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Abstract

This review discusses Operator Inference, a nonintrusive reduced model-
ing approach that incorporates physical governing equations by defining a
structured polynomial form for the reduced model, and then learns the cor-
responding reduced operators from simulated training data. The polynomial
model form of Operator Inference is sufficiently expressive to cover a wide
range of nonlinear dynamics found in fluid mechanics and other fields of
science and engineering, while still providing efficient reduced model com-
putations. The learning steps of Operator Inference are rooted in classical
projection-based model reduction; thus, some of the rich theory of model
reduction can be applied to models learned with Operator Inference. This
connection to projection-based model reduction theory offers a pathway to-
ward deriving error estimates and gaining insights to improve predictions.
Furthermore, through formulations of Operator Inference that preserve
Hamiltonian and other structures, important physical properties such as en-
ergy conservation can be guaranteed in the predictions of the reduced model
beyond the training horizon. This review illustrates key computational steps
of Operator Inference through a large-scale combustion example.
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1. INTRODUCTION

Learning models from data via automated methods is an increasingly important component of
computational science and engineering. We distinguish between two different broad problem
settings of learning models from data: (#) The governing equations of the physical phenomena
of interest are unknown and the goal is to discover them from data, and (§) the governing equa-
tions of the physical phenomena are known, high-fidelity numerical simulations are available but
are prohibitively expensive for the task at hand, and the goal is to learn a computationally effi-
cient surrogate model. This review addresses the second problem setting. For discussions about
the different problem setting of learning governing equations from data, we refer the reader
to Langley (1981), Schmidt & Lipson (2009), Brunton et al. (2016b), and Raissi & Karniadakis
(2018).

The high cost of numerical simulations for complex physical phenomena is a major barrier to
achieving optimization, design, control, data assimilation, and uncertainty quantification for sci-
entific and engineering systems. These numerical tasks are all so-called outer-loop applications
(Peherstorfer et al. 2018) that require repeated simulations for different inputs, parameters, and
configurations. Surrogate models provide approximations of high-fidelity numerical simulations
at greatly reduced costs and play a key role in making these outer-loop applications tractable.
When it comes to approximating high-fidelity numerical simulations of physical phenomena, sur-
rogate models can be categorized into three types: statistical data-fit models, simplified models,
and reduced models. Statistical data-fit models approximate the input-output maps induced by
high-fidelity numerical simulations. The maps are fitted with statistical methods from training
data, with the surrogate model employing a generic functional form that does not explicitly reflect
the structure of the physical governing equations underlying the numerical simulations. While
many different parameterizations of the input—output map have been considered, Gaussian pro-
cess models have been particularly successful because they are equipped with error indicators that
can be used for adaptation (Rasmussen & Williams 2006, Forrester et al. 2008).

Surrogate models of the second type, simplified models, are obtained by simplifying the models
underlying the high-fidelity numerical simulations to obtain approximations with reduced cost.
For example, nonlinear terms can be linearized, physics can be simplified, iterative solvers can
be terminated early, and coarser grids can be used for discretization. In-depth domain knowl-
edge about the physics, governing equations, and numerical methods underlying the simulations
is necessary to understand in which situations these simplifications can be made while maintaining
sufficient accuracy.

Reduced models form the third category of surrogate models and encompass elements of
both statistical data-fit and simplified models. Reduced modeling—also referred to as model
reduction—Ilearns patterns from training data of high-fidelity numerical simulations in order to
identify low-dimensional structure, while embedding knowledge of the numerical models and
governing equations in the form of the reduced model. In this sense, reduced modeling is an early
example of scientific machine learning, because learning from data is combined with incorporating
physical structure and insights obtained from the numerical models used in high-fidelity numer-
ical simulations (for discussions about scientific machine learning and physics-informed machine
learning, see Baker et al. 2019, Duraisamy et al. 2019, Swischuk et al. 2019, Brunton et al. 2020,
and Karniadakis et al. 2021, as well as Coveney et al. 2016 and Willcox et al. 2021).

A large class of reduced models is based on projection, where low-dimensional subspaces that
capture the most important dynamics are learned from data and the governing equations are solved
in the subspaces via projection (for textbooks and surveys, see Antoulas 2005, Rozza et al. 2008,
Quarteroni & Rozza 2014, Benner et al. 2015, Hesthaven et al. 2016). Reduced models based on
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projection have a long history in fluid mechanics and represent some of the pioneering research
in the field (Lumley 1967, Sirovich 1987, Holmes et al. 1996, Hall et al. 2000, Dowell & Hall
2001, Rowley & Dawson 2017). An advantage of reduced modeling techniques is the availability
of rigorous theoretical guarantees in some settings, in particular via a posteriori error estimation
(Prud’homme et al. 2001, Veroy et al. 2002, Hinze & Volkwein 2005, Haasdonk & Ohlberger
2011, Urban & Patera 2012). A drawback is that reduced models have traditionally been con-
structed by intrusive methods that compute the reduced operators by explicit projection of the
governing equations onto the low-dimensional subspace. This process requires access to the nu-
merical operators of the high-fidelity simulations either in assembled form or via routines that
provide the action of the operators. As discussed by Ghattas & Willcox (2021), while this access is
possible in many settings, it has been a barrier to practical adoption of model reduction, especially
for legacy and commercial numerical tools.

