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Abstract— We consider the optimal regulation problem for
nonlinear control-affine dynamical systems. Whereas the linear-
quadratic regulator (LQR) considers optimal control of a
linear system with quadratic cost function, we study polynomial
systems with polynomial cost functions; we call this problem the
polynomial-polynomial regulator (PPR). The resulting polyno-
mial feedback laws provide two potential improvements over
linear feedback laws: 1) they more accurately approximate
the optimal control law, resulting in lower control costs, and
2) for some problems they can provide a larger region of
stabilization. We derive explicit formulas—and a scalable,
general purpose software implementation—for computing the
polynomial approximation to the value function that solves
the optimal control problem. The method is illustrated first
on a low-dimensional aircraft stall stabilization example, for
which PPR control recovers the aircraft from more severe
stall conditions than LQR control. Then we demonstrate the
scalability of the approach on a semidiscretization of dimension
n = 129 of a partial differential equation, for which the
PPR control reduces the control cost by approximately 75%
compared to LQR for the initial condition of interest.

I. INTRODUCTION

Optimal control for linear dynamical systems has been
well studied for decades. This is evidenced by the availability
of simple software tools that allow practitioners to design
optimal controllers with just a few lines of code, such as
MATLAB’s lqr(). These software tools have also been
scaled to work for large-scale dynamical systems [1], such
as those arising from semidiscretization of partial differential
equations (PDEs). While nonlinear optimal control theory
remains an active area of research, its adoption to large-scale
nonlinear systems remains a major computational challenge.
The development of scalable software tools thus remains
another active research direction.

A computational challenge in nonlinear optimal control
theory involves solving the Hamilton-Jacobi-Bellman (HJB)
PDE for the value function. Many approaches exist for
approximating the solutions to HJB PDEs, including state-
dependent Riccati equations [2], algebraic Gramians [3]–
[5], discretization techniques [6], iterative approaches [7],
[8], and many others. In this paper, we expand on a re-
cent body of work [9]–[13] bringing renewed interest to
the method of Al’brekht [14], which is based on Taylor
series expansions. This approach to solving HJB PDEs has
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been popular ever since it was introduced in the 1960s;
however, since Al’brekht’s results were presented in an
abstract manner without closed-form solutions, the method
historically was only applied to models with a few state
dimensions and simplified dynamics in order to make the
computations manageable to carry out [15], [16]. Scalable
software tools automating these computations are required
for general purpose use of Al’brekht’s method, e.g. for larger
state dimensions and for models with more than one or two
nonlinearities.

Krener’s Nonlinear Systems Toolbox (NST), originally
introduced in 1997, was, to the authors’ knowledge, the
first openly available implementation of Al’brekht’s method
for general purpose use [17]. However, certain symbolic
computations used in NST hindered its scalability, as detailed
in [18]. Borggaard and Zietsman went on to provide an
implementation based on the Kronecker product in [10],
[11]; a similar approach was simultaneously presented by
Almubarak et al. [12]. These approaches were shown to scale
well to state-dimensions on the order of n = 20 to n = 40;
however, these works only consider systems with polynomial
drift, linear inputs, and quadratic cost functions. There are,
however, applications requiring HJB PDE solutions for sys-
tems with polynomial input maps and even polynomial state-
dependence in the cost function; see, for example, nonlinear
balanced truncation model reduction [19]–[22].

The major contributions of this paper are to derive closed-
form formulas, and existence of solution proofs, for value
function approximations for systems with:

1) polynomial state-dependence in the drift and input map;
2) polynomial state-dependence in the state penalty in the

cost function.
In addition to these two theoretical contributions, we provide
an accompanying open-source, scalable implementation of
the proposed algorithms for practical use. The function
ppr() in the cnick1/PPR repository [23] acts as a
nonlinear analog to MATLAB’s lqr().

II. PRELIMINARIES

We review relevant optimal control theory in Section II-A,
followed by a summary of Al’brekht’s method in Section II-
B. Kronecker product definitions and identities are then
reviewed in Section II-C.

A. Optimal Control Theory

Consider the control-affine dynamical system

ẋ(t) = f(x(t)) + g(x(t))u(t), (1)
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where: t is time, x(t) ∈ Rn is the state, u(t) ∈ Rm is the
input, f : Rn → Rn is the drift, and g : Rn → Rn×m is
the input map. The optimal control problem for (1) seeks to
find an input signal u(t) that minimizes the infinite-horizon
scalar cost function

J(x0,u) :=
1

2

∫ ∞

0

(
x⊤Q(x)x+ u⊤R(x)u

)
dt, (2)

where Q(x) ⪰ 0 and R(x) ≻ 0 are nonnegative definite
and positive definite symmetric matrix-valued functions, re-
spectively, of appropriate dimensions.

Definition 1: The value the cost function takes under the
action of the optimal control is given by the value function:

V (x0) := min
u

J(x0,u). (3)
The optimal control is denoted u∗, so V (x0) ≡ J(x0,u∗).
The next theorem summarizes the well-known result that the
solution to the optimal control problem can be obtained by
solving the HJB PDE.

