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Conditional-Value-at-Risk Estimation via Reduced-Order Models∗

Matthias Heinkenschloss† , Boris Kramer‡ , Timur Takhtaganov§ , and Karen Willcox¶

Abstract. This paper proposes and analyzes two reduced-order model (ROM) based approaches for the efficient
and accurate evaluation of the Conditional-Value-at-Risk (CVaR) of quantities of interest (QoI) in
engineering systems with uncertain parameters. CVaR is used to model objective or constraint func-
tions in risk-averse engineering design and optimization applications under uncertainty. Evaluating
the CVaR of the QoI requires sampling in the tail of the QoI distribution and typically requires
many solutions of an expensive full-order model of the engineering system. Our ROM approaches
substantially reduce this computational expense. Both ROM-based approaches use Monte Carlo
(MC) sampling. The first approach replaces the computationally expensive full-order model by an
inexpensive ROM. The resulting CVaR estimation error is proportional to the ROM error in the
so-called risk region, a small region in the space of uncertain system inputs. The second approach
uses a combination of full-order model and ROM evaluations via importance sampling and is effective
even if the ROM has large errors. In the importance sampling approach, ROM samples are used
to estimate the risk region and to construct a biasing distribution. A few full-order model samples
are then drawn from this biasing distribution. Asymptotically, as the ROM error goes to zero, the
importance sampling estimator reduces the variance by a factor of 1 − β � 1, where β ∈ (0, 1) is
the quantile level at which CVaR is computed. Numerical experiments on a system of semilinear
convection-diffusion-reaction equations illustrate the performance of the approaches.
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1. Introduction. Designing reliable engineering systems requires taking into account the
uncertainties associated with system parameters. In risk-averse optimization, so-called risk
measures are applied to quantities of interest (QoI) X to form the objective function and
constraint functions. This paper proposes rigorous ways to use reduced-order models (ROMs)
for the the efficient estimation of the so-called Conditional-Value-at-Risk at level β (CVaRβ),
β ∈ (0, 1). CVaRβ builds on the Value-at-Risk at level β (VaRβ), which is the β-quantile
of the random variable X. If X represents a loss (or cost or target violation), VaRβ[X]
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is the smallest value so that losses over this value occur with probability 1 − β. VaRβ is
not convex and it does not account for size of losses. CVaRβ[X] removes those drawbacks.
CVaRβ[X] is the average of the losses above VaRβ scaled by 1/(1−β) and is convex. Originally
used as a risk measure in financial applications, CVaRβ is now also more frequently used in
engineering applications; see, e.g., the survey paper by Rockafellar and Royset [14]. Estimating
CVaRβ (and many other risk measures) requires sampling from the tail of the distribution
of the QoI and is computationally expensive. While the distribution of the uncertain system
parameters is known, the resulting QoI is a random variable that depends on the solution of the
system. Therefore, the distribution of the QoI is not explicitly known, and naive sampling from
the tail of this distribution to estimate CVaRβ requires many expensive system simulations.
Each system simulation requires the expensive solution of a full-order model (FOM). In our
application, the system is modeled by a system of partial differential equations (PDEs), and
the FOM is a high-fidelity discretization of the PDEs.

This paper proposes and analyzes two ROM based approaches for the efficient and accurate
estimation of CVaRβ. In our first approach we replace the FOM by a ROM, and we analyze the
resulting error in the CVaRβ estimate. This error analysis depends on so-called risk regions,
small regions in parameter space that contain the parameters that lead to “risky” QoI values.
Specifically, we show that the error in the CVaRβ estimate due to ROMs is upper bounded by
the ROM error in so-called ε-risk regions associated with the ROMs. These ε-risk regions are
derived from ROM information, contain the risk region of the FOM, and as the ROM error
goes to zero converges to the risk region of the FOM. This first approach relies on an error
bound between the ROM and the FOM, and the error needs to be sufficiently small for good
CVaRβ estimates.

Our second approach uses an importance sampling framework. Here, the ROM error
bound is only used to obtain estimates of the risk region. The proposed importance sampling
framework can be effective even if the ROM error is large. ROMs are used to construct a
biasing distribution that biases samples towards the risk region. We then estimate CVaRβ

from FOM samples drawn from this biasing distribution. The ROM approximation error only
impacts the quality of the biasing distribution and therefore, via its variance, the sampling
error. The smaller this variance, the fewer FOM samples are needed to generate a CVaRβ

estimate at a desired tolerance. We show that asymptotically as the ROM error goes to zero,
the importance sampling estimator reduces the variance by a factor of 1 − β � 1, where
β ∈ (0, 1) is the quantile level at which CVaR is computed.

There are existing approaches for using ROMs in the estimation of CVaRβ and other risk
measures. Variance reduction strategies (including importance sampling) for quantile (Value-
at-Risk) estimation using reduced models are considered by Cannamela, Garnier, and Iooss
[2]. Specifically, importance-sampling estimates are constructed using a biasing density from
a parametrized family of densities, and the parameters are informed through a reduced model.
In this work, we consider CVaRβ (superquantiles), which are based on VaRβ (quantiles), and
we analyze the impact of the ROM error on the CVaRβ estimate. Harajli, Rockafellar, and
Royset [5] compute buffered failure probabilities (which are related to CVaR) via importance
sampling. However, an analytic biasing density is chosen which depends on the specific test
problem in [5]. We suggest a principled, general approach to obtain a biasing density via
reduced-order models obtained from the original governing equations. Importance sampling
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via reduced models has been successfully applied in the context of computing failure probabil-
ities by Li, Li, and Xiu [8] and Peherstorfer et al. [10, 11, 12]. However, these approaches do
not directly translate to importance sampling for CVaRβ estimation, the focus of our work.
The review by Hong, Hu, and Liu [6, sects. 2.1, 2.2] states asymptotic properties of CVaRβ

estimation via importance sampling given a biasing density, but does not address how one can
compute a biasing density. Among other contributions, our paper proposes a construction of a
biasing density using ROMs. Zou, Kouri, and Aquino [22] estimate CVaRβ by constructing a
Voronoi tessellation of the parameter space and using localized reduced-basis surrogate mod-
els. While their ROM construction is different from what we use in our example, it could, in
principle, be used as well, and their overall approach is comparable to our first approach. The
main difference between the work [22] and our work is that the ROM error in the entire pa-
rameter region is needed in [22], whereas our error estimate depends only on the ROM error in
the risk region. In addition, we introduce and analyze an importance sampling approach that
uses ROMs to construct the biasing distributions. Proper orthogonal decomposition based
ROMs have recently been used in [21] to minimize CVaRβ for an aircraft noise problem mod-
eled by the Helmholtz equation. Their overall approach is comparable to our first approach,
but they do not analyze the impact of ROMs on the CVaRβ estimation error. The design
of an ultrahigh-speed hydrofoil by using CVaRβ optimization is considered by Royset et al.
[17]. They propose building surrogates of the CVaR of their QoI and model these surrogates
as random variables “due to unknown error in the surrogate relative to the actual value” of
the CVaR of their QoI. This randomness in the CVaR surrogate is then incorporated into the
design process by applying CVaR again, but with a different quantile level to the surrogate.
Ultimately, they use a surrogate for the QoI that combines high-fidelity and low-fidelity QoI
evalutions into a polynomial fit model. Our work does not require additional stochastic treat-
ment of model error, and focuses on the efficient and accurate sampling of CVaR using ROMs
of the QoI that satisfy the original governing equations.

This paper is structured as follows. Section 2 provides background material and notation
for CVaRβ computation. In section 3 we derive error bounds for CVaRβ estimation with
ROMs and give results on confidence intervals for CVaRβ. Section 4 presents our results on
CVaRβ estimation with importance sampling. Our two ROM approaches are illustrated on a
system of semilinear convection-diffusion-reaction PDEs in section 5. A review and discussion
is given in section 6.

2. Problem formulation and background. This section specifies our problem set-up and
reviews the results on CVaRβ needed for our application of ROMs. Section 2.1 introduces the
basic problem set-up and notation, followed by a brief introduction to CVaRβ and some useful
properties in section 2.2. Sample estimates of VaRβ and CVaRβ together with a complete
algorithm are given in section 2.3.

2.1. The state equation and quantity of interest. We consider systems modeled by
equations of the form

(2.1) F (y, ξ) = 0,

where ξ is a vector of random variables (continuous or discrete) with values in Ξ ⊂ RM and
with probability density function (p.d.f.) ρ, and where y denotes the state of the system.
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Equation (2.1) is referred to as the state equation. Often the system is modeled by a system
of PDEs in which case the state equation (2.1) is a high-fidelity discretization of the PDEs.
We assume that for every realization ξ ∈ Ξ there exists a unique solution y = y(ξ) ∈ RN of
(2.1). For discretized PDEs, N is typically large.

We are interested in a QoI s : RN 7→ R, and we assume that

ξ 7→ s(y(ξ))

is both in L1
ρ(Ξ) and in L2

ρ(Ξ). For notational convenience, we set the QoI to be the random
variable

(2.2) X = s(y(·)).

Following the original setting of financial applications, it is helpful to think of high values of
X as risky.

The expected value and variance of the random variable X are given by

Eρ[X] =

∫
Ξ
X(ξ)ρ(ξ)dξ and Vρ[X] = Eρ

[
(X(·)− Eρ[X])2

]
,

respectively. The subscript ρ is used to indicate which density is used in the integration.