Instead of constructing reduced models via intrusive procedures, we aim to learn reduced
models nonintrusively from training data while maintaining some of the theoretical guarantees
provided by intrusive methods. A major advantage of nonintrusive reduced modeling is its ease
of implementation, because the high-fidelity simulators are used as data generators only. Struc-
ture, knowledge about governing equations, and other physical insights can still be embedded in
a nonintrusive reduced model, but access to the high-fidelity operators in an intrusive sense is
avoided. Furthermore, nonintrusive formulations offer the flexibility to learn a reduced model
from both simulated and experimental data (e.g., Schmid 2010, Hemati et al. 2017). This is par-
ticularly relevant to fluid mechanics, where techniques such as particle image velocimetry can
provide high-resolution spatiotemporal flow data.

Nonintrusive reduced modeling can be achieved in various ways. Some methods learn only
parts of the dynamics of the high-dimensional numerical models (as in Gear et al. 2003). A range
of methods learn physics-informed representations obtained from high-fidelity numerical simu-
lations (Audouze et al. 2009, Hesthaven & Ubbiali 2018, Swischuk et al. 2019). In the systems
and control community, nonintrusive model reduction has been widely studied and is related to
system identification (Ljung 1987). The Loewner approach leverages the dynamical-system struc-
ture of high-fidelity models and fits rational functions to frequency-response data (Antoulas et al.
2021). The dynamic mode decomposition (DMD) (Rowley et al. 2009, Schmid 2010, Tu et al.
2014, Kutz et al. 2016) best-fits linear operators to state trajectories (see also the survey in Schmid
2022). Methods based on Koopman operators have been developed to extend DMD to nonlinear
systems (Mezi¢ 2005, Williams et al. 2015, Brunton et al. 2016a), where the challenge is selecting
observables such that the dynamics become close to linear.

In this review, we discuss reduced modeling with Operator Inference, introduced by
Peherstorfer & Willcox (2016a). Similarly to DMD, Operator Inference fits operators of reduced
models to data; however, it allows for nonlinear terms and thus can capture nonlinear dynam-
ics. Operator Inference explicitly embeds the underlying physics through the structured form of
the reduced model it learns. In Section 2, we describe the basic Operator Inference approach.
Section 3 demonstrates Operator Inference on the example of learning a surrogate model for a
large-scale computational fluid dynamics (CFD) model of a combustion process. Section 4 dis-
cusses conditions under which Operator Inference recovers the same reduced models that would
be obtained with intrusive projection-based model reduction, which provides a pathway to carry
over the rich theory of intrusive methods to data-driven modeling with Operator Inference. In
Section 5, we delve into structure preservation, noting that a major advantage of reduced models
compared with statistical data-fit models is explicit preservation of the structure of the underlying
physics and high-fidelity numerical models. Conclusions are drawn in Section 6.
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2. OPERATOR INFERENCE

This section reviews Operator Inference, a nonintrusive method for learning low-dimensional
computationally efficient surrogate models that approximate large-scale, expensive numerical
simulations.

2.1. High-Fidelity Physics-Based Numerical Models and Their Structure

This review considers the large class of scientific and engineering applications governed by partial
differential equations (PDEs). In scientific computing, numerical models for such systems are typ-
ically obtained by discretizing the governing PDEs with numerical methods such as finite-volume,
finite-difference, and finite-element schemes. The resulting numerical models describe the under-
lying systems of interest with high fidelity but often entail high computational costs when used
for numerical simulations. In this subsection, we present a generic form for such models, with an
emphasis on the structured model form that arises on the basis of the physical governing equa-
tions at hand. In the next subsection, we discuss how Operator Inference exploits this structure to
derive data-driven reduced models.

2.1.1. Numerical models. To keep the discussion general, we consider a generic, spatially
discretized form of the governing PDEs. That is, we consider numerical models of the form

d
5@6(1‘; ) = flx@; p),u@); k), L.

where x(t; w) € RY is the spatially discretized state vector. The dimension of the state is N € N,
which scales with the (typically large) number of degrees of freedom in the spatial discretization. In
the most general case, the state depends on time 7 and the d'-dimensional parameter . € D C R,
The d-dimensional input (¢) € R represents terms such as time-dependent boundary conditions
and source terms. The dynamics are described by the function f: RN x R x D — RN,

2.1.2. Structure of numerical models. In numerical models of interest in science and engi-
neering, the function f in Equation 1 typically has a particular structure that reflects the terms
in the equations governing the modeled physical processes. In fluid mechanics, examples of these
physical processes are convection, diffusion, and reaction, each of which gives rise to terms with
varying, but known, structural forms. For example, consider the following mathematical model
given by the Burgers equation for convection-diffusion flows:

3 9 92
gw(t,é;u)wtw(t,é;M)ﬁw(t,é;u)—m@w(t,&u)=u25(t,$), §eQ, 2.

with solution field w(t, &; p) at time # and spatial coordinate & in the spatial domain Q. Equation 2
depends on the source term sz, £) and on the parameter g = [u1, 42] € R?, with the components
of p corresponding to the viscosity, 11, and source-term parameter, ;.

Imposing appropriate boundary conditions, and discretizing Equation 2 in the spatial domain
with, for example, a finite-difference method, yields a system of ordinary differential equations, as
shown in Equation 1. In this case, the function f has linear-quadratic structure:

F@t; p),ut); ) = Ai(p)x(t; 1) + A% (¢ p) + B(u(t).