Theorem 1 (e.g. [24], [25]): Assume that the cost (2) is
continuously differentiable in all of its arguments and is
strictly convex in u. Then the value function is the solution
to the HJB PDE

0 =
∂V ⊤(x)

∂x
f(x)− 1

2

∂V ⊤(x)

∂x
g(x)R−1(x)g⊤(x)

∂V (x)

∂x

+
1

2
x⊤Q(x)x.

(4)

Furthermore, the optimal control u∗ is given in feedback
form by the gradient of the value function as

u∗(x) = −R−1(x)g⊤(x)
∂V (x)

∂x
. (5)

Assuming a solution exists that satisfies the HJB PDE (4),
then the optimal control is given by (5); hence, the optimal
control problem reduces to solving the HJB PDE (4).

B. Al’brekht’s Method

Computing solutions to the HJB PDE (4) is nontrivial
and, in general, not possible analytically. In the interest of
developing scalable algorithms, we adopt the approach of
Al’brekht [14] to compute polynomial approximations to the
value function. Al’brekht’s method has three main features,
which we summarize in the next theorem.

Theorem 2 (Al’brekht’s method [14], [26]): Assume that
the functions f(x) and g(x) in the dynamics, along with the
functions Q(x) and R(x) in the cost function, are analytic.
Also assume that a stabilizing solution exists to the LQR
problem associated with the linearized dynamics1. Then:

1) the value function is analytic and can be approximated
by a degree d polynomial;

2) the lowest degree polynomial term in the value function
is degree 2, whose polynomial coefficient is given by
the solution to the algebraic Riccati equation associated
with the LQR problem on the linearized dynamics;

1In practice this is the main limitation/assumption for the method: the
algebraic Riccati equation for the LQR problem must have a solution.

3) the remaining higher degree polynomial coefficients
of the value function are solutions to linear algebraic
equations that are entirely determined by the already-
computed polynomial coefficients.

The remainder of this paper will focus on computing
approximate solutions to the HJB PDE (4) using Al’brekht’s
method; the next section introduces Kronecker product no-
tation to aid in that task.

C. Kronecker Product Definitions and Notation

The Kronecker product of two matrices A ∈ Rp×q and
B ∈ Rs×t is the ps× qt block matrix

A⊗B :=

a11B · · · a1qB
...

. . .
...

ap1B · · · apqB

 ,

where aij denotes the (i, j)th entry of A. We write repeated
Kronecker products as

x k := x⊗ · · · ⊗ x︸ ︷︷ ︸
k times

∈ Rnk

.

For A ∈ Rp×q , we define the k-way Lyapunov matrix as

Lk(A) :=

k∑
i=1

Ip ⊗A⊗ Ip ⊗ · · · ⊗ Ip︸ ︷︷ ︸
k factors, A in the ith position

∈ Rpk×pk−1q.

We also use the vec[·] operator, which stacks the columns of
a matrix into one tall column vector, and the perfect shuffle
matrix Sq×p [27], [28], defined as the permutation matrix
which shuffles vec [A] to match vec

[
A⊤]:

vec
[
A⊤] = Sq×pvec [A] . (6)

A concept which arises when dealing with Kronecker
product polynomials is symmetry of the coefficients (a
generalization of symmetry of a matrix), as defined next.

Definition 2 (Symmetric coefficients): Given a homoge-
neous polynomial of the form v⊤

d x
d , the coefficient vk ∈

Rnk×1 is symmetric if for all ai ∈ Rn it satisfies

v⊤
k (a1 ⊗ a2 ⊗ · · · ⊗ ak) = v⊤

k (ai1 ⊗ ai2 ⊗ · · · ⊗ aik) ,

where the indices {ij}kj=1 are any permutation of {1, . . . , k}.
From (6), one can see that if the matrix A is symmetric,

the vector vec [A] is invariant under certain permutations.
The next proposition formalizes this concept in terms of
the perfect shuffle matrix and the definition of symmetry
in Definition 2.

Proposition 1 (Permutation of symmetric coefficients): If
a coefficient vk ∈ Rnk×1 is symmetric as per Definition 2,
then

vk = Snj×nivk ∀i, j ≥ 0 s.t. i+ j = k.

Table III in Appendix A provides a collection of additional
Kronecker product identities compiled from [27]–[30].
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III. KRONECKER POLYNOMIAL-BASED VALUE
FUNCTION COMPUTATIONS

For computational purposes, we consider a nonlinear
control-affine dynamical system with polynomial structure

ẋ = Ax+

ℓ∑
p=2

Fpx
p

︸ ︷︷ ︸
f(x)

+

(
ℓ∑

p=1

Gp

(
x p ⊗ Im

)
+B

)
︸ ︷︷ ︸

g(x)

u,

(7)

where A ∈ Rn×n, Fp ∈ Rn×np

, B ∈ Rn×m, and Gp ∈
Rn×mnp

. Often, the model of interest (1) is already poly-
nomial, in which case system (7) is an exact representation.
For example, many common PDEs, including Navier-Stokes,
Kuramoto-Sivashinsky, Burgers, Allen-Cahn, Korteweg-de
Vries, and Fokker-Planck all feature polynomial nonlinear-
ities; upon spatial discretization, these all yield systems of
the form (7). If system (1) is not exactly polynomial but
is analytic, then system (7) is its Taylor approximation. We
also assume the cost (2) to be analytic so that the functions
Q(x) and R(x) can be expanded as real convergent power
series. In this article, we will only consider state dependence
in Q(x) and drop the state-dependence of R(x); in theory
it is possible, but not trivial, to include it. Then we write the
cost in terms of the Kronecker product as

J(x0,u) :=
1

2

∫ ∞

0

(
x⊤Qx+ u⊤Ru+

λ∑
p=3

q⊤
p x

p

)
dt,

(8)

where qp ∈ Rnp

and we assume Q ⪰ 0 and R ≻ 0.
In many cases, the cost function chosen by the control
engineer is already polynomial and this representation is
exact; otherwise, it can be viewed as a Taylor approximation.