2.2. Conditional-Value-at-Risk (CVaR). The CVaRβ is based on the Value-at-Risk (VaRβ).
For a given level β ∈ (0, 1) the VaRβ[X] is the β-quantile of the random variable X,

(2.3) VaRβ[X] = min
t∈R
{Pr[X ≤ t] ≥ β}.

Here

Pr[X ≤ t] =

∫
Ξ
I{X(ξ) ≤ t}ρ(ξ)dξ,

the probability that X is less or equal than t and I is the indicator function. Different
equivalent definitions of CVaRβ exist. The following definition is due to Rockafellar and
Uryasev [15, 16]. The CVaRβ at level β ∈ (0, 1) is

(2.4) CVaRβ[X] = min
t∈R

{
t+

1

1− β
Eρ[(X − t)+]

}
,

where (·)+ = max{ · , 0}. The minimum of (2.4) is attained on the interval [t∗, t∗∗] with

t∗ = VaRβ[X] and t∗∗ = sup{t : Pr[X ≤ t] ≤ β}.

Inserting t∗ = VaRβ[X] into (2.4), one obtains

(2.5) CVaRβ[X] = VaRβ[X] +
1

1− β
Eρ
[
(X −VaRβ[X])+

]
.

If the cumulative distribution function (c.d.f.) HX(x) = Pr[X ≤ x] is continuous at
x = VaRβ[X], then Pr

[
X = VaRβ[X]

]
= 0, t∗ = t∗∗ = VaRβ[X], and (2.5) can be simplified

to

CVaRβ[X] =
1

1− β
Eρ
[
X · I {X ≥ VaRβ[X]}

]
.(2.6)
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More generally, the coherent risk measure properties of CVaRβ and the biconjugate represen-
tation of coherent risk measures (see, e.g., [18], [20, sect. 6.3], and [7]) give the representation

(2.7a) CVaRβ[X] = sup
ϑ∈A

Eρ
[
ϑX
]
,

where

(2.7b) A =
{
ϑ ∈ L∞ρ (Ξ) : 0 ≤ ϑ(ξ) ≤ (1− β)−1 a.e. Ξ, and Eρ

[
ϑ
]

= 1
}
.

One can show [20, Example 6.16] that the supremum is attained at any ϑ∗X that satisfies

(2.8) ϑ∗X(ξ)


= 0 if X(ξ) < VaRβ[X],
∈ [0, (1− β)−1] if X(ξ) = VaRβ[X],
= (1− β)−1 if X(ξ) > VaRβ[X],

for almost all ξ ∈ Ξ, and Eρ
[
ϑ∗X
]

= 1. If Pr
[
X = VaRβ[X]

]
= 0, ϑ∗X is unique and (2.8),

(2.7) reduce to (2.6).
The representations (2.8), (2.7), and (2.6) show that CVaRβ[X] depends only on the values

of X that lie in the upper tail of the c.d.f. Therefore, the values of the parameter vector ξ that
correspond to these high values of X can be considered risky. This motivates the following
definition.

Definition 2.1. The risk region corresponding to CVaRβ[X] is given by

Gβ[X] := {ξ | X(ξ) ≥ VaRβ[X]} ⊂ Ξ

and the corresponding indicator function of the risk region Gβ[X] is

(2.9) IGβ [X](ξ) := I {X(ξ) ≥ VaRβ[X]} .

Note that

Pr
[
Gβ[X]

]
= Pr

[
{X > VaRβ[X]}

]
+ Pr

[
{X = VaRβ[X]}

]
= (1− β) + Pr

[
{X = VaRβ[X]}

](2.10)

by the definition (2.3) of VaRβ[X].

2.3. Sampling-based estimation of VaRβ and CVaRβ. In practice, CVaRβ[X] is esti-
mated through sampling. Throughout this paper we use ·̂ to denote a sampling-based esti-

mate. For example, ĈVaRβ[X] and V̂aRβ[X] denote sampling-based estimates of CVaRβ[X]
and VaRβ[X], respectively. The procedure for computing estimates of VaRβ[X] and CVaRβ[X]
is described in Algorithm 2.1.1 We will use Algorithm 2.1 for standard MC sampling, in which
case p(n) = 1/n, or with importance sampling (see section 4), in which case p(n) = w(ξ(n))/n
with w being the weight function in the importance sampling. The second term on the right-

hand side in (2.12) is nonzero for the case
∑kβ−1

j=1 p(j) 6= 1 − β and is based on the idea of
splitting the probability atom at VaRβ[X] (see [16]).

1Rockafellar and Uryasev [16] assume that samples are ordered X(ξ(1)) < X(ξ(2)) < · · · < X(ξ(n)) with
corresponding probabilities p(1), . . . , p(n). Since VaRβ [X] and CVaRβ [X] depend only on (a few) samples with
large values, we prefer the ordering of (2.11).
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Algorithm 2.1. Sampling-based estimation of VaRβ and CVaRβ.

Input: Parameter samples ξ(1), . . . , ξ(n) with probabilities p(1), . . . , p(n), risk level β ∈ (0, 1),
and random variable X(ξ).

Output: Estimate V̂aRβ[X] and ĈVaRβ[X].
1: Evaluate X at the parameter samples: X(ξ(1)), . . . , X(ξ(n)).
2: Sort values of X in descending order and relabel the samples so that

(2.11) X(ξ(1)) > X(ξ(2)) > · · · > X(ξ(n)),

and reorder the probabilities accordingly (so that p(j) corresponds to ξ(j)).
3: Compute an index kβ such that

kβ−1∑
j=1

p(j) ≤ 1− β <
kβ∑
j=1

p(j).

4: Set
V̂aRβ[X] = X(ξ(kβ))

and

(2.12) ĈVaRβ[X] =
1

1− β

kβ−1∑
j=1

p(j)X(ξ(j)) +
1

1− β

(
1− β −

kβ−1∑
j=1

p(j)

)
V̂aRβ[X].

Asymptotic convergence properties of the estimators V̂aRβ[X] and ĈVaRβ[X] are given
in the review by Hong, Hu, and Liu [6, sects. 2.1, 2.2] and we state some of these later in
Lemma 4.3 when we discuss importance sampling.

3. CVaRβ estimation with reduced-order models. Recall that evaluating the QoI X(ξ)
at a given parameter ξ requires solving an expensive FOM. To devise our computationally
efficient framework, we assume the availability of an inexpensive ROM approximation of the
parameter to QoI map, denoted as Xr(ξ). For the purposes of this section, the details of how
Xr(ξ) is computed are not important. Later, in section 5, we give an example of how Xr(ξ)
is computed via state reduction for the convection-diffusion-reaction model problem.

Our first proposed approach, described in this section, approximates CVaRβ[X] by
CVaRβ[Xr]. Since ROM samples Xr(ξ) are relatively inexpensive to compute, the compu-
tation of CVaRβ[Xr] is relatively inexpensive. Section 3.1 presents estimates of the error
between CVaRβ[X] and CVaRβ[Xr]. Section 3.2 then states the algorithm for practical com-
putation of the ROM errors for general nonlinear systems.

3.1. Error analysis for CVaRβ estimation with ROM. For the purpose of the following
derivation, assume the availability of a bound for the error between the original QoI X and
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its approximation Xr,

(3.1) |X(ξ)−Xr(ξ)| ≤ εr(ξ) for ξ ∈ Ξ.

We will relax this assumption somewhat at the end of this section.
Define the maximum error in Ξ as

(3.2) εmax
r := sup

ξ∈Ξ
εr(ξ)

so that |X(ξ) −Xr(ξ)| ≤ εmax
r for all ξ ∈ Ξ. Zou, Kouri, and Aquino [22] use this maximum

error and the biconjugate representation of CVaRβ to derive an error estimate for CVaRβ.
First, using (2.7) gives

CVaRβ[X] = sup
ϑ∈A

E[ϑX] ≤ sup
ϑ∈A

E[ϑXr] + sup
ϑ∈A

E
[
ϑ|X −Xr|

]
= CVaRβ[Xr] + sup

ϑ∈A
E
[
ϑ|X −Xr|

]
≤ CVaRβ[Xr] + εmax

r ,

where the final inequality follows from the fact that elements ϑ ∈ A are probability densities.
Similarly, CVaRβ[Xr] ≤ CVaRβ[X] + εmax

r . Thus,

(3.3)
∣∣CVaRβ[X]− CVaRβ[Xr]

∣∣ ≤ sup
ϑ∈A

E
[
ϑ|X −Xr|

]
≤ εmax

r .

Although CVaRβ[X] and CVaRβ[Xr] depend only on X and Xr in their respective risk
regions, the error bound (3.3) depends on the maximum error in Ξ. In particular, if the
distributions of X and Xr have identical tails but differ elsewhere in Ξ, the actual error
|CVaRβ[X]− CVaRβ[Xr]| will be zero, whereas the error bound in (3.3) will still be εmax

r . It
turns out that only the error between X and Xr in the so-called ε-risk region, defined next,
is important.

Definition 3.1. The ε-risk region corresponding to CVaRβ[X] is given by

(3.4) Gε
β[Xr] := {ξ : Xr(ξ) + εr(ξ) ≥ VaRβ[Xr − εr]},

and the corresponding indicator function is IGεβ [Xr](ξ).