Here, x(t; p) € RN is the spatially discretized approximation of the state w, which depends on
time # and the parameter vector p, and #(¢) is the spatially discretized representation of the source
term s(¢, £). The matrix 4;(u) € RNV arises from discretization of the linear diffusion term in
Equation 2 [i.e., A;(u)x(t; p) corresponds to the numerical approximation of the term
U1 Bsz w(t, &; w)]. The matrix 4, € RN*M arises from discretizing the nonlinear convection term in
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NOTE ON POLYNOMIAL FORM

Many numerical models arising in fluid mechanics naturally have polynomial form. Examples include the shallow-
water equations, incompressible Navier-Stokes equations, and Euler equations (Hughes et al. 1986, Balajewicz
etal. 2016, Qian et al. 2020). Furthermore, many nonpolynomial models can be written in polynomial form, as in

Equation 3, after variable transformations are applied. For example, the Euler equations have quadratic structure

when written in specific volume variables.

Equation 2, which has a quadratic dependence on the state. The squared vector 4 (¢; ) contains
all components of the Kronecker product x(¢; p) ® x(¢; p) except the duplicates due to commuta-

Tiaald T,
isx” = [x1x1, 4102, 0202]

tivity of multiplication. For example, the squared vector of x = [xy, x;]
the vector x? is obtained by removing all duplicates due to the commutativity of multiplication
from the Kronecker product: x ® x = [x1xy, %142, %201, 4:4,] . The squared vector %(¢; p) has
N, = (V}') components, which is also the number of columns of 4,. The matrix B(p) € RN*?
maps the effects on the dynamics of the source term and constant terms such as those arising from
discretization of boundary operators.

Justas discretizing the Burgers equation leads to a numerical model with linear-quadratic struc-
ture, the models of many processes and phenomena lead to a form of f in Equation 1 that has
polynomial structure. For example, heat conduction described by linear diffusion models leads
to linear time-invariant dynamics so that f(x(@; ), u(t); p) = A(uw)x(t; p) + B(p)u(t), which is a
polynomial of degree one in the state x(¢; p). For more examples, see the sidebar titled Note on
Polynomial Form. These examples motivate us to consider polynomial models,

d ¢ .
35w = flle p),u(): ) = D AN ) + Bwyu(), 3.

i=1

where £ € N is the degree of the polynomial and #(t; u) € R™ contains the components of the
i-times Kronecker product x(; ) ® - - - ® x(¢; ) up to the duplicates due to commutativity of
multiplication. Notice that the vector &’(; u) has N; = (**/~') components, whereas the i-times
Kronecker productx(t; p) ® - - - ® x(t; u) has N (N to the ith power) components. Fori=1,.. ., ¢,
the matrix 4;(p) has size N x N;, and B(r) has size N x d. In the next subsection, we discuss the
transformation of governing equations for an even broader class of systems into the polynomial
form of Equation 3.

2.1.3. Lifting of nonpolynomial models. The polynomial model form in Equation 3 already
encompasses a large portion of discretized processes in engineering and science; however, a num-
ber of mathematical models include nonpolynomial terms. The vast majority of these fall into the
class of systems that can be written in polynomial form by leveraging variable transformations. To
begin, we note that dynamical system models are not unique: The same process can be modeled
mathematically with different variables, which can have a tremendous impact on computational
modeling and analysis.

The idea of variable transformations (referred to as lifting when extra variables are added) to
promote model structure has a long history spanning different communities. In fluid dynamics,
variable transformations have long been recognized as providing useful alternative representa-
tions, such as choosing particular variables to enhance stability properties (Hughes et al. 1986,
Kalashnikova & Barone 2011, Balajewicz et al. 2016, Rezaian & Wei 2020). As another classical
example, the well-known Cole-Hopf transformation turns the nonlinear Burgers equation into
a linear equation (Hopf 1950, Cole 1951). In the dynamical systems field, DMD (Rowley et al.
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2009, Schmid 2010) is often used to learn low-dimensional models from data. Employing vari-
able transformations to use a different choice of variables (called observables) enables Koopman
analysis via extended DMD (Williams et al. 2015, Netto et al. 2021), which leads to more accurate
DMD models.

In controller design, feedback linearization uses a nonlinear state transformation to bring a
general nonlinear system into a structured linear model (Jakubczyk & Respondek 1980, Khalil
2002) that can then be controlled with classical methods. Bringing nonlinear systems into
canonical and abstract forms can further improve their numerical solution, analysis, and verifi-
cation, as shown by Savageau & Voit (1987), Liu et al. (2015), Brenig (2018), and Guillot et al.
2019).

Quadratic model structure has garnered broad interest in model reduction due to the advan-
tages of analyzing and simulating quadratic models (versus other nonlinear models). In the context
of optimization, McCormick (1976) is credited with introducing variable substitutions to achieve
quadratic structure so that nonconvex optimization problems can be recast as convex problems
in the new variables. In the field of model reduction, lifting to a quadratic form was introduced
by Gu (2011) and subsequently developed further for model reduction methods that are tailored
to quadratic model form (Benner & Breiten 2015; Benner et al. 2018; Kramer & Willcox 2019,
2022; Liljegren-Sailer & Marheineke 2022). In the context of Operator Inference, the Lift &
Learn method introduced by Qian et al. (2020) and in related research (Swischuk et al. 2020a,
McQuarrie et al. 2021, Qian et al. 2022) uses lifting transformations to learn quadratic reduced
models approximating complex nonlinear systems, such as combustion dynamics, from lifted data.
The quadratic structure can be further exploited to equip these learned models with stability guar-
antees (Kramer 2021). These stability guarantees can also be derived and integrated into Operator
Inference in the case of a model with cubic structure (as in Sawant et al. 2023).