Following the result of Theorem 2, the value function can
be approximated as a degree d polynomial; in this work, we
write this explicitly using the Kronecker product as

V (x) ≈ 1

2
x⊤V2x+

1

2

d∑
i=3

v⊤
i x

i , (9)

with the coefficients vi ∈ Rni

for i = 2, 3, . . . , d. The
next theorem provides our main result, which is the explicit
equations for the coefficients vi in Kronecker product form.

Theorem 3 (Value function coefficients): Let the value
function V (x), which solves the HJB PDE (4) for the poly-
nomial system (7), be of the form (9) with the coefficients
vi ∈ Rni

for i = 2, 3, . . . , d. Then v2 = vec [V2], where
V2 is the symmetric positive semidefinite solution to the
algebraic Riccati equation

0 =A⊤V2 +V2A−V2BR−1B⊤V2 +Q. (10)

For 3 ≤ k ≤ d, let ṽk ∈ Rnk

solve the linear system

Lk

(
A−BR−1B⊤V2

)⊤
ṽk = −

∑
i,p≥2

i+p=k+1

Li(Fp)
⊤vi

− qk +
1

4

∑
i,j>2

i+j=k+2

ij vec(V⊤
i BR−1B⊤Vj)

+
1

4

2ℓ∑
o=1

 ∑
p,q≥0
p+q=o

 ∑
i,j≥2

i+j=k−o+2

ij vec

[(
Inp ⊗ vec [Im]⊤

)

×
(

vec
[
G⊤

q Vj

]⊤
⊗

(
G⊤

p Vi ⊗R−1
))

×

(
Inj−1 ⊗ Sni−1×nqm ⊗ Im

)
(Ink−p ⊗ vec [Im])

]


(11)

Then the coefficient vector vk = vec (Vk) ∈ Rnk

for 3 ≤
k ≤ d is obtained by symmetrization of ṽk.

The proof of Theorem 3 can found in Appendix B; it
consists of inserting the polynomial forms for the f(x), g(x),
Q(x), and V (x) into the HJB PDE (4). Collecting terms of
the same polynomial degree leads to algebraic equations for
each of the unknown value function coefficients vi ∈ Rni

for i = 2, 3, . . . , d.
Theorem 4 (Existence and uniqueness of solutions):

Under the assumptions of Theorem 2, the linear system (11)
has a unique solution for each coefficient vk for 3 ≤ k ≤ d.

Proof: The assumptions of Theorem 2 imply that
(A−BR−1B⊤V2) is Hurwitz, which implies that Lk(A−
BR−1B⊤V2) is nonsingular. Hence the linear systems have
unique solutions.

Remark 1: The cost of computing degree d approxima-
tions to the value function with Theorem 3 is O(dnd+1)
using our implementation, whereas a naive approach costs
O(n3d). The flop count is tedious, so we omit it here and
refer the interested reader to our other publication [31]
where similar details can be found. To summarize, the main
algorithmic accelerations come from reshaping Kronecker
products to leverage Basic Linear Algebra Subprograms
(BLAS) operations and the use of a specialized linear solver
[11], [32] that takes advantage of the k-way Lyapunov
structure of the linear systems (11).

Remark 2: Given a degree d approximation to the value
function computed using Theorem 3, a degree d−1 approxi-
mation to the optimal control is given by (5). This suboptimal
polynomial feedback law has the form

u(x) = Kx+K[2]x 2 + · · ·+K[d−1]x d − 1 . (12)

The linear coefficient K is precisely the LQR gain matrix
K = −R−1BV2. The higher-order gain matrices are ob-
tained by collecting the terms of each degree from (5), where
the polynomial form of g(x) is given in (7) and the gradient
of the value function is given by (19).
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IV. NUMERICAL EXAMPLES

We demonstrate the approach for computing value func-
tions and the associated controllers outlined in Theorem 3 on
two examples. First, we consider an aircraft flight model with
state dimension n = 3 in Section IV-A. Then, in Section IV-
B, we demonstrate that the approach can be scaled to a
semidiscretized model of the Allen-Cahn PDE with state
dimension n = 129.