Lemma 3.2. It holds that

(3.5) Gβ[X] ⊆ Gε
β[Xr] and Gβ[Xr] ⊆ Gε

β[Xr]

and

(3.6) εG,lowr := sup
ξ∈Gβ [Xr]

εr(ξ) ≤ sup
ξ∈Gβ [X]∪Gβ [Xr]

εr(ξ) ≤ sup
ξ∈Gεβ [Xr]

εr(ξ) =: εGr .

Proof. Consider the random variables Xr − εr and Xr + εr. Obviously,

Xr(ξ)− εr(ξ) ≤ X(ξ) ≤ Xr(ξ) + εr(ξ) ∀ξ ∈ Ξ,
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and, by monotonicity of VaRβ (see, e.g., [13]),

VaRβ[Xr − εr] ≤ VaRβ[X] ≤ VaRβ[Xr + εr].

In particular, for ξ ∈ Gβ[X] we have

VaRβ[Xr − εr] ≤ VaRβ[X] ≤ X(ξ) ≤ Xr(ξ) + εr(ξ),

which implies that Gβ[X] ⊆ Gε
β[Xr]. Similarly, for ξ ∈ Gβ[Xr] we have

VaRβ[Xr − εr] ≤ VaRβ[Xr] ≤ Xr(ξ) ≤ Xr(ξ) + εr(ξ),

i.e., that Gβ[Xr] ⊆ Gε
β[Xr]. Inequality (3.6) is an immediate consequence of (3.5).

We can now make the opening statement of this section more precise. In particular, we
do not need the error function εr(ξ) in all of Ξ from (3.1), but only the error εGr in the ε-risk
region Gε

β[Xr] from (3.6).

Theorem 3.3. The error between CVaRβ of the full-order model X and CVaRβ of the
reduced-order model Xr is bounded as∣∣CVaRβ[X]− CVaRβ[Xr]

∣∣
≤

(
1 +

sup
{

Pr
[
{X = VaRβ[X]}

]
, Pr

[
{Xr = VaRβ[Xr]}

]}
1− β

)
εGr

≤
(

1 +
1

1− β

)
εGr .(3.7)

If X and Xr have c.d.f.’s that are continuous at VaRβ[X] and at VaRβ[Xr], respectively, then

(3.8)
∣∣CVaRβ[X]− CVaRβ[Xr]

∣∣ ≤ εGr .
Proof. Let ϑ∗X be given by (2.8) with CVaRβ[X] = supϑ∈A E[ϑX] = E[ϑ∗XX]. Then using

the definition of ϑ∗X , we see that E[ϑ∗XXr] ≤ supϑ∈A E[ϑXr] = CVaRβ[Xr], and (2.10) gives

CVaRβ[X] = E[ϑ∗XX] = E[ϑ∗XXr] + E[ϑ∗X(X −Xr)]

≤ CVaRβ[Xr] +
1

1− β

∫
Gβ [X]

|X −Xr|ρ(ξ)dξ

≤ CVaRβ[Xr] +
1− β + Pr

[
{X = VaRβ[X]}

]
1− β

sup
ξ∈Gβ [X]

εr(ξ).

Similarly,

CVaRβ[Xr] ≤ CVaRβ[X] +
1− β + Pr

[
{Xr = VaRβ[Xr]}

]
1− β

sup
ξ∈Gβ [Xr]

εr(ξ).
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It follows that∣∣CVaRβ[X]− CVaRβ[Xr]
∣∣

≤

(
1 +

max
{

Pr
[
{X = VaRβ[X]}

]
, Pr

[
{Xr = VaRβ[Xr]}

]}
1− β

)
sup

ξ∈Gβ [X]∪Gβ [Xr]
εr(ξ).(3.9)

The first term on the right-hand side of (3.9) is bounded by 1 + 1/(1 − β). If X and Xr

have c.d.f’s that are continuous at VaRβ[X] and VaRβ[Xr], respectively, then Pr
[
{X =

VaRβ[X]}
]

= Pr
[
{Xr = VaRβ[Xr]}

]
= 0, and the first term becomes one. The second

term on the right-hand side of (3.9) is bounded by εGr (see (3.6)).

Algorithm 3.1. Sampling-based estimation of CVaRβ and its errors with ROM.

Input: Parameter samples ξ(1), . . . , ξ(n) with probabilities p(1), . . . , p(n), risk level β, random
variable Xr(ξ), and its error function εr(ξ).

Output: Estimate ĈVaRβ[Xr] and error estimates ε̂max
r , ε̂G,low

r , and ε̂Gr .
1: Evaluate Xr and εr at the parameter samples: Xr(ξ

(1)), . . . , Xr(ξ
(n)), εr(ξ

(1)), . . . , εr(ξ
(n)).

2: Apply steps 2, 3, and 4 of Algorithm 2.1 with X replaced by Xr to obtain the index kβ

and ĈVaRβ[Xr].
3: Reorder εr(ξ

(1)), . . . , εr(ξ
(n)) to match the order of Xr(ξ

(1)), . . . , Xr(ξ
(n)) from the previous

step.
4: Approximate εmax

r and εG,low
r :

ε̂r
max = max

1≤j≤n
εr(ξ

(j)), ε̂r
G,low = max

1≤j≤kβ
εr(ξ

(j)).

5: Estimate V̂aRβ[Xr − εr] by applying steps 2, 3, and 4 of Algorithm 2.1 with X replaced
by Xr − εr.

6: Approximate the ε-risk region (3.4) by a discrete set:

Ĝε
β[Xr] := {ξ(j) : Xr(ξ

(j)) + εr(ξ
(j)) ≥ V̂aRβ[Xr − εr]}.

7: Compute
ε̂Gr = max

ξ(j) ∈ Ĝε
β[Xr]

εr(ξ
(j)).

Remark 3.4. The bound (3.7) uses the crude bounds Pr
[
{X = VaRβ[X]}

]
≤ 1 and

Pr
[
{Xr = VaRβ[Xr]}

]
≤ 1. This can be improved, e.g., as follows.

The VaRβ[X] is monotonically increasing in β. For any δ ∈ (0, β) such that VaRβ−δ[X] <
VaRβ[X] < VaRβ+δ[X] it holds that

Pr
[
{X = VaRβ[X]}

]
≤ Pr

[
{X > VaRβ−δ[X]} ∩ {X ≤ VaRβ+δ[X]}

]
= Pr

[
{X > VaRβ−δ[X]}

]
− Pr

[
{X > VaRβ+δ[X]}

]
= 1− (β − δ)− (1− (β + δ)) = 2δ.
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Note that if the c.d.f. of X is continuous at VaRβ[X], then VaRβ−δ[X] < VaRβ[X] <
VaRβ+δ[X] for any δ ∈ (0, β). The term Pr

[
{Xr = VaRβ[Xr]}

]
can be bounded the same

way.

3.2. Practical estimation of errors. In practice the ε-risk region Gε
β[Xr] and the errors

ε̂max
r , ε̂G,low

r , and ε̂Gr are estimated using sampling. We evaluate the ROM and the full-order
model at n random samples and compute the maximum error ε̂max

r first. With the ordered

samples of Xr we obtain ĈVaRβ[Xr], and consequently the error ε̂G,low
r in the CVaRβ[Xr]

region. Next, the ε-risk region Gε
β[Xr] can be computed, which is needed to compute the error

ε̂Gr . The details are given in Algorithm 3.1.

4. Importance sampling for estimation of CVaRβ. In the previous section, we used a
ROM to replace the FOM in the CVaRβ estimation and showed that the resulting error in
CVaRβ is proportional to the ROM error in the ε-risk region. Thus, this approach works
well if a ROM error estimate is available and the ROM error is sufficiently small. To relax
these conditions, we now consider an importance sampling (IS) approach to compute VaRβ

and CVaRβ. The ROM is used to generate a so-called biasing density from which samples are
drawn. Given this biasing density, few samples of the expensive FOM are used to estimate
VaRβ and CVaRβ. While our analysis of the proposed IS approach assumes availability of
ROM error bounds to estimate the risk region, our IS approach can be used with fewer
assumptions than for the approach in the previous section. Our analysis shows that the
performance of our IS approach improves as the ROM error becomes smaller, but as the
numerical results in section 5 show, it is effective even with coarse ROMs.

We begin with a brief introduction of the IS framework in section 4.1. Section 4.2 derives
the optimal IS density for CVaRβ estimation. This optimal IS density itself is impractical,
since it relies on evaluations of the expensive FOM. Therefore, we propose an IS density in
section 4.3 that uses the previously introduced ε-risk region and, hence, only uses inexpensive
evaluations of the ROM. The details of our implementation of the proposed IS approach are
provided in section 4.4.

4.1. Importance sampling framework. IS estimators use samples from a biasing distri-
bution (a distribution that is biased towards a specific event, e.g., the risk region) to estimate
statistics of the quantity of interest. The estimator accounts for the increased occurrence
of such events by including reweighting to compensate within the sampling estimate. For a
general introduction to importance sampling, see, e.g., Owen [9, sect. 9]. Mathematically, IS
amounts to changing the density, and the following results are stated to allow such a change.