How are these lifting transformations identified? In most cases, they are readily identified man-
ually from the form of the governing PDEs or ordinary differential equations (see the sidebar titled
Lifting a Nonpolynomial System). There is active research in algorithms, methods, and software
for polynomialization (Hemery et al. 2021) and quadratization (Hemery et al. 2020, Bychkov &
Pogudin 2021). In some cases, the lifting transformations result in differential algebraic equa-
tions, such as for the additive manufacturing solidification example presented by Khodabakhshi
& Willcox (2022).

LIFTING A NONPOLYNOMIAL SYSTEM
Consider a simple ordinary differential equation with a nonpolynomial term and a linear term:
&) = ax(t) + e,

Setx; = x and take a; = ¢~ as the auxiliary variable, so that &, = —a (ax; + x2) = —awyx; — «3. The lifted system
is now in quadratic form:

9&‘1(1’) _ al xl(t) 000 O xl(t) xl(t)
a0 | = oo |me| Tlo0-a-1|{|me|®|ue!)

Operator Inference does not simulate the lifted system but instead applies the lifting transformations to the original
state snapshots that have been collected. The lifted snapshots are then used to assemble the data matrix X. This
postprocessing step generates snapshots of the lifted state x = [x1, a,]", from which Operator Inference learns a
(here quadratic) model in the lifted variables.
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In summary, variable transformations and lifting expose polynomial structure in a broad class
of nonlinear systems. In the next subsections, we discuss how this polynomial structure is highly
amenable to surrogate modeling via model reduction. Note that while the variable transformations
are derived from the form of the governing PDEs, the transformations are not applied to the
high-fidelity numerical model but rather to the data from which the reduced model is learned. As
a result, variable transformations and lifting are a powerful yet broadly applicable set of tools for
approximating complex nonlinear systems.

2.2. Nonintrusive Model Reduction with Operator Inference

Model reduction differs from other surrogate modeling approaches in that the reduced model
explicitly accounts for the structure of the governing equations. Operator Inference nonintru-
sively constructs reduced models via a data-driven regression problem that learns reduced matrices
from snapshot data. The data-driven nature of Operator Inference enables the use of variable
transformations to expose structure in nonlinear systems.

2.2.1. Surrogate modeling via model reduction. Model reduction typically consists of two
phases. In the offline (training) phase, training data are generated, low-dimensional structure is
identified, and the reduced models are constructed. In the online (evaluation/deployment) phase,
the reduced models are used to make rapid predictions, including at new initial conditions and
parameter values that were not sampled during the offline phase. A wide range of model reduction
techniques are surveyed by, for instance, Antoulas (2005), Rozza et al. (2008), Benner et al. (2015),
Hesthaven et al. (2016), and Antoulas et al. (2021).

We focus on snapshot-based model reduction methods, which identify a low-dimensional co-
ordinate system based on the analysis of sampled state solutions. We denote a trajectory of state
solutions generated by solving Equation 1 for a parameter p as

X(p) = [x@t; p),...,x0k; 1)) € RNXK’ N

with the initial condition x(0; ). The number of time steps in each trajectory is K and the time
steps are 0 = 7y < #; < f; <---< tg. We assume the time steps to be equidistant to ease ex-
position, with constant time-step size 8¢ > 0, but this is not a requirement. The state solution
x(¢j; ) is referred to as the jth snapshot in the trajectory X (u). Snapshots are generated for mul-
tiple trajectories X (1), . . ., X (uy7) by solving Equation 1 for training parameters g, . .., gy, and
corresponding initial conditions.

2.2.2. Operator Inference basic algorithm. Operator Inference follows three steps. It is dis-
tinctive from other model reduction methods in Step 3, where the reduced model is constructed by
solving a data-driven regression problem that learns reduced-order matrices from snapshot data.

Step 1: snapshot generation. Trajectories such as those given in Equation 4 are collected and
then concatenated together with the initial conditions into a snapshot matrix:

X = [x(0; 1), X (1), -, %(0; ppg), X (pyp)] € RVMERD, 5.

If lifting or variable transformations are employed, the transformations are applied to each snap-
shot. The snapshots are then concatenated together with the initial conditions (also transformed
into the appropriate variables) into a snapshot matrix. To keep the exposition simple, we continue
to use the symbol X to denote the snapshot matrix, but note that in some cases the physical vari-
ables contained within the snapshots may be transformed and differ from the native variables of
the original nonlinear system in Equation 1.