A. 3D Example: Aircraft Stall Stabilization

We consider an aircraft model used in [33] to formulate a
nonlinear stall-stabilization controller for an F-8 Crusader
cruising at 30, 000 ft at Mach = 0.85. In that work,
the authors use an Al’brekht-based approach to compute
nonlinear regulators by hand because a scalable, automated
approach had not been developed. This tedious approach
limited the authors to only consider cubic drift nonlinear-
ities and no nonlinear input terms. Furthermore, they only
consider quadratic-in-state costs. This problem was also
considered in [12], but they also discard the nonlinear input
terms. In contrast, our work provides the general purpose
software to automate the computation so practitioners can
easily implement nonlinear controllers including these terms.

Model: The derivation of the state-space model from
Newton’s second law can be found in [33]. The result is a
state-space model in terms of the angle of attack x1, the angle
of the plane relative to the trim pitch x2, and the rotation rate
of the plane x3, with the control input u corresponding to
the angle of the tail elevator:

ẋ1 = x3 − x2
1x3 − 0.088x1x3 − 0.877x1 + 0.47x2

1

− 0.019x2
2 + 3.846x3

1 − 0.215u+ 0.28ux2
1

ẋ2 = x3

ẋ3 = −0.396x3 − 4.208x1 − 0.47x2
1 − 3.564x3

1

− 20.967u+ 6.265ux2
1.

(13)

Control Problem: We apply our algorithm to the same
control problem presented in [33]: the model is subjected to
disturbances in the angle of attack, physically corresponding
to a gust of wind that puts the aircraft into a stall condition,
which is reported in [33] to occur at an angle of α = 23.5◦.
Hence given an initial condition x0 =

[
α0 0 0

]⊤
, the

objective is to design a controller that causes the plane to

recover from stall. This is formulated as an optimal control
problem where we seek a control u that minimizes the cost
function

J(x0,u) =
1

2

∫ ∞

0

(
x⊤Qx+ u⊤Ru

)
dt

with Q = 1
4I and R = I subject to the dynamics (13).

Results: We compute degree 2, 4, 6, and 8 approximations
to the value function, giving degree 1, 3, 5 and 7 controllers
of the form (12), denoted LQR, Cubic PPR, Quintic PPR,
and Septic PPR, respectively. Fig. 1 shows the angle of
attack response under the action of the different controllers
for initial conditions of α0 = 25◦, 27◦, 30◦, 35◦. For the
smallest angle of attack, α0 = 25◦, all controllers—even
the LQR—successfully stabilize the aircraft. However, as
shown in Table I, the PPR controllers exhibit lower control
costs, demonstrating the improved efficiency of polynomial
feedback laws over linear feedback laws.

TABLE I. Aircraft control costs (α0 = 25◦) computed up to T = 12.
PPR controllers have a lower cost.

Controller 1
2

∫ T
0

(
x⊤Qx+ u⊤Ru

)
dt

LQR 0.053166
Cubic PPR 0.044503

Quintic PPR 0.040593
Septic PPR 0.039393

Regarding the ability to recover the aircraft from stall, we
see a graceful degradation of the controllers. As the angle
of attack increases, we gradually see each controller fail
while the higher-order controllers are still able to stabilize
the aircraft. The higher-order controllers achieve their im-
proved performance by providing more rapid control inputs,
so practitioners need to consider this when designing the
controllers, i.e. picking the weights Q(x) and R.

This simple example demonstrates two reasons to consider
polynomial feedback laws: 1) the control costs can be lower,
and 2) PPR controllers may work in cases where LQR fails.
There are cases where LQR works while PPR fails though,
so practitioners should always exercise caution.

B. Allen-Cahn Equation
We consider a semidiscretization of the Allen-Cahn PDE

∂w(z, t)

∂t
= ϵ

∂2w(z, t)

∂z2
+ w(z, t)− w(z, t)3

0 2 4 6 8 10 12
0

10

20

30

40

25

Time, t

A
n
gl
e
of

at
ta
ck

(d
eg
re
es
),

x
1

LQR
Cubic PPR
Quintic PPR
Septic PPR

0 2 4 6 8 10 12

27

Time, t

LQR
Cubic PPR
Quintic PPR
Septic PPR

0 2 4 6 8 10 12

30

Time, t

LQR
Cubic PPR
Quintic PPR
Septic PPR

0 2 4 6 8 10 12

35

Time, t

LQR
Cubic PPR
Quintic PPR
Septic PPR

Fig. 1. Angle of attack response for initial conditions (from left to right) α0 = 25◦, 27◦, 30◦, 35◦. The PPR controllers stabilize the aircraft faster than
LQR, and they are able to recover the aircraft from stall for larger initial angles of attack.
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for t > 0 and z ∈ Ω = [−1, 1]. The system is subject to the
boundary conditions w(−1, t) = −1 and w(1, t) = 1, and
the initial condition w(z, 0) = 0.53z + 0.47 sin(−1.5πz) is
chosen based on Example 34 in [34]. This reaction-diffusion
PDE models phase separation in a two-phase mixture. The
solution describes the evolution of interfaces between the two
phases, with the diffusion coefficient ϵ determining the inter-
face thickness. The system has the three constant equilibrium
solutions wss(z) = −1, 0, 1. The solutions wss(z) = ±1 are
stable and represent a pure single phase, whereas wss(z) = 0
is unstable and represents a homogeneous mixture of the two
phases. The PDE also has a family of nontrivial steady-state
solutions given by

wss(z; ϵ, z0) = tanh

(
z − z0√

2ϵ

)
, (14)

where z0 is the position of the interface. This is the only so-
lution that satisfies the boundary conditions, so our problem
is expected to converge to this type of solution.