Recall that ρ is the density of the random variable ξ. Define the support supp(ρ) = {ξ ∈
Ξ | ρ(ξ) > 0}. Let ϕ be another density with supp(ρ) ⊆ supp(ϕ). For any integrable function
g : Ξ→ R we have

Eρ[g] =

∫
Ξ
g(ξ) ρ(ξ) dξ =

∫
Ξ
g(ξ)w(ξ) ϕ(ξ) dξ = Eϕ[gw],

where w := ρ/ϕ is the so-called likelihood ratio, or IS weight function. The subscript ϕ in Eϕ
and Vϕ indicates that the integrals in the definition of expectation and variance are computed
with the density ϕ.
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To derive the IS method for CVaRβ estimation, we make the following assumption through-
out this section.

Assumption 4.1. The c.d.f. HX(x) = Pr[X ≤ x] is continuous at x = VaRβ[X].

Under this assumption, Pr
[
X = VaRβ[X]

]
= 0 and

(4.1) CVaRβ[X] =
1

1− β

∫
Ξ
X(ξ) IGβ [X](ξ)ρ(ξ)dξ

(see (2.6) and (2.9)). We note that the assumptions made in Hong, Hu, and Liu [6] to prove
asymptotic properties of CVaRβ imply continuity of the c.d.f. HX(x) at x = VaRβ[X]. We
emphasize that while this continuity condition is needed to construct the proposed biasing
distribution, our IS procedure can be applied even if this assumption does not hold.

We perform a change of measure from the nominal density ρ to the biasing density ϕ in
(4.1) and account for the change by reweighting to obtain

CVaRβ[X] =
1

1− β

∫
Ξ
IGβ [X](ξ)X(ξ)ρ(ξ)dξ

=
1

1− β

∫
Ξ̃
IGβ [X](ξ)X(ξ)w(ξ)ϕ(ξ)dξ,

where

(4.2) w(ξ) :=
ρ(ξ)

ϕ(ξ)

is the weight and Ξ̃ is the support of the new density ϕ, to be defined later. Recall that ϕ
does not need to be positive everywhere; it is sufficient (see, e.g., [9, Chapter 9]) that

ϕ(ξ) > 0 for ξ ∈ Gβ[X].

Thus we make the following assumption throughout this section.

Assumption 4.2. The support Ξ̃ of the biasing density ϕ satisfies

(4.3) Gβ[X] ⊂ Ξ̃.

The IS estimates V̂aRIS
β [X] and ĈVaRIS

β [X] are again computed by Algorithm 2.1, but now

we draw independent samples ξ(1), . . . , ξ(n) from the biasing distribution ϕ, evaluate X(ξ(j)),
j = 1, . . . , n, and define probabilities p(j) = w(ξ(j))/n, j = 1, . . . , n. These are now the inputs
into Algorithm 2.1 when IS is used.

To justify our choice of the biasing density ϕ that we will introduce in section 4.3, and
to analyze the asymptotic properties of the resulting estimates V̂aRIS

β [X] and ĈVaRIS
β [X], we

need the following result adapted from [6, sect. 2.2]. Recall that Eϕ[ · ] and Vϕ[ · ] denote
expected value and variance under the measure ϕ(ξ)dξ. In the following result “⇒” denotes
convergence in distribution, and N (0, 1) stands for the standard normal distribution.
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Lemma 4.3. If there exists a δ > 0 and C > 0 such that X has a positive and continuously
differentiable density hX(x) for all x ∈ (VaRβ[X]−δ,VaRβ[X]+δ), and if the weight function

satisfies w(ξ) ≤ C for all ξ ∈ {ξ |X(ξ) ∈ (VaRβ[X] − δ,∞)}, then V̂aRIS
β [X] → VaRβ[X]

w.p. 1 as n→∞ and

√
n
(

V̂aRIS
β [X]−VaRβ[X]

)
⇒

(
Vϕ[IGβ [X](·)w(·)]

)1/2

hX(VaRβ[X])
N (0, 1).

If, in addition, Eϕ[(X(·)−VaRβ[X])2
+w

2(·)] < ∞, then ĈVaRIS
β [X] → CVaRβ[X] w.p. 1 as

n→∞ and

(4.4)
√
n
(

ĈVaRIS
β [X]− CVaRβ[X]

)
⇒

(
Vϕ[(X(·)−VaRβ[X])+w(·)]

)1/2

1− β
N (0, 1).

Remark 4.4. Asymptotic results for the standard Monte Carlo estimates, denoted

by V̂aRMC
β [X] and ĈVaRMC

β [X] and computed by Algorithm 2.1 with independent samples

ξ(1), . . . , ξ(n) from the nominal distribution ρ and equal probabilities p(j) = 1/n, j = 1, . . . , n,
are a special case of Lemma 4.3 with w ≡ 1.

The goal of IS is to compute a biasing density ϕ such that the variance of the estimator is

small. We are not aware of an expression for the variance of ĈVaRIS
β [X] for fixed n. Therefore,

we use the asymptotic result (4.4) and use

(4.5)
Vϕ[(X(·)−VaRβ[X])+w(·)]

n(1− β)2

as the “variance” of ĈVaRIS
β [X] for fixed n.

4.2. Deriving the optimal biasing distribution. Before we construct the proposed biasing
density ϕ, we first compute the optimal biasing density, i.e., the biasing density that gives
an estimator ĈVaRIS

β [X] with zero variance in (4.5). Although this optimal biasing density
is usually impractical (it depends on the quantities to be estimated), it guides us in the
construction of a computable biasing density.

Theorem 4.5. The biasing density resulting in zero variance in (4.5) is given by

(4.6) ϕ∗(ξ) =
IGβ [X](ξ) (X(ξ)−VaRβ[X]) ρ(ξ)

(1− β) (CVaRβ[X]−VaRβ[X])
.
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Proof. We begin by analyzing the variance term in (4.5), which gives

Vϕ
[

(X(·)−VaRβ[X])+w(·)
]

= Eϕ
[

(X(·)−VaRβ[X])2
+w

2(·)
]
−
(
Eϕ
[

(X(·)−VaRβ[X])+w(·)
])2

=

∫
Ξ̃

(
(X(ξ)−VaRβ[X])+ ρ(ξ)

ϕ(ξ)

)2

ϕ(ξ)dξ −
(∫

Ξ̃

(X(ξ)−VaRβ[X])+ ρ(ξ)

ϕ(ξ)
ϕ(ξ)dξ

)2

=

∫
Ξ̃

(
IGβ [X](ξ) (X(ξ)−VaRβ[X])

)2
ρ(ξ)

ϕ(ξ)
ρ(ξ)dξ −

(∫
Ξ̃
IGβ [X](ξ) (X(ξ)−VaRβ[X]) ρ(ξ)dξ

)2

=

∫
Ξ

(
IGβ [X](ξ) (X(ξ)−VaRβ[X])

)2
ρ(ξ)

ϕ(ξ)
ρ(ξ)dξ −

(∫
Ξ
IGβ [X](ξ) (X(ξ)−VaRβ[X]) ρ(ξ)dξ

)2

=

∫
Ξ

(
IGβ [X](ξ) (X(ξ)−VaRβ[X])

)2
ρ(ξ)

ϕ(ξ)
ρ(ξ)dξ − (1− β)2 (CVaRβ[X]−VaRβ[X])2 ,

where the last identity follows from (4.1) and (2.10) with Pr
[
X = VaRβ[X]

]
= 0. The

change from Ξ̃ to Ξ in the second-to-last inequality is justified, since for ξ ∈ Ξ∩ (Ξ̃)c we have
IGβ [X](ξ) = 0 (see (4.3)), while for ξ ∈ Ξ̃ ∩ (Ξ)c we have that ρ(ξ) = 0.

Now, define

U(ξ) := IGβ [X](ξ) (X(ξ)−VaRβ[X]) ρ(ξ)− (1− β) (CVaRβ[X]−VaRβ[X])ϕ(ξ).

Using the definition of U and the same arguments as above, we obtain∫
Ξ̃

(U(ξ))2

ϕ(ξ)
dξ

=

∫
Ξ̃

(
IGβ [X](ξ) (X(ξ)−VaRβ[X]) ρ(ξ)

)2

ϕ(ξ)
dξ

− 2(1− β) (CVaRβ[X]−VaRβ[X])

∫
Ξ̃

(X(ξ)−VaRβ[X])+ ρ(ξ)dξ

+ (1− β)2 (CVaRβ[X]−VaRβ[X])2
∫

Ξ̃
ϕ(ξ)dξ

=

∫
Ξ

(
IGβ [X](ξ) (X(ξ)−VaRβ[X])

)2
ρ(ξ)

ϕ(ξ)
ρ(ξ)dξ − (1− β)2 (CVaRβ[X]−VaRβ[X])2 ,

which shows that

Vϕ[(X(·)−VaRβ[X])+w(·)] =

∫
Ξ̃

(U(ξ))2

ϕ(ξ)
dξ.

The density ϕ = ϕ∗ in (4.6) gives U ≡ 0.
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4.3. Using a ROM to generate the biasing density. The optimal density ϕ∗ depends
on quantities CVaRβ[X] and VaRβ[X] that we want to estimate; it requires knowledge of the
true risk region Gβ[X], and it requires evaluating X. Thus it is impractical to use; see also [9].
However, it guides us in the construction of a feasible biasing density, as described next. The
optimal biasing density (4.6) motivates the initial choice

(4.7) ϕ(ξ) =
IGβ [X](ξ) ρ(ξ)

1− β
.