Step 2: constructing a low-dimensional basis. A common approach is to apply proper
orthogonal decomposition (POD), which has a long tradition in fluid mechanics (Sirovich 1987,

www.annualreviews.org o Learning Nonlinear Reduced Models from Data with Operator Inference

527



Annu. Rev. Fluid Mech. 2024.56:521-548. Downloaded from www.annualreviews.org
Access provided by 69.196.33.28 on 01/23/24. See copyright for approved use

Reduced state:

a full-order state
x@t;p) € RN is
approximated as

x(@; p) =~ Va; n),
where the columns of
V =[vy,...,v,] form
the POD basis of order
nand X(t; u) € R” is
the reduced state of
dimension 7

Reduced model
construction via
Operator Inference:
solves a linear
least-squares problem
to determine the
reduced model
operators that best fit
the reduced snapshot
trajectories X([Lj) in a
minimum residual
sense

Dimension
reduction: a trajectory
of snapshots X () is
represented in the
reduced subspace as
X(u) =V X))
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Holmes et al. 1996). Computing the POD entails constructing the first # < N left-singular vec-
tors of X corresponding to the largest singular values, and then collecting these singular vectors
., v,]. This basis is orthonormal, V'V =1, and spans
an n-dimensional subspace V € R™. In practice, the snapshot matrix is often first centered (by

as columns in a basis matrix: V' = [vy, ..

subtracting the snapshot mean from each snapshot), and possibly scaled, before the singular
vectors are computed. There are various heuristics to choose the reduced dimension #; the most
common are based on decay of the singular values (Benner et al. 2015). The basis matrix ¥
defines a low-dimensional coordinate system in which we now construct a reduced model. A
full-order state is approximated as x(¢; p) =~ V&(t; p), where &(¢; p) € R” is the reduced state of
dimension 7.

Step 3: reduced model construction via Operator Inference. The reduced model of
Equation 1 takes the general form

d N
afc(t; ) = f&@E p),u@); p), 6.

with the reduced-order dynamics described by the function f:R” x R x D — R”. As dis-
cussed above, we consider systems where the governing equations admit the polynomial form of
Equation 3. The corresponding form of the reduced model is then

d o A
380w =Y A @ ) + Buu), 7.
i=1

where, following the notation of Equation 3, the vector # € R" contains the unique components
of the i-times Kronecker product #(#; u) ® - - - ® &(t; ), with n; = (”+j_1). The reduced-order
matrices Ai(u) and f?(u) will be learned from snapshot data using Operator Inference, as described
in the next three substeps.

Step 3a: dimension reduction. Project the (possibly lifted) trajectories X onto the reduced
space V via

Xwj)=V'Xw), j=1,...,M, 8.

where X (mj) = [%(t1; 1)), . .., %(tg; p;)] are the projected trajectories comprising snapshots of re-
duced dimension z. Note that we use the notation & € R” to denote a projected snapshot (i.e.,
% =V ") in contrast to the notation & € R”, which denotes a reduced state computed by solving
a reduced model. The difference between the two becomes important in the theoretical analysis
in Section 4. Also, compute the projected initial conditions, #(0; ;) = V" x(0; p;). Additionally,
approximate the time derivatives (if they are not given) to obtain, for instance, with fourth-order
finite differences and time-step size §t,

& (e my) = (=&(te-25 1)) + 8% (15 pj) — 8%(tas1; ) + &(ts2s 1)),

1
1261
withj=1,..., Mand # = 2,..., K — 2. Here, ¥ (t; p;) approximates the time derivative
(d/dt)&(t; p;). The approximate time derivative ¥ (#; pt;) can be computed with wide finite-
difference stencils that involve many neighbors, corresponding to higher-order accuracy, because
snapshots at all time steps are available.

Step 3b: learning. For each training parameter u; withj = 1,..., M, Operator Inference fits
the reduced matrices z‘il(uj), LA (wj) and E([Lj) by minimizing the objective

K 2

Ti i), - A ), Blu) =y

k=1

, .

4

A,- i %' Tk Mj) + B i)ty 1 — & (s 17
D Aipp)E @ ) + Blwyuits py) — ¥ (4 py)
i=1 2
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as in the optimization problem

o omin iAW), Ay, By)) . 10.
Ay ()., Ag (), B )
The optimization problem stated in Equation 10 is a linear least-squares problem that can be
solved efficiently, as discussed in detail in Section 2.2.4.

Step 3c: reduced model assembly. For any of the training parameters p; withj = 1,..., M,
the learned operators /ii(uj), i=1,...,4 and B(uj) define a reduced model that can then be
used to issue predictions at new, unseen initial conditions that have not been used for train-
ing. For a different parameter u € D\ {i,, ..., #y;} that is not in the training set, the operators
Ai(w),..., A(p), and B(z) can be obtained via interpolation between the operators computed
in Step 3b. In particular, the interpolation can be performed on matrix manifolds to preserve the
structure of the inferred matrices in the interpolated matrices (Amsallem & Farhat 2008, Degroote
etal. 2010, Panzer et al. 2010).

2.2.3. Regularization and stability of Operator Inference models. Regularization imposes
a bias on the learning process to guide Operator Inference toward meaningful models that have
predictive capabilities and that generalize well to unseen parameters, inputs, and initial conditions.
Regularization is especially helpful when models are misspecified. Also, data are often polluted
with numerical noise due to early stopping of iterative solvers, limited numerical precision, and
other perturbations.