Finite-Dimensional Model: To put the model in the form
(7), the PDE is spatially discretized using a Chebychev
pseudospectral collocation method with n = 129 nodes [34,
Ex. 34], as depicted in Fig. 2. The model is also augmented
with three control inputs, as shown in Fig. 2. The Allen-Cahn
PDE has polynomial structure, so the only approximation
comes from the finite element discretization.

w(−1, t) = −1 w(1, t) = 1

u1(t) u2(t) u3(t)

Fig. 2. Spatial domain and control locations for the Allen-Cahn PDE dis-
cretized with 129 Chebychev nodes, which are denser near the boundaries.

The semidiscretized model takes the form

ẋ = Ax+ F3x
3 +Bu. (15)

The state x(t) =
[
w(z1, t), . . . , w(zn, t)

]⊤ ∈ Rn repre-
sents the solution w(z, t) evaluated at the Chebychev nodes
z =

[
z1, . . . , zn

]⊤
. The linear component of the drift is

given by A = ϵD2
z + I, where D2

z is the differentiation
matrix approximating the operator ∂2/∂z2. The cubic drift
coefficient F3 is a sparse binary matrix with ones in the
positions to satisfy F3x

3 = x ⊙ x ⊙ x, where ⊙ is
the Hadamard product (element-wise multiplication). Three
independent control inputs are placed at nodes 33, 65, and 97,
so the input matrix is B =

[
e33 e65 e97

]
, where ei ∈ Rn

is the ith standard basis vector.
Fig. 3 shows the open-loop behavior of the system for

ϵ = 0.01. As described in [34], the system first exhibits
a “metastable” configuration with three interfaces before
suddenly transitioning to a steady-state solution of the form
(14) with the interface at around z0 = 0 at t ≈ 40.

1

0.5-1
100

z

080

t

60 -0.540
20 -10

0w

1

Fig. 3. Open-loop behavior of the Allen-Cahn example for ϵ = 0.01, as
shown in [34, Ex. 34].

Control Problem: Our objective is to dictate the location
z0 of the interface between the two phases in the steady-state
solution. This is formulated as an optimal control problem
seeking to asymptotically stabilize an equilibrium of the form
(14) for a desired interface location z0. The equilibrium at
the origin x = 0 of (15) corresponds to the unstable trivial
solution wss(z) = 0, which does not satisfy the boundary
conditions, so we shift the desired reference solution to the
origin using a change of coordinates x̄ = x − xref, where
xref =

[
wss(z1; ϵ, z0), . . . , wss(zn; ϵ, z0)

]⊤
corresponds to a

reference equilibrium solution defined in (14) for a particular
interface location z0. The cost function we choose is

J(x̄0,u) =
1

2

∫ ∞

0

(
x̄⊤Qx̄+ u⊤Ru+ q⊤

4 x̄
4

)
dt

with Q = 0.1I, R = I, and q4 the sparse vector satisfying
q⊤
4 x̄

4 =
∑n

i=1 x̄
4
i (analgous to the identity matrix for Q).

Results: Selecting the desired interface location as z0 =
0.5, we compute a standard LQR controller, a Quadratic
PPR controller, and a Cubic PPR controller to stabilize the
system to the desired solution. In addition to the diffusion
parameter value ϵ = 0.01 from [34], we also include results
for the cases ϵ = 0.0075 and ϵ = 0.005. The smaller
the diffusion coefficient, the more the cubic nonlinearity
dominates the dynamics; this has the effect of making the
metastable configuration more persistent and making it more
difficult to stabilize the desired equilibrium.

Closed-loop simulations of the nonlinear system (15) are
performed using MATLAB’s ode23s() up to T = 1000.
We then evaluate the cost function to quantitatively assess
each of the controllers; the results are shown in Table II.

TABLE II. Cost 1
2

∫ T
0

(
x̄⊤Qx̄+ u⊤Ru+ q⊤

4 x̄ 4⃝
)

dt integrated to
T = 1000 for the Allen-Cahn example.

Controller ϵ = 0.01 ϵ = 0.0075 ϵ = 0.005

LQR 5475.640 19376.855 87268.670
Quadratic PPR 4339.483 14042.908 57876.913

Cubic PPR 1372.454 4153.668 20711.449

For the parameter values considered, the Cubic PPR con-
troller has a cost about 75% lower than the LQR controller.
As a rule of thumb, controllers of even degree are dis-
couraged, since the associated value function (which locally
acts as a Lyapunov function for the closed-loop dynamics)
would be of odd degree, which is ill-advised. Nonetheless,
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we have included the results for a Quadratic PPR controller
for comparison purposes; it also performs better than LQR
for this initial condition and these parameter values, but
the improvement is not as significant as the Cubic PPR
controller. Note that neither the Quadratic PPR nor the Cubic
PPR controller solves the problem exactly; an infinite Taylor
series would be required, and the solution is only guaranteed
to converge locally. Still, including higher-order polynomial
terms from the dynamics and the cost function noticably
improves the performance of the controllers. In particular,
the extra term in the cost function penalizes deviations
from the reference configuration more heavily, so the PPR
controllers are expected to stabilize the system more quickly
and avoid the metastable configuration present in the open-
loop solution.