(Note that Pr[Gβ[X]] = 1 − β under our assumption that the c.d.f. HX(x) = Pr[X ≤ x] is
continuous at x = VaRβ[X].) This choice (4.7) is obtained from the optimal density (4.6)
by dropping CVaRβ[X], VaRβ[X], and X. This biasing density has the same support as the
optimal one, i.e., supp(ϕ∗) = supp(ϕ). However, (4.7) still depends on the risk region of the
expensive X. Therefore, we use a ROM and the ε-risk region (3.4) to construct our biasing
density

(4.8) ϕ(ξ) :=
IGεβ [Xr](ξ) ρ(ξ)

Pr[Gε
β[Xr]]

.

Since Gβ[X] ⊆ Gε
β[Xr], the support Ξ̃ = Gε

β[Xr] of this density satisfies (4.3). A crucial advan-
tage of (4.8) over (4.6) or (4.7) is that its construction requires only inexpensive evaluations
of the ROM.

With the density ϕ in (4.8), the weight function (4.2) is given by

(4.9) w(ξ) =
Pr
[
Gε
β[Xr]

]
IGεβ [Xr](ξ)

.

Samples ξ from the biasing distribution ϕ in (4.8) satisfy ξ ∈ Gε
β[Xr]. Therefore, w in (4.9) is

well-defined. Furthermore, for these samples,

1− β ≤ w(ξ) = Pr[Gε
β[Xr]] ≤ 1.

Note that the smaller the ROM error εr, the closer w(ξ) = Pr[Gε
β[Xr]] to Pr[Gβ[X]] = 1− β.

The goal of IS is that the IS estimator has much lower variance than a standard Monte
Carlo estimator (obtained from (4.5) with w ≡ 1). We show next that our proposed density
indeed reduces the variance in (4.5), and that the variance reduction is proportional to the
size of the ε-risk region.

Theorem 4.6. The variance (4.5) corresponding to the ĈVaRIS
β [X] estimator with density

(4.8) is reduced by a factor of at least Pr[Gε
β[Xr]] compared to the standard Monte Carlo

estimator ĈVaRMC
β [X] (obtained from (4.5) with w ≡ 1) with original density ρ, i.e.,

Vϕ
[
IGβ [X](·) (X(·)−VaRβ[X])w(·)

]
Vρ
[
IGβ [X](·) (X(·)−VaRβ[X])

] ≤ Pr
[
Gε
β[Xr]

]
.
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Proof. Using the definition of the variance Vϕ and the definitions (4.2), (4.9) of the weight,

Vϕ
[
IGβ [X](·) (X(·)−VaRβ[X])w(·)

]
= Eϕ

[
IGβ [X](·) (X(·)−VaRβ[X])2w2(·)

]
−
(
Eϕ
[
IGβ [X](·) (X(·)−VaRβ[X])w(·)

])2

= Eρ
[
IGβ [X](·) (X(·)−VaRβ[X])2w(·)

]
−
(
Eρ
[
IGβ [X](·) (X(·)−VaRβ[X])

])2

= Pr
[
Gε
β[Xr]

]
Eρ
[
IGβ [X](·) (X(·)−VaRβ[X])2 ]− (Eρ [ IGβ [X](·) (X(·)−VaRβ[X])

])2

= Pr
[
Gε
β[Xr]

]
Vρ
[
IGβ [X](·) (X(·)−VaRβ[X])2 ]

−
(
1− Pr[Gε

β[Xr]]
) (

Eρ
[
IGβ [X](·) (X(·)−VaRβ[X])

])2

≤ Pr
[
Gε
β[Xr]

]
Vρ
[
IGβ [X](·) (X(·)−VaRβ[X])2 ].

Thus, dividing the variance term gives the stated result.

4.4. Implementation details of the IS approach. To execute our IS approach, we need
to be able to sample from the distribution with density (4.8). Although (4.8) only involves
an inexpensive ROM, sampling from the distribution with density (4.8) is still impossible
to do exactly. There are several options including estimating the ε-risk region and then
using acceptance-rejection sampling, or estimating the ε-risk region and then approximat-
ing (4.8) using a Gaussian mixture model or kernel density estimation. We have applied both
acceptance-rejection sampling and a Gaussian mixture model and found that in our numerical
example, where the original density ρ is constant, acceptance-rejection sampling performed
better. Therefore, we describe acceptance-rejection sampling here. Our approach of approxi-
mating (4.8) using a Gaussian mixture model and corresponding numerical results is given in
the supplementary materials; see supplementary section SM2.

First, we approximate the ε-risk region Gε
β[Xr] := {ξ : Xr(ξ) + εr(ξ) ≥ VaRβ[Xr− εr]} by

taking m samples of the ROM. Next, we employ the acceptance-rejection sampling strategy
to generate samples from density (4.8).

The acceptance-rejection algorithm for continuous random variables generates samples
from a desired distribution ϕ given an easy-to-sample distribution ρ (see, e.g., [9, section
4.7]). The acceptance-rejection algorithm assumes the existence of C > 0 with ϕ(ξ)/ρ(ξ) ≤ C
for all ξ ∈ Ξ. In our case

ϕ(ξ)

ρ(ξ)
=

IGεβ [Xr](ξ)

Pr[Gε
β[Xr]]

,

and the previous assumption is satisfied with C =
(
Pr[Gε

β[Xr]]
)−1

. Then the standard
acceptance-rejection algorithm generates a candidate sample ξc from ρ and a sample u from
the uniform distribution U(0, 1), and accepts the sample ξc if

u ≤ ϕ(ξc)

Cρ(ξc)
= IGεβ [Xr](ξ

c).

Thus, in order to accept the sample we just need to check that it belongs to Gε
β[Xr], which

can be done by evaluating the ROM Xr and its error function εr at ξc.
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The ROM-based acceptance-rejection method to generate the samples from a distribution
with density (4.8) is given in Algorithm 4.1. Finally, the proposed approach to compute
CVaRβ via IS is summarized in Algorithm 4.2.

Algorithm 4.1. Acceptance-rejection sampling using surrogate model.

Input: Surrogate model QoI Xr with error function εr, risk level β ∈ (0, 1),
nominal distribution ρ, # of samples m to estimate Gε

β[Xr], and desired # of samples n.
Output: n samples from (4.8) and an estimate of Pr[Gε

β[Xr]].

1: Sample m inputs {ξ(1), . . . , ξ(m)} from the nominal distribution ρ(ξ) with equal probabil-
ities p(j) ≡ 1/m.

2: Compute ROM QoI values Xr(ξ
(1)), . . . , Xr(ξ

(m)).
3: Compute ROM error function values εr(ξ

(1)), . . . , εr(ξ
(m)).

4: Apply steps 2, 3, and 4 of Algorithm 2.1 withX replaced byXr−εr to obtain V̂aRβ[Xr−εr].
5: Estimate ε-risk region Ĝε

β[Xr] := {ξ(j) : Xr(ξ
(j)) + εr(ξ

(j)) ≥ V̂aRβ[Xr − εr]}.
6: Estimate Pr[Gε

β[Xr]] as P̂r[Gε
β[Xr]] = |Ĝε

β[Xr]|/m, where | · | denotes cardinality of a set.
7: Set na = 0 (counter of accepted samples), nc = 0 (counter of candidate samples).
8: while na ≤ n do
9: Generate candidate sample ξc from ρ(ξ).

10: Compute ROM QoI value Xr(ξ
c).

11: Compute ROM error function value εr(ξ
c).

12: if Xr(ξ
c) + εr(ξ

c) ≥ V̂aRβ[Xr − εr] then
13: Accept sample ξc, set na = na + 1.
14: end if
15: Set nc = nc + 1.
16: end while

Algorithm 4.2. Estimating CVaRβ using importance sampling with ROM.

Input: FOM QoI X, ROM QoI Xr with error function εr, risk level β ∈ (0, 1),
nominal distribution ρ, # of evaluations m of the ROM Xr, and n of the FOM X.

Output: Importance sampling estimate ĈVaRIS
β [X].

1: Apply the acceptance-rejection Algorithm 4.1 to generate n samples from the biasing
density (4.8) and obtain the estimate P̂r[Gε

β[Xr]] of Pr[Gε
β[Xr]].

2: Compute FOM outputs X(ξ(1)), . . . , X(ξ(n)).

3: Assign values of weight function w = ρ/ϕ: w(ξ(1)), . . . , w(ξ(n)) ≡ P̂r[Gε
β[Xr]].

4: Apply Algorithm 2.1 with X(ξ(j)), p(j) = w(ξ(j))/n, j = 1, . . . , n, to obtain ĈVaRIS
β [X].

In Algorithm 4.1, nc is used to keep track of the number of candidate samples generated
from ρ. The probability that a candidate sample is accepted is 1/C = Pr[Gε

β[Xr]]; see [9,
Theorem 4.2]. Thus the ratio of the number n of accepted samples to the number nc of

candidate samples is n/nc ≈ Pr[Gε
β[Xr]] for large sample sizes. Thus, using P̂r[Gε

β[Xr]] from
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line 6 of Algorithm 4.1, we estimate the number of candidate samples needed as

nc ≈ n/P̂r[Gε
β[Xr]].