Tikhonov regularization has been proposed to enhance Operator Inference by preventing over-
fitting (Swischuk et al. 2020a, Jain et al. 2021, McQuarrie et al. 2021). Tikhonov regularization
suggests modifying the optimization problem given in Equation 10 as

14

min T, Ay, B + Y0 A + de 1B E 1L

Ay (7)o A7), B(17) i=1

There are several techniques to choose regularization coefficients A1, A, .., A¢yq in the context
of Operator Inference (Swischuk et al. 2020a, McQuarrie et al. 2021). McQuarrie et al. (2021)
determine the regularization coefficients by both a data-fit criterion during training and a state
constraint that additionally enforces stability in the training and testing set. Regularizers may often
be tailored to the physics of the problem. For example, bounds on the stability radius of polynomial
dynamical-system models can be derived on the basis of Lyapunov stability theory (e.g., Tesi et al.
1994, Chesi 2007, Kramer 2021). Such bounds are computable in case of polynomial models and
depend on the norms of the learned operators /il(u]-), . ,A{(ﬂj). This was the motivation for
Sawant et al. (2023) to propose regularizers that penalize operators A, ), ... A, (pj) with large
norms to encourage learning models with large stability bounds. One of the key insights gained
by applying Lyapunov stability theory to models learned with Operator Inference is that it is
beneficial in terms of stability to regularize the quadratic and higher-order terms only and does
not impose a regularizer on the linear term (for details, see Sawant et al. 2023).

2.2.4. Scalability of Operator Inference. For any of the training parameters pt;, j = 1,...,M,
the Operator Inference optimization problem given in Equation 11 can be written in the form

min | D(u;)O(k)) - R(u)II% + IT ()OI, 12.
]

where the inferred operators are given as blocks in the matrix O(w;) =
[Ai(n)), ..., A(p;), B(;)]", which has 7 = Zle n; + d rows and 7 columns. The data matrix is

D) = [X (), X (), ..., X (), U] € RE7, 13,
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A PYTHON PACKAGE FOR OPERATOR INFERENCE

Operator Inference for learning polynomial reduced models of dynamical systems is available as a Pypi Python
package (see https://pypi.org/project/opinf) under the MIT License. The documentation for the package includes
a discussion of all functionalities such as regularization and postprocessing features, tutorials, an installation guide,

and references.
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where the matrix }v(](uj) = [&(n; "), ... L& (ks )l € R"*K for i = 1,..., £ collects the unique
components of i-times Kronecker products of the projected snapshots and the matrix U(p;) =
[wtis 1)), ... utx; wy)) € R?K collects the input trajectories that were used to generate the
snapshots. The right-hand-side matrix, R(p;) = [¥'(t1; 1)), ..., & (tx; m;)]T € R collects the
approximate time derivatives of the projected snapshots. The matrix I'(g;) € R™” corresponds to
the regularization weights of the regularized problem given in Equation 11. It has zero entries
only if no regularization is applied.

Each step of Operator Inference is scalable. The reduction steps (Steps 2 and 3a) typically entail
computing a singular value decomposition, for which highly efficient and parallel implementa-
tions exist. Furthermore, studies have shown that randomized methods can scale the reduction
step to large data sets (e.g., Swischuk et al. 2020a; Farcas et al. 2022, 2023a). Randomized methods
typically rely on a low-rank structure, which can reasonably be expected to be present in trajectory
data when learning low-dimensional models is the goal. The learning step (Step 3b) solves the
optimization problem defined in Equation 12, which can be decomposed into 7 independent
linear least-squares problems with 7 unknowns each. Each of the independent problems can be
solved in parallel. The optimization problem is a standard least-squares problem, which can again
be solved with scalable implementations of the singular value decomposition. The assembly step
(Step 3c) assembles the reduced model based on the inferred operators, which are low dimensional;
therefore, computational costs are typically low. A scalable and fast implementation of operator
inference is available in Python (see the sidebar titled A Python Package for Operator Inference).

3. OPERATOR INFERENCE IN ACTION

We now walk through the computational procedure of applying Operator Inference to learn a
surrogate model of a large-scale combustion simulation. The results that we show are drawn from
Qian et al. (2022).

3.1. Numerical Model of the Continuously Variable Resonance Combustor

The Continuously Variable Resonance Combustor (CVRC) is an experimental combustor at Pur-
due University (Harvazinski et al. 2015). We consider a numerical model of the CVRC with three
spatial dimensions, as used by Qian et al. (2022), and refer the reader to Wang et al. (2019),
Peherstorfer (2020a), Swischuk et al. (2020a), and McQuarrie et al. (2021) for other surrogate-
modeling techniques applied to one- and two-dimensional models of the CVRC. Models of the
CVRC can be simulated with the General Equation and Mesh Solver (GEMS) code introduced
by Harvazinski et al. (2015). Details about the GEMS setup and reduced modeling for the CVRC
are given by Huang et al. (2019, 2020).