Fig. 4a and Fig. 4b show the closed-loop system under the
action of the LQR controller and the Cubic PPR controller,
respectively, for the ϵ = 0.01 case whose open-loop behavior
is shown in Fig. 3. While both controllers stabilize the system
to the desired solution, the Cubic PPR controller is able to
perform the same task much more rapidly.

1

0.5-1
100

z

080

t

60 -0.540
20 -10

0w

1

(a) LQR

1

0.5-1
100

z

080

t

60 -0.540
20 -10

0w

1

(b) Cubic PPR

Fig. 4. Allen-Cahn example closed-loop simulations for ϵ = 0.01

.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we provided a general scalable approach
and open-access software for computing solutions to the
polynomial-polynomial regulator problem. The main contri-
butions of this work include the development of algorithms
capable of handling general polynomial state-dependence in
drift, input map, and in the state penalty in the cost function.
These contributions enable more accurate local approxima-
tions of optimal control laws, and the capability to include
polynomial terms in the cost function gives practitioners
more flexibility to tune controller behavior.

The results for the two examples considered herein demon-
strate some of the potential benefits of polynomial controllers
over linear controllers:

1) PPR controllers may have lower control costs than LQR
for initial conditions sufficiently close to the origin;

2) PPR controllers may be able to stabilize initial condi-
tions that LQR fails to stabilize.

However, these controllers also experience the following
limitations, since they are based on Taylor expansions:

1) the solutions are only guaranteed to be valid within a
neighborhood of the origin;

2) the region of attraction in the closed-loop system does
not necessarily increase as more terms are added to the
controller.

Practically speaking, there exist systems that are globally
stabilized by LQR but only locally stabilized by PPR, so
practitioners seeking the advantages of polynomial con-
trollers should be wary of their limitations as well.

As future work, we plan to investigate further the practical
role of higher-order terms in the cost function. While the
Q and R matrices in LQR are well understood for trading
controller performance for efficiency, the significance of
higher-order terms such as q4 in the cost function is not yet
well understood, in particular regarding the global behavior
of the controllers. Additionally, the tensor structure of the
higher-order value function and feedback gain coefficients
is not fully understood. They are known to often have low
numerical rank which can be exploited by some numerical
methods, but a major limitation that remains is the RAM re-
quirements for storing the higher-order coefficients. We plan
to investigate this topic and other potential approximations
for accelerating Al’brekht’s method.
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pp. 1361–1399, Aug. 2019.

[10] J. Borggaard and L. Zietsman, “The quadratic-quadratic regulator
problem: approximating feedback controls for quadratic-in-state non-
linear systems,” in 2020 American Control Conference (ACC), Jul.
2020, pp. 818–823.

[11] ——, “On approximating polynomial-quadratic regulator problems,”
IFAC-PapersOnLine, vol. 54, no. 9, pp. 329–334, 2021.

[12] H. Almubarak, N. Sadegh, and D. G. Taylor, “Infinite horizon nonlin-
ear quadratic cost regulator,” in 2019 American Control Conference
(ACC), Jul. 2019, pp. 5570–5575.

[13] B. Kramer, S. Gugercin, J. Borggaard, and L. Balicki, “Scalable
computation of energy functions for nonlinear balanced truncation,”
Computer Methods in Applied Mechanics and Engineering, vol. 427,
p. 117011, Jul. 2024.

[14] E. G. Al’brekht, “On the optimal stabilization of nonlinear systems,”
Journal of Applied Mathematics and Mechanics, vol. 25, no. 5, pp.
1254–1266, Jan. 1961.

[15] W. L. Garrard, N. H. McClamroch, and L. G. Clark, “An approach
to sub-optimal feedback control of non-linear systems,” International
Journal of Control, vol. 5, no. 5, pp. 425–435, May 1967.

[16] W. L. Garrard, “Suboptimal feedback control for nonlinear systems,”
Automatica, vol. 8, no. 2, pp. 219–221, Mar. 1972.

[17] A. J. Krener, “Nonlinear Systems Toolbox,” Available on request to
ajkrener@nps.edu, 2019.

[18] J. Borggaard and L. Zietsman, “Computation of nonlinear feedback for
flow control problems,” in 2018 American Control Conference (ACC).
IEEE, Jun. 2018.

[19] J. M. A. Scherpen, “Balancing for nonlinear systems,” Systems &
Control Letters, vol. 21, no. 2, pp. 143–153, Aug. 1993.

[20] A. J. Krener, “Reduced order modeling of nonlinear control systems,”
in Analysis and Design of Nonlinear Control Systems. Springer Berlin
Heidelberg, 2008, pp. 41–62.

[21] K. Fujimoto and D. Tsubakino, “Computation of nonlinear balanced
realization and model reduction based on Taylor series expansion,”
Systems & Control Letters, vol. 57, no. 4, pp. 283–289, Apr. 2008.