The total cost of generating n biased samples is approximately

(4.10) m+ n
/

P̂r[Gε
β[Xr]] ≤ m+ n

/
P̂r[Gβ[Xr]] = m+

n

1− β

ROM evaluations.

5. Numerical results. We present numerical results for our approach for estimating CVaRβ

using ROMs. Section 5.1 introduces the PDE model, followed by a detailed description of its
discretization and reduced-order modeling in section 5.2. The numerical results are presented
and discussed in sections 5.3 and 5.4.

5.1. Convection-diffusion-reaction PDE model. We consider a simplified model of a
premixed combustion flame at constant and uniform pressure, and follow the notation and set
up in [1, sect. 3]. The model includes a one-step reaction of the species

2H2 +O2 → 2H2O

in the presence of an additional nonreactive species, nitrogen. The state is comprised of the
components y = [T, YF , YO, YP ], with the Yi being the mass fractions of the species fuel (F,
here H2), oxidizer (O, here O2), product (P, here H2O), and T denoting the temperature.
The physical combustor domain is 1.8 cm in length and 0.9 cm in height. Thus Ω = (0, 1.8)×
(0, 0.9). Dirichlet boundary conditions are specified on the left boundary ΓD = {0} × [0, 0.9],
and homogeneous Neumann boundary conditions are specified in the top, bottom, and right
boundary ΓN = ∂Ω \ ΓD. The velocity field U is set to be constant in the x1 direction and
divergence free. The molecular diffusivity κ is modeled as constant, equal, and uniform for all
species and temperatures. Constants in the nonlinear reaction term are random variables with
values in Ξ. For a given ξ ∈ Ξ the state equation is the system of diffusion-advection-reaction
PDEs,

0 = κ∆y(x)− U(x)∇y(x) +N (y(x), ξ), x ∈ Ω,(5.1a)

y(x)|ΓD = yD(x), x ∈ ΓD,(5.1b)

∇y(x) · n = 0, x ∈ ΓN .(5.1c)

The left boundary ΓD is divided into three equal parts. The bottom and top third of the
left boundary are held at T = 300 K while the mass fractions are prescribed as zero Dirichlet
conditions. The middle third of the left boundary is the inflow boundary, where the incom-
ing unburned mixture has temperature T = 950 K and mass fractions YH2 = 0.0282, YO2 =
0.2259, YH2O = 0. The nonlinear reaction term N (y, ξ) = [NT ,NF ,NO,NP ](y, ξ) is of Arrhe-
nius type and modeled as

Ni(y, ξ) = −νi
(
Wi

ρ

)(
ρYF
WF

)νF (ρYO
WO

)νO
A exp

(
− E

RT

)
, i = F,O, P,(5.2a)

NT (y, ξ) = Q · NP (y, ξ).(5.2b)
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Table 5.1
Parameters for the PDE model (5.1)–(5.2) from [1].

Parameter Physical meaning Value

κ molecular diffusivity 2 cm2/s
U velocity 50 cm/s
WH2 molecular weight 2.016 g/mol
WO2 molecular weight 31.9 g/mol
WH2O molecular weight 18 g/mol
ρ density of mixture 1.39× 10−3 g/cm3

R univ. gas constant 8.314 J mol/K
Q heat of reaction 9800 K

The uncertain parameters of the model are considered to be

ξ = [A,E],

with values in the parameter domain

(5.3) Ξ = [Amin, Amax]× [Emin, Emax] = [5.5× 1011, 1.5× 1013]× [1.5× 103, 9.5× 103].

The random variable ξ is uniformly distributed, i.e., ρ is constant. The other parameters
are defined in Table 5.1. For a schematic of the domain and boundary conditions, as well as
typical solution behavior, we refer the reader to [1, sect. IV.A].

5.2. Discretization and reduced-order models. This section discuses the discretization
of the PDE (5.1), which is our FOM, the QoI, and the computation of ROMs.

5.2.1. Full-order model. The PDE model is discretized using a finite difference approxi-
mation in two spatial dimensions, with a 72×36 grid, leading to N = 10,804 unknowns in the
discretized model. Let y be the vector with components corresponding to the approximations
of the state y at the grid points. The resulting nonlinear system becomes

(5.4) 0 = Ky +N (y; ξ),

with boundary conditions as described above. Here, K ∈ RN×N is the discretized represen-
tation of the derivative operators. The nonlinear system is solved with Newton’s method.
Let T(·) ∈ RN/4 be the vector with components corresponding to the approximations of the
temperature T (x, ·) at the grid points. Given the uncertainty in the input parameters, the
QoI is the random variable

(5.5) X : Ξ 7→ R, X(ξ) = exp

(
‖T(ξ)‖∞ − 2000

100

)
.

This nondimensionalized QoI represents a penalty on temperatures exceeding 2000 K, such as
might be imposed when there is a design target but not a hard constraint. For this example,
the maximum temperature is between 1122 K and 2435 K, and therefore, the QoI is between
1.5×10−4 and 7.8×101. The maximum temperature ‖T(ξ)‖∞ and the QoI X(ξ) at parameters
in Ξ are shown in Figure 5.1.
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(a) Values of ‖T(ξ)‖∞. (b) Values of X(ξ).

Figure 5.1. Maximum temperature ‖T(ξ)‖∞ in K and the QoI X(ξ) for ξ = (A,E) ∈ Ξ, computed using
the FOM.
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Figure 5.2. The c.d.f. of the quantity of interest (5.5) evaluated with n = 104 samples of the FOM, together
with the values of VaRβ [X] and CVaRβ [X] for β = 0.95.

The c.d.f. of the QoI, together with VaRβ[X] and CVaRβ[X] for β = 0.95, are shown in
Figure 5.2. These quantities are estimated with 104 samples of the FOM and are included for
illustration only. Here, VaRβ[X] = 43.92 and CVaRβ[X] = 53.94.

Figure 5.2 and CVaRβ[X] are generated from a large number of FOM samples for illus-
tration only. The goal of this paper is to show that CVaRβ[X] can be estimated with far
fewer FOM evaluations using ROMs. Next we describe how these ROMs are computed for
this example.

5.2.2. Reduced-order models. We use Proper Orthogonal Decomposition (POD) to com-
pute ROMs of the form

0 = Kryr +Nr(yr; ξ),

where the subscript r is a label of the ROM. Here, Kr = V T
r KVr, y ≈ Vryr, and we also

project the boundary conditions. The projection matrix Vr ∈ RN×Nr , Nr � N , is computed
via singular value decomposition of snapshot data Y = [y(ξ(1)), . . . ,y(ξ(S))] ∈ RN×S , where
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S = 100 snapshots were generated from solutions of (5.4) at 10 × 10 equally spaced values
A and E in Ξ. Since the nonlinearity is of exponential type, we use the Discrete Empirical
Interpolation Method (DEIM) [3] for an efficient evaluation of the nonlinear term. Four
different surrogate models are built from r = 1, 2, 3, 4 POD basis vectors and the same number
of DEIM selection points, respectively. A detailed description of the model reduction for this
example is given in [1]. The surrogate models then define a new random variable for the
(nondimensional) quantity of interest, namely

Xr : Ξ 7→ R, Xr(ξ) = exp

(
‖Tr(ξ)‖∞ − 2000

100

)
,

where T(ξ) is the first block of length N/4 in Vryr.
Estimates of the errors εr(ξ) in the QoI for the four ROMs are shown in Figure 5.3 (note

the different error-bar magnitudes). To generate these plots, we compute εr(ξ) exactly for
parameter values ξ on the 10 × 10 parameter grid used to generate the ROMs, and then
linearly interpolate between these values. Figure 5.3 shows that the maximum errors vary
significantly for these four ROMs. In particular, the error in ROM 1 is huge relative to the
size of the QoI X; see Figures 5.1 and 5.3a. This is due to the structure of the QoI (5.5). In our
case, the ROM maximum temperature exceeds the FOM maximum temperature ‖T(ξ)‖∞ in
the bottom right corner of the parameter domain, where ‖T(ξ)‖∞ > 2000 K. This difference
is magnified by the exponential function. For example, if the FOM ‖T(ξ)‖∞ = 2400 K and
the ROM approximation exceeds this value by only 10%, then Xr(ξ) = e6.4 ≈ 601.9 exceeds
X(ξ) = e4 ≈ 54.6 by a factor of 11.

5.3. Estimating CVaRβ by sampling from ROMs. Following our algorithm and error
analysis in section 3, we use the ROMs Xr with r = 1, 2, 3, 4 basis functions to estimate
CVaRβ[Xr] with β = 0.95. Section 5.3.1 presents the computed risk regions for the FOM and
the ROM. Section 5.3.2 computes further ROM errors that occur in the bound for the CVaRβ

approximation. Section 5.3.3 then presents the results for CVaRβ estimation.