The combustor is cylindrically symmetric around the first coordinate direction and approx-
imately 28 cm in the axial direction (Harvazinski et al. 2015). A forcing in the form of a 10%
fluctuation in the back pressure at the combustor outlet drives the dynamics. The forcing fre-
quency is 2,000 Hz, and the baseline back pressure is 1.1 MPa. The governing equations are
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the three-dimensional Navier—Stokes equations with a flamelet/progress variable chemical model.
The GEMS model contains seven state variables, w = [p, pu, puy, pus, pe, pZm, pC] ", where p is
the density; u;, u;, and u; are the velocities in the three spatial directions; and e is the specific
energy. The variables Z,, and C are the mixture mean and reaction progress variable, respectively,
of the chemical model. The governing equations in conservative form are written as

S8V (B w) ~ 66 w) = s, ), 14,

where & € R} is the spatial coordinate; ¢ is time; and F and F, are the inviscid and viscous flux, re-
spectively. The function s is the source term (for details, see Qian etal. 2022). The GEMS code uses
the finite-volume method to discretize Equation 14 into a system of ordinary differential equa-
tions, as given in Equation 1, with state dimension N ~ 18.5 x 10° (i.e., there are approximately
18.5 million equations and unknowns in the large-scale CFD model). The scenario consid-
ered simulates 5 ms of combustion dynamics, which takes more than 45,000 CPU hours with
GEMS.

3.2. Applying Operator Inference to Learn a Reduced Model
of the Continuously Variable Resonance Combustor

In the Qian et al. (2022) paper, Operator Inference learns a reduced model from K = 3,000 sim-
ulated snapshots collected over a time interval from # = 15 ms to ¢ = 17.999 ms. The learned
reduced models are used to issue predictions a further 2 ms beyond the training horizon, until
t = 20 ms. For this example, no parametric variation is considered, so the reduced model does not
have a functional dependence on p.

Step 1: snapshot generation. GEMS is simulated over the training horizon to generate a tra-
jectory as in Equation 4, comprising K = 3,000 snapshots. The solutions output by GEMS contain
(at each spatial location in the CFD mesh) the primitive flow variables p, #;, #,, 3, and p (where p
is pressure), the flamelet/progress variables Z,, and C, the temperature 7, and the enthalpy. There
are many nonlinear terms in the governing equations given in Equation 14; therefore, a variable
lifting, as outlined in Section 2.1.3, is applied to the snapshots. The lifting transforms many—
but not all—nonlinear terms into quadratic form. The lifting transformation is inspired by the
quadratic representation of the compressible Euler equations in the specific volume variables, as
described by Qian et al. (2020). Specifically, the GEMS snapshots are postprocessed to the lifted
variables ¢ = 1/p, uy, uz, u3, p, pZm, pC, and T. Note that the lifting is applied to the snapshots
obtained from simulating Equation 14 in the original variables. Thus, the lifting is nonintrusive
and does not require modification of the numerical solver.

Step 2: constructing a low-dimensional basis. After centering and scaling the lifted snap-
shots, POD is applied to construct a basis. The singular values o1,..., 03900 of the scaled
snapshots indicate the relative fraction of the energy retained by the n-dimensional POD
basisasn, =1 — Zfﬁ?ﬁl o2/ 32" o7 (Figure 1a). This metric provides an empirical heuristic for
determining the number of basis vectors #. We keep up to # = 100 basis vectors and thus retain
up to 95% of the snapshot energy. Below, we consider POD bases with dimensions z € {50, 75,
100} to demonstrate how varying the dimension affects the reduced model prediction errors.

Step 3a: dimension reduction. The lifted snapshots are projected onto the reduced space
defined by the POD basis as in Equation 8.

Step 3b: learning. After the lifting, most of the variables enter linearly and quadratically.
Therefore, we learn a polynomial reduced model as in Equation 7, with £ = 2 and with an
additional term A, € R”*! that is constant in the state variables:

%&(t) = A1&(t) + A% (t) + Ay + Bu(t).
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(@) The percent of energy retained by POD modes provides a heuristic for selecting the dimension 7 of
Operator Inference models. We keep up to #» = 100 basis vectors to retain up to 95% of the energy. (b)) The
learned Operator Inference models accurately predict the pressure within only a few seconds of simulation
run time, whereas the reference numerical model solved with GEMS requires tens of thousands of CPU
hours. The vertical black line indicates where the training horizon ends and the prediction horizon begins.
Abbreviations: GEMS, General Equation and Mesh Solver; POD, proper orthogonal decomposition.
Figure adapted from Qian et al. (2022) with permission from the authors.

Here, the input #(¢) corresponds to the back pressure forcing. Tikhonov regularization (as dis-
cussed in Section 2.2.3) is applied, leading to an optimization problem, as given in Equation 11.
The regularization coefficients are selected via sampling such that the prediction error over the
training period is minimized. The optimization problem can be decomposed into # independent
least-squares problems and efficiently solved with scalable numerical linear algebra packages (as
discussed in Section 2.2.4).

Step 3c: reduced model assembly. Once the model operators are inferred, they are assem-
bled into a reduced model, which can then be integrated forward in time with a second-order
Runge-Kutta time-stepping scheme to predict the combustion dynamics.

3.3. Predictive Capabilities of Operator Inference Models on the Continuously
Variable Resonance Combustor Example

Figure 15 shows the pressure at a probe obtained with the learned models for dimensions z = 50,
75,and 100. The probe is located at the downstream combustor boundary. The predicted pressure
is in good agreement in terms of frequency and amplitude with the reference obtained from the
high-dimensional numerical model solved with GEMS. The error in the prediction is around
2-3%. Figure 2 shows spatial fields of the reaction progress variable C. The Operator Inference
models have orders-of-magnitude-fewer degrees of freedom than the reference numerical model
and thus smear out some of the fine-scale features, but they provide reasonable predictions of
coarse flow features. These results also highlight some of the difficulties in achieving accurate
surrogate-based predictions for complex fluid flows, especially when the dynamics are transport
dominated, as they are here.