[22] B. Kramer, S. Gugercin, and J. Borggaard, “Nonlinear balanced
truncation: Part 2—model reduction on manifolds,” Feb. 2023,
arXiv:2302.02036.

[23] N. A. Corbin, “PPR repository,” Available online: https://github.com/
cnick1/PPR, Aug. 2024.

[24] R. E. Kalman, “The theory of optimal control and the calculus of
variations,” in Mathematical Optimization Techniques, R. Bellman, Ed.
University of California Press, Dec. 1963, ch. 16, pp. 309–331.

[25] F. L. Lewis, Optimal control. Wiley, 2012.
[26] D. L. Lukes, “Optimal regulation of nonlinear dynamical systems,”

SIAM Journal on Control, vol. 7, no. 1, pp. 75–100, Feb. 1969.
[27] H. V. Henderson and S. R. Searle, “The vec-permutation matrix,

the vec operator and Kronecker products: a review,” Linear and
Multilinear Algebra, vol. 9, no. 4, pp. 271–288, Jan. 1981.

[28] C. F. Van Loan, “The ubiquitous Kronecker product,” Journal of
Computational and Applied Mathematics, vol. 123, no. 1-2, pp. 85–
100, Nov. 2000.

[29] J. Brewer, “Kronecker products and matrix calculus in system theory,”
IEEE Transactions on Circuits and Systems, vol. 25, no. 9, pp. 772–
781, Sep. 1978.

[30] J. R. Magnus and H. Neudecker, Matrix differential calculus with
applications in statistics and econometrics, 3rd ed. Wiley, Feb. 2019.

[31] N. A. Corbin and B. Kramer, “Scalable computation of H∞ en-
ergy functions for polynomial control-affine systems,” Aug. 2024,
arXiv:2408.08970.

[32] M. Chen and D. Kressner, “Recursive blocked algorithms for linear
systems with Kronecker product structure,” Numerical Algorithms,
vol. 84, no. 3, pp. 1199–1216, Sep. 2019.

[33] W. L. Garrard and J. M. Jordan, “Design of nonlinear automatic flight
control systems,” Automatica, vol. 13, no. 5, pp. 497–505, Sep. 1977.

[34] L. N. Trefethen, Spectral methods in MATLAB. Society for Industrial
and Applied Mathematics, 2000.

APPENDIX

A. Kronecker Product Identities

TABLE III. Relevant Kronecker product identities.

ID 1 (A⊗B)(D⊗G) = AD⊗BG

ID 2 A⊗B = Ss×p(B⊗A)Sq×t

ID 3 (Ip ⊗ x)A = A⊗ x

ID 4 vec [ADB] = (B⊤ ⊗A)vec [D]

ID 5 vec [AD] = (Is ⊗A)vec [D]

ID 6 u⊤Bx = vec [B]⊤ (x⊗ u)

ID 7 vec
[
x⊤ ⊗ Im

]
= (x⊗ vec [Im])

ID 8 vec [A⊗B] = (Iq ⊗ Sp×t ⊗ Is) (vec [A]⊗ vec [B])

Dimensions of matrices used in the Kronecker product identities

A(p× q) D(q × s) u(s× 1)
B(s× t) G(t× u) x(t× 1)

B. Proof of Theorem 3

Inserting the polynomial forms of f(x) and g(x) from (7)
into the HJB PDE (4) gives

0 =
∂V ⊤(x)

∂x

[
Ax+

ℓ∑
p=2

Fpx
p

]

− 1

2

∂V ⊤(x)

∂x

[
ℓ∑

p=1

Gp

(
x p ⊗ Im

)
+B

]
×

R−1

[
ℓ∑

q=1

(
x q ⊤ ⊗ Im

)
G⊤

q +B⊤

]
∂V (x)

∂x

+
1

2
x⊤Qx+

1

2

λ∑
p=3

q⊤
p x

p

(16)

The gradient of the value function (9) in Kronecker product
form is

∂⊤V (x)

∂x
=

1

2

(
2x⊤V2

+ v⊤
3 (In ⊗ x⊗ x) + v⊤

3 (x⊗ In ⊗ x) + v⊤
3 (x⊗ x⊗ In)

+ v⊤
4 (In ⊗ x⊗ x⊗ x) + v⊤

4 (x⊗ In ⊗ x⊗ x)

+ v⊤
4 (x⊗ x⊗ In ⊗ x) + v⊤

4 (x⊗ x⊗ x⊗ In) + · · ·
)
,

(17)

where without loss of generality we assume that V2 is
symmetric. After inserting the polynomial expressions for
the dynamics (7) and the value functions (9), the HJB PDE
(16) yields an algebraic equation for each of the coefficients
vi for i = 2, 3, . . . , d. The collection of degree 2 terms in
(16) is

0 =x⊤V2Ax− 1

2
x⊤V2BR−1B⊤V2x+

1

2
x⊤Qx.

Differentiating twice with respect to x yields the algebraic
Riccati equation (10) for V2.

The equation for vk for k = 3, 4, . . . , d is obtained
by collecting the terms of degree k in (16); recall that
as a consequence of Theorem 2, these are linear algebraic
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equations. Thus we separate the collection of degree k terms
in (16) as 0 = −LHS + RHS, where LHS denotes the terms
containing the unknown vk and RHS contains the sum of all
of the remaining terms 2. The collection of degree k terms
containing vk is

LHS := −1

2
v⊤
k

(
(In ⊗ x k − 1 ) + (x⊗ In ⊗ x k − 2 ) + · · ·

)
×

(A−BR−1B⊤V2)x.

With careful algebraic manipulations, the Kronecker prod-
ucts can be reordered to rewrite this collection of terms using
the k-way Lyapunov matrix

LHS = −1

2
v⊤
k Lk(A−BR−1B⊤V2)x

k . (18)

The remaining terms in the HJB PDE, which make up the
right-hand-side of the linear algebraic equation for vk, only
contain coefficients v2 through vk−1, which have already
been computed. As such, they are symmetric according to
Definition 2. This allows us to rewrite the gradient of the
value function (17) using ID 2 and Proposition 1 as

∂⊤V (x)

∂x
=

1

2

(
2v⊤

2 (In ⊗ x) + 3v⊤
3 (In ⊗ x⊗ x) + · · ·

)
=

1

2

k−1∑
i=2

iv⊤
i (In ⊗ x i − 1 ). (19)

Rewriting the remaining terms in the HJB PDE (16) with the
new gradient of the value function (19), the RHS terms can
be written as

RHS :=
1

2

[
k−1∑
i=2

iv⊤
i (In ⊗ x i − 1 )

][
ℓ∑

p=2

Fpx
p

]
+

1

2

λ∑
p=3

q⊤
p x

p

(20a)

− 1

8

[
k−1∑
i=2

iv⊤
i (In ⊗ x i − 1 )

][
ℓ∑

p=1

Gp

(
x p ⊗ Im

)
+B

]
×

(20b)

R−1

[
ℓ∑

q=1

(
x q ⊤ ⊗ Im

)
G⊤

q +B⊤

][
k−1∑
j=2

(In ⊗ x j − 1 ⊤
)vjj

]
.

(20c)

Again using careful algebraic manipulations, these terms can
be manipulated to a more desirable form; specifically, the
goal is to put these in the form (·)x k so that we may match
coefficients of the same polynomial degree. Beginning with
the terms from (20a) containing Fp

1

2
iv⊤

i (In ⊗ x i − 1 )Fpx
p , with p+ i− 1 = k,

a similar trick to that used in (18) allows us to rewrite this
using the k-way Lyapunov matrix as

1

2
v⊤
i Li(Fp)x

k . (21)

The terms containing qp are already in the desired form

1

2
q⊤
p x

p with p = k. (22)

2Eventually, LHS will be the left-hand-side of the linear algebraic
equations for vk , and RHS will be the right-hand-side, i.e. LHS = RHS.

The terms containing B are

1

8
iv⊤

i (In ⊗ x i − 1 )BR−1B⊤(In ⊗ x j − 1 ⊤
)vjj, (23)

with i+j−2 = k. After algebraic manipulations, these terms
are written as

1

8
ijvec

[
V⊤

i BR−1B⊤Vj

]⊤
x k . (24)

The remaining terms, which are those containing Gp, are

1

8
iv⊤

i (In ⊗ x i − 1 )Gp(x
p ⊗ Im)× (25)

R−1(x q ⊤ ⊗ Im)G⊤
q (In ⊗ x j − 1 ⊤

)vjj,

with p ∈ [0, o], o ∈ [1, 2ℓ], q = o − p, and i + j + o =
k + 2. Here the manipulations are much more involved,
but ultimately they just require careful application of the
identities in Table III. After these manipulations, the terms
containing Gp are written as

1

8
ijvec

[(
Inp ⊗ vec [Im]⊤

)(
vec

[
G⊤

q Vj

]⊤
⊗ (26)

(
G⊤

p Vi ⊗R−1
))(

Inj−1 ⊗ Sni−1×nqm ⊗ Im
)
×

(Ink−p ⊗ vec [Im])

]⊤

x k .

The quantities (21), (22), (24) and (26) represent single
degree k terms containing Fp,qp,B, and Gp contributions,
respectively. Introducing summations over the appropriate
combinations of indices, the HJB PDE (16), written now
as LHS = RHS, can be expanded as

− 1

2
v⊤
k Lk(A−BR−1B⊤V2)x

k =
1

2

∑
i,p≥2

i+p=k+1

v⊤
i Li(Fp)x

k

+
1

2
q⊤
k x

k − 1

8

∑
i,j>2

i+j=k+2

ij vec(V⊤
i BR−1B⊤Vj)x

k

− 1

8

2ℓ∑
o=1

 ∑
p,q≥0
p+q=o

 ∑
i,j≥2

i+j=k−o+2

ij vec

[(
Inp ⊗ vec [Im]⊤

)
×

(
vec

[
G⊤

q Vj

]⊤
⊗

(
G⊤

p Vi ⊗R−1
))

×

(
Inj−1 ⊗ Sni−1×nqm ⊗ Im

)
(Ink−p ⊗ vec [Im])

]⊤

x k

We require this to hold for all x. Pulling out the factor
of x k from every term, multiplying by negative two, and
transposing the entire equation results in (11) and completes
the proof for Theorem 3. ■
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