5.3.1. Risk regions of FOM and ROM. Estimates of the FOM risk region, of the ROM
risk regions, and of the ε-risk regions are shown in Figure 5.4. These regions are computed
using five independent batches of 104 samples of the parameters A and E—one batch for the
FOM and one batch for each ROM. In every case the ROM risk region is in the bottom right
part of the domain Ξ. However, the sizes of the ROM risk regions vary. A sufficiently accurate
ROM always gives a good approximation of the true risk region, as is the case with the finest
ROM r = 4. As expected from Lemma 3.2, the estimated ε-risk regions Ĝε

β[Xr] contain the

estimated FOM risk region Ĝβ[X] and shrink as the ROM becomes more accurate. Again,
note that the large number of samples (n = 104) of the FOM is used only for illustration
of the FOM risk region and the error estimates derived in this paper. However, these FOM
samples are not used in our ROM or ROM-IS approach to estimate CVaRβ.

5.3.2. ROM errors in risk-regions. Table 5.2 shows the estimate of the error ε̂max
r between

the FOM and the ROMs in all of Ξ (see (3.2)), the error ε̂G,low
r between the FOM and the

ROM in the ROM risk region Ĝβ[Xr] (see (3.6)), and the error ε̂Gr between the FOM and the

ROM in the ε-risk region Ĝε
β[Xr] (see (3.6)). To compute these estimates we use the linear
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(a) Error of ROM 1, ε1(ξ). (b) Error of ROM 2, ε2(ξ).

(c) Error of ROM 3, ε3(ξ). (d) Error of ROM 4, ε4(ξ).

Figure 5.3. Absolute errors between the QoI X (5.5) and the ROMs Xr for r = 1, 2, 3, 4. Note the different
magnitudes of the error bars.

interpolant of the error function εr(ξ) displayed in Figure 5.3, evaluate it at the same 104

random parameter values that were used to obtain the risk regions, and compute errors as
in Algorithm 3.1. In this example, the maximum errors occur in the risk region (compare
columns two and four of Table 5.2).

5.3.3. CVaRβ estimates with ROM and FOM. Table 5.3 shows the CVaRβ estimates
with β = 0.95 for the FOM and the ROMs. These estimates were obtained using Algorithm
2.1 with the n = 104 samples shown in Figure 5.4a (for FOM) and in Figures 5.4b–5.4e

(for ROMs). We denote these CVaRβ estimates by ĈVaRMC
β to distinguish them from the

estimates obtained with IS in the next section. The third column shows the radius of the
95% confidence interval of the respective estimate. We give more details on this computation
below. The radius of the 95% confidence interval is a measure of the error between the MC



1416 HEINKENSCHLOSS, KRAMER, TAKHTAGANOV, AND WILLCOX

(a) Ĝβ [X] FOM.

(b) Ĝβ [Xr] ROM 1. (c) Ĝβ [Xr] ROM 2. (d) Ĝβ [Xr] ROM 3. (e) Ĝβ [Xr] ROM 4.

(f) Ĝεβ [Xr] ROM 1. (g) Ĝεβ [Xr] ROM 2. (h) Ĝεβ [Xr] ROM 3. (i) Ĝεβ [Xr] ROM 4.

Figure 5.4. Top row: Estimated FOM risk region Ĝβ [X]. Middle row: Estimated ROM risk regions Ĝβ [Xr],

r = 1, 2, 3, 4. Bottom row: Estimated ε-risk regions Ĝεβ [Xr] of ROMs r = 1, 2, 3, 4. In all plots β = 0.95; samples
in the risk regions are shown as yellow stars, all other samples as blue circles.

Table 5.2
Estimates of errors between the FOM and the ROMs. The maximum error over the entire parameter

domain is ε̂max
r , the maximum error in the ROM risk region Ĝβ [Xr] is given by ε̂G,lowr , and the maximum error

in the ε-risk region Ĝεβ [Xr] is ε̂Gr .

ROM, r ε̂max
r ε̂G,lowr ε̂Gr

1 776.00 776.00 776.00
2 24.47 24.47 24.47
3 9.04 8.72 9.04
4 0.96 0.96 0.96

estimate ĈVaRMC
β and the true CVaRβ for the given FOM QoI or ROM QoI. The last two

columns of Table 5.3 compare ĈVaRMC
β [Xr] with ĈVaRMC

β [X].
Tables 5.2 and 5.3 show that∣∣∣ ĈVaRMC

β [X]− ĈVaRMC
β [Xr]

∣∣∣ ≤ ε̂Gr
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Table 5.3
Estimates of CVaRβ with β = 0.95 for FOM and ROMs r = 1, 2, 3, 4 (estimated with 104 MC samples and

Algorithm 2.1). Absolute and relative errors are computed with respect to the FOM estimate ĈVaRMC
β [X] =

53.94.

ĈVaRMC
β CI radius Abs error Rel error (%)

FOM 53.94 1.09 — —
ROM 1 361.40 17.89 307.47 570.05
ROM 2 44.80 0.46 9.14 16.94
ROM 3 49.91 0.92 4.02 7.46
ROM 4 53.87 1.04 0.07 0.13

in this example. In general, this error depends on the bound (3.8) (Figure 5.2 indicates that
the c.d.f.’s of X and Xr are continuous) as well as on the MC sampling error.

Note that the ĈVaRMC
β [X] estimate, computed with 104 expensive FOM samples, can

be approximated with high accuracy using ROMs that only require 100 FOM evaluations to
generate the ROM. In particular, the estimate ĈVaRMC

β [X3] obtained with the second best
ROM has an absolute error 4.02 that is close to the CI width 1.09 of the FOM MC estimator.
The estimate ĈVaRMC

β [X4], obtained with the best ROM, happens to have an absolute error
that is even below the confidence interval (CI) width 1.09 of the FOM MC estimator. Thus,
in this instance, a good ROM can reduce the number of FOM evaluations by a factor of 100.
Of course, how much the number of FOM evaluations is reduced depends on the details of
the comparison. For example, if ĈVaRMC

β [X] is estimated using 103 expensive FOM samples,
then the CI radius of this FOM estimate is 3.5. In this case the number of FOM evaluations
is only reduced by a factor of 10, but ROM 4 gives a better estimate (smaller error with
respect to the FOM estimate with 104 samples, and small CI radius of 1.04). Overall, a FOM
estimate of CVaRβ[X] with fewer samples increases the CI radius. Good ROMs can be used
to generate good CVaRβ[X] estimates with high confidence.

The confidence interval is derived from the asymptotic results in [6, sects. 2.1, 2.2] (see
also Lemma 4.3). Specifically, the 100(1− α)% CI for CVaRβ[X] is

(5.6)

[
ĈVaRMC

β [X]− zα
κ̂β√
n
, ĈVaRMC

β [X] + zα
κ̂β√
n

]
,

where zα = Φ−1(1 − α/2) with Φ being the c.d.f. of the standard normal variable, and κ̂β =

ψ̂β/(1− β) with

(ψ̂β)2 =
1

n

n∑
j=1

IĜβ [X]
(ξ(j))

(
X(ξ(j))− V̂aRMC

β [X]
)2
w(ξ(j))2

−

 1

n

n∑
j=1

IĜβ [X]
(ξ(j))

(
X(ξ(j))− V̂aRMC

β [X]
)
w(ξ(j))

2

,(5.7)

where

IĜβ [X]
(ξ) =

{
1 if X(ξ) ≥ V̂aRMC

β [X],

0 else,
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and w(ξ) ≡ 1.2 The confidence intervals for CVaRβ[Xr] of ROMs r = 1, 2, 3, 4 are constructed
in a similar manner. The third column of Table 5.3 reports the radius (half the width) of the
corresponding CI with zα = 1.96, which gives a 95% CI.

Note that (ψ̂β)2 is an estimate for the variance Vρ
[
(X(·)−VaRβ[X])+

]
which appears in

Lemma 4.3 and [6, eq. (8)]. We do not have a proof of consistency of ψ̂β, which is beyond
the scope of this paper, but refer the reader to the discussion of a similar result regarding the
consistency of an estimator of variance for VaRβ, which can be found in [4].

5.4. Estimating CVaRβ via ROM-informed importance sampling. Next, we use impor-
tance sampling to estimate CVaRβ[X]. Section 5.4.1 shows the computed estimates. By using
IS, we reduce the variance of the estimator compared to a standard MC estimator. We discuss
variance reduction for this example in section 5.4.2 and show its alignment with the theoretical
results.

5.4.1. Importance sampling estimates of CVaRβ. We generate IS samples from the
biasing densities as in section 4.4. Since we consider multiple ROMs, we label ϕr as the biasing
density corresponding to ROM Xr. The estimates ĈVaRIS

β [X] with densities ϕr, r = 1, 2, 3, 4,

are reported in Table 5.4. The estimates are obtained using Algorithm 4.2 with m = 104

ROM evaluations to explore the risk regions. We use nc = n
/

P̂r[Gε
β[Xr]] ≤ n/0.05 = 2 · 103

ROM evaluations in the acceptance-rejection step to get n = 100 samples (see (4.10)). Only
n = 100 FOM evaluations are used to construct the IS estimates. The reference value is
CVaRref

β := ĈVaRMC
β [X] = 53.94 from 104 samples as reported in Table 5.3. We define the

95% CIs as in (5.6) with ĈVaRMC
β [X] substituted by ĈVaRIS

β [X], w given by the IS weight, and
zα = 1.96. The reported results are averaged over K = 100 independent trials. The presented
CVaRβ estimates are the average values over these trials; similarly the radii of the CIs, and
the absolute and relative errors are the average values of respective quantities computed for
each independent trial. The mean absolute error (MAE) and mean relative error (MRE) are
computed as

(5.8) MAE =
1

K

K∑
k=1

∣∣∣∣ĈVaRIS
β

(k)
[X]− CVaRref

β [X]

∣∣∣∣ , MRE =
MAE∣∣CVaRref

β [X]
∣∣ × 100,

where ĈVaRIS
β

(k)
[X] is the estimate obtained on kth trial, and K = 100 is the number of trials.

