy up to 2r =
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Fig. 7. Nonlinear Schrödinger equation: The nonintrusive Hamiltonian ROM shows a similar behavior to the H-OpInf ROM for both training and test data in this
example. For 2r > 10, we observe a leveling off of the state error in the training data regime for the nonintrusive Hamiltonian ROM.
Fig. 8. Nonlinear Schrödinger equation: Plot (a) shows that both learned Hamiltonian ROM and intrusive Hamiltonian ROM exhibit bounded FOM energy error with
arginally higher energy error for the nonintrusive Hamiltonian ROM. The black line indicates end of training time interval. Plot (b) shows similar energy error
ccuracy for nonintrusive Hamiltonian ROMs with 2r = 10 and 2r = 12.
Fig. 9. Nonlinear Schrödinger equation: Hamiltonian ROM learned using H-OpInf correctly predicts |ψ(x, t)|2 well outside the training time interval of T = 20.
a
s
n

0. For 2r > 40, the state error for nonintrusive Hamiltonian ROM
evels off. Interestingly for the testing time interval of T = 50 in
ig. 11(b), the nonintrusive approach gives marginally lower state
rror for 2r > 40.
12
For the FOM energy error comparison, both Hamiltonian ROMs
re simulated until t = 400 to demonstrate the long-time
tability of nonintrusive ROM simulations. Unlike the other two
umerical examples, we have not considered a full cycle of
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Fig. 10. Nonlinear Schrödinger equation: The H-OpInf ROM exhibits bounded error for the mass invariant whereas the intrusive Hamiltonian ROM demonstrates
xact conservation. In contrast, both nonintrusive and intrusive Hamiltonian ROMs conserve the momentum invariant exactly. The black line indicates end of training
ime interval.
Fig. 11. Sine–Gordon equation: Hamiltonian ROMs learned with H-OpInf achieve same accuracy as the intrusive Hamiltonian ROM for both training data and testing
ata, which is 400% longer than the training time interval.
Fig. 12. Sine–Gordon equation: Plot (a) shows that the learned Hamiltonian ROM exhibits bounded FOM energy error even at t = 400. The black line indicates end
f training time interval. Plot (b) shows similar ROM energy error behavior for learned Hamiltonian ROMs of different dimensions.
t
f
e

OM data for training data in this example. Inside the training
ata regime, both intrusive and nonintrusive Hamiltonian ROMs
roduce bounded energy error behavior with similar accuracy
n Fig. 12(a). Interestingly, the nonintrusive Hamiltonian FOM
nergy error plot changes its qualitative behavior after leaving
13
the training data regime but the error still remains bounded up
to t = 400, which is 3900% outside the training interval. Despite
he fact that nonintrusive reduced operators are learned only
rom training data, the Hamiltonian nature of our learned ROM
nsures accurate prediction along with bounded energy error
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Fig. 13. Sine–Gordon equation: Plots show the numerical approximation of the solution of (48) using low-dimensional (2r = 50) intrusive and nonintrusive
amiltonian ROM at different t values.
far outside the training data regime. Similar to the NLSE exam-
ple, both nonintrusive Hamiltonian ROMs for the sine–Gordon
equation also exhibit the same ROM energy error behavior in
Fig. 12(b).

We have compared the approximate numerical solution using
both intrusive and nonintrusive approaches with the FOM solu-
tion in Fig. 13. Even though the reduced operators are learned
from training data T = 10, our nonintrusive Hamiltonian ROM
captures the correct wave shape at t = 50 which is 400% past
he training time interval.

. Conclusions

We have presented a data-driven model reduction method
hat utilizes information about the space–time continuous Hamil-
onian functional to derive Hamiltonian ROMs via nonintrusive
perator inference. Our method applies to canonical Hamilto-
ian systems with nonpolynomial nonlinear terms, and learns
amiltonian reduced operators directly from the full-model sim-
lation data, without an intrusive symplectic projection step that
equires full-model operators. Our method only requires access
o the form of the space-discretized Hamiltonian so that we
an learn the parameters, but not the space-discretized Hamil-
onian itself. The inference of the operators is based on a con-
trained least-squares problem that ensures that the reduced
odels are Hamiltonian systems. We have also presented a the-
retical result that shows that the nonintrusively learned re-
uced operators converge to the same reduced operators as ob-
ained with intrusive structure-preserving model reduction under
ertain not-too-restrictive conditions.
The numerical experiments with the nonlinear Schrödinger

quation and the sine–Gordon equation demonstrate that our
ethod works well for Hamiltonian systems with complex non-

inear phenomena. The numerical results also show that the pre-
ented method learns stable reduced-order models and provides
reater interpretability, while facilitating accurate long-time pre-
ictions far outside the training data regime.
Future research directions motivated by this work are: ex-

ending Hamiltonian operator inference to noncanonical Hamil-
onian systems; deriving error bounds for the difference between
amiltonian of intrusive and nonintrusive ROM, i.e., |H̃ − Ĥ|; and
xtending sampling algorithm based on re-projection for implicit
ime-marching schemes so that they can be combined with H-
pInf to recover intrusive Hamiltonian ROMs in a nonintrusive
ay.
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