This example demonstrates the potential of Operator Inference in learning predictive models
of complex systems. The high-dimensional GEMS numerical model with which snapshots are
generated has more than 18 million unknowns and requires tens of thousands of CPU hours to
simulate. The simulation run time of the learned Operator Inference model is only a few seconds,
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The reaction progress variable (C) field of the CVRC, as predicted by GEMS (N = 18, 500, 000 degrees of freedom) and Operator
Inference reduced models (z = 50, 75, 100). The Operator Inference models provide model run time reduction of up to nine orders of
magnitude. They smear out some of the fine-scale features but provide accurate predictions of the coarser flow features. Abbreviations:
CVRC, Continuously Variable Resonance Combustor; GEMS, General Equation and Mesh Solver. Figure adapted from Qian et al.

(2022) with permission from the authors.

but it provides sufficiently accurate predictions for use in outer-loop applications such as design
and uncertainty quantification.

4. PREDICTION GUARANTEES FOR STRUCTURED OPERATOR
INFERENCE MODELS

We now show that some of the rich theory of intrusive model reduction can be applied to models
learned from data with Operator Inference. For ease of exposition, in this section we drop the
dependence on the parameter u and the input #(z).

4.1. Recovering Projection-Based Reduced Models with Reprojection Schemes

Data sampling with reprojection (Peherstorfer 2020b) collects state trajectories of the high-
dimensional model that are equivalent to the trajectories of reduced models obtained with
intrusive model reduction. Learning from reprojected trajectories with Operator Inference guar-
antees recovery of the very same models that would be obtained with intrusive model reduction,
under certain assumptions. This recovery of the intrusively reduced models allows one to carry
over theoretical results from intrusive model reduction to data-driven modeling with Operator
Inference, including a posteriori error estimation for certifying predictions.

4.1.1. Closure error and Markovian dynamics. Recall the numerical model given in
Equation 3 and a trajectory X as defined in Equation 4. Given a basis matrix J” that spans a space
V of dimension #, intrusive model reduction provides the Galerkin reduced model (d/d#)x(z) =
f (x%()), where f &) =V f(V&@)) (Benner et al. 2015). Note that the learned model given in
Equation 6 with state &(¢) is not necessarily the Galerkin reduced model. We denote a trajectory
of the Galerkin reduced model as X = [#(z)), . .., #(tx)] € R, where the kth column is the state
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%(t.) of the Galerkin reduced model at time step #,. Notice that the state of the Galerkin reduced
model &(#; ) is different from the projected state #(t;) = V' x(;); below, we refer to the difference,
x(t;) — X(t;), as the closure error.

We demonstrate the difference between the projected state trajectories and the trajectories
obtained with intrusive Galerkin reduced models on an example with an autonomous linear
model, which means we consider the model given in Equation 3 with £ = 1 and no input, so
that (d/dt)x(t) = Ayx(t). We split the space RV into V, which is spanned by the columns of the
orthonormal basis matrix ¥, and its orthogonal complement V! with orthonormal basis ma-
trix V', so that RN = V @ V. Correspondingly, we split the representation of a state (t) into
x(t) = V@) + V'al (@) with the projected state ¥(t) = V Tx(z) and its orthogonal complement
xt(t) = (V) Tx(t). After transformations described in detail by Peherstorfer (2020b), we obtain

t
%k(r): Ax@) + / At 4 5(s) ds + AlMe T x4 (0), 15.
S—— 0

Markovian term

non-Markovian term

with the matrices A!' = VAV, A" =VTAV A = W) AV, and A7 = H)TAVE.
Equation 15 shows that the projected state ¥(¢) corresponds to non-Markovian dynamics in the
sense that its dynamics depend on %(¢) as well as on the states of all earlier times than # via the
non-Markovian (memory) term. This insight is well known under the Mori—Zwanzig formalism
(Givon etal. 2004, Chorin & Stinis 2006). Thus, Operator Inference as formulated in Section 2.2.2
fits a Markovian model to data that represent non-Markovian dynamics. This works well in many
cases but can prevent recovery guarantees for dimensions #z < N.

4.1.2. Sampling Markovian dynamics with reprojection for recovering intrusive reduced
models from data. Peherstorfer (2020b) introduced a sampling scheme to generate trajecto-
ries from numerical simulations with a model with high-dimensional states so that the projected
state trajectories describe Markovian dynamics in reduced spaces. Figure 3 depicts the repro-
jection scheme, which alternates between querying the high-dimensional model and projecting
the collected state at the current time step onto V. This process leads to the reprojected trajec-
tory X = [&(#1), .. ., &(t)], which is the same trajectory that a traditional Galerkin reduced model
from intrusive model reduction generates. Thus, reprojected trajectories can be described with
zero residual by the Markovian models we seek in Operator Inference, as given in Equation 7.
Consider the case in which the model has polynomial structure, as in Equation 3. If sufficiently
many reprojected states and their time derivatives are collected, such that the data matrix defined
in Equation 13 has full rank, then fitting an Operator Inference model to reprojected trajecto-
ries recovers the reduced model that is obtained via intrusive projection-based model reduction.
As stated formally and in more detail by Peherstorfer (2020b), if the data matrix D defined in

x(ty) x(t;)

. A B
O_\)

x(to) x(t)) x(t