As can be seen from Table 5.4, the absolute errors of the averaged estimates are smaller than
the presented mean absolute errors. Additionally, we compute the mean-squared error (MSE)
of each estimate as follows:

(5.9) MSE =
K∑
k=1

(
ĈVaRIS

β

(k)
[X]− CVaRref

β [X]

)2

.

Table 5.3 showed that coarse ROMs lead to CVaRβ estimates with larger errors when
substituted for the FOM (as is expected from our theory). However, Table 5.4 shows that
ROMs can be used to build effective biasing densities. For example, the absolute errors for

2We include w here because (5.7) will be used in the next section with nonconstant IS weight function.
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Table 5.4
Estimates ĈVaRIS

β [X] with β = 0.95 obtained using Algorithm 4.2 with reduced-order models Xr, r =
1, 2, 3, 4. Here m = 104 ROM samples are used to identify the ε-risk region, and the IS estimator uses n = 100
samples. Absolute and relative errors are computed with respect to the FOM estimate from Table 5.3. All values
are averaged over K = 100 trials.

Av ĈVaRIS
β [X] Av CI radius MAE (5.8) MRE (%) (5.8) MSE (5.9)

IS 1 54.02 5.19 1.99 3.70 6.44
IS 2 54.39 4.26 1.59 2.96 4.22
IS 3 53.74 2.89 1.20 2.23 2.17
IS 4 53.94 1.61 0.66 1.22 0.65

ĈVaRMC
β [Xr] with ROMs 1–3 in Table 5.3 are substantially larger than for the importance

sampling estimate ĈVaRIS
β [X] that used ROMs 1–3 to compute biasing densities; see Table 5.4.

Table 5.5
Estimated variance reduction (4.6) computed with 100 samples for IS densities r = 1, 2, 3, 4. The rightmost

column reports estimated probability of Ĝεβ [Xr].

V̂ϕ[ĈVaRIS
β [X]]/V̂ρ[ĈVaRMC

β [X]] P̂r[Gεβ [Xr]]

IS 1 0.2258 0.2463
IS 2 0.1519 0.1771
IS 3 0.0691 0.0967
IS 4 0.0214 0.0519

5.4.2. Variance reduction via IS. Table 5.5 reports the estimated reduction in variance
of IS estimators of CVaRβ compared to MC estimators, as well as the computed upper bound.

The variances of ĈVaRMC
β [X] and ĈVaRIS

β [X] are estimated using 100 samples from ρ and
ϕ, respectively, and are averaged over 100 trials. The second column of Table 5.5 shows the
resulting ratios. The relative sizes of the ε-risk regions, Pr[Gε

β[Xr]], are estimated using the
ROM samples as described in Algorithm 4.1 and are reported in the third column of Table 5.5.
Theorem 4.6 shows that the density (4.8) leads to a reduction of the variance from (4.5) by a
factor of Pr[Gε

β[Xr]]. The observed variance reduction in Table 5.5 is in agreement with the
theoretical estimate from Theorem 4.6. Observe that as the ROMs become more accurate,
εr → 0, and P̂r[Gε

β[Xr]] → 1 − β = 0.05. Moreover, note that using ROM 4 results in a
variance reduction by a factor of 1/0.0214 ≈ 47, which shows the strength of the IS approach.

5.5. Benefits of using ROMs–computational budget comparisons. Since the ROM con-
struction requires FOM evaluations, the question is, would we be better off using MC or IS
with only the FOM? This sections shows that, in general, the answer is no, it is better to use
some FOM evaluations to construct a ROM and then use inexpensive ROM evaluations.

Computing the ĈVaRMC
β [Xr] estimates in Table 5.3 required an initial 100 FOM samples to

train the ROMs, but afterwards no additional FOM evaluations were needed. In comparison,
computing the estimate ĈVaRIS

β also required 100 FOM samples to train the ROMs, and then
another n = 100 FOM samples to sample from the biasing density. (In practice one would not
average over many runs, so we do not count the cost of those repetitions.) We next compare
the ROM and ROM-IS estimators to an estimator that uses 200 FOM samples to directly
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estimate CVaRβ.
Table 5.6 reports the CVaRβ estimate obtained using only FOM evaluations. The MC

estimate with 200 samples (MC 200 in Table 5.6) is at best as good as IS 1 from Table 5.4
with respect to MSE, MAE, etc. Therefore, the proposed strategy that includes ROMs to get
a biasing distribution is more accurate and computationally efficient.

Table 5.6
Estimates ĈVaRMC

β [X] with β = 0.95 obtained using n = 100 (MC 100) and n = 200 (MC 200) samples.

The estimate ĈVaRIS
β [X] (IS FOM) also uses n = 200 samples, namely 100 samples to build the biasing

distribution with the FOM by fitting a Gaussian mixture model (see supplementary section SM2) and then 100
IS samples. All values are averaged over K = 100 trials.

Av ĈVaRβ [X] Av CI radius MAE (5.8) MRE (%) (5.8) MSE (5.9)

MC 100 52.78 10.45 4.14 7.68 27.11
MC 200 53.39 7.52 3.66 6.78 20.31
IS FOM 57.29 0.02 28.12 52.13 988.57

For comparison, Table 5.6 also reports the result of IS with FOM evaluations only.
Acceptance-rejection sampling using only FOM evaluations is too expensive: given an es-
timate of the risk region, we would need nc ≈ n/(1−β) = 2 ·103 FOM evaluations to generate
n = 100 samples. Therefore, we use IS with the Gaussian mixture model. Specifically, we use
100 MC FOM samples—with only five samples falling into the risk region—and fit a biasing
density using a Gaussian mixture model (see supplementary section SM2). We then sample
100 parameters from the obtained density and report the resulting estimate as IS FOM in Ta-
ble 5.6. This estimate has the largest error of all, mostly due to the small number of samples
used to fit the mixture model. Therefore, it appears beneficial to invest the 100 FOM samples
to build a ROM and follow the importance sampling strategy described above.

Figure 5.5 presents several of the 100 trials averaged in Tables 5.4 and 5.6 in more detail.
It supports the previous observation that investing 100 FOM samples to build a ROM and
then generate many inexpensive ROM samples to build a biasing density is beneficial since it
substantially reduces the variation of the resulting estimate, given an overall budget of FOM
evaluations.

6. Conclusions. We have presented two methods to estimate CVaRβ with the help of
reduced-order models, together with analyses of their performances. One method directly
works with the ROM, and the second approach uses the IS framework to reduce the number
of high-fidelity samples needed for CVaRβ estimation.

For the first approach in section 3 we showed that the CVaRβ estimation error when using
a ROM instead of the high-fidelity model is proportional to the ROM error in the ε-risk region
of the ROM. Since the ε-risk region is small relative to the entire parameter region, this can
improve the CVaRβ error estimate. For the second approach, we derived the optimal biasing
distribution for the IS framework and used it to derive a biasing distribution that is computed
from using only ROM information. We proved that the variance resulting from the proposed
biasing distribution is reduced at least by a factor equal to the probability of the risk-region.
This factor is small and is asymptotically (as the ROM error goes to zero) equal to 1−β � 1.
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Trials

20 40 60 80 100
35

40

45

50

55

60

65

70

75

(d) IS 4.

Figure 5.5. Estimates ĈVaRIS
β

(k)
[X] for k = 1, . . . , 100 with 95% CIs. The red dotted line corresponds to

CVaRref
β [X].

Both approaches were applied to CVaRβ estimation of a quantity of interest related to
heat release modeled by a system of diffusion-advection-reaction PDEs derived from a sim-
ple combustion model. For this example, our ROM CVaRβ estimation error from section 3
substantially reduced the computational cost (measured in FOM evaluations). In one com-
parison the number of FOM evaluations is reduced by a factor of 100. The IS framework led
to substantially better CVaRβ estimates when coarser ROMs are used compared to simply
replacing FOM samples by ROM samples, but at the expense of using 102 additional FOM
samples.

For this particular example, we make the following observations: With the same budget
of 200 total FOM evaluations, the MC estimates based on the FOM is at best as good as the
IS estimate computed with the coarsest ROM 1; more accurate ROMs improve the estimation
and especially lead to smaller confidence intervals. With the most accurate ROM 4, our
importance sampling framework reduced the variance of the CVaRβ estimator by a factor of
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about 47 compared to the standard MC estimator. Overall, our numerical results showed that
it appears beneficial to invest FOM samples to train a ROM—which is then used to compute
a biasing distribution—than to sample from the FOM directly.

The results in this paper point to future work. Currently, we generate ROMs once from
a given number of high-fidelity model evaluations. Since we need only the ROM error to
be small in the small ε-risk region one could alternate ROM improvement and ε-risk region
estimation to adaptively generate ROMs and overall use fewer high-fidelity model evaluations.
This also might allow increasing the uncertain parameter dimension, as ROM training can be
confined to small regions in parameter space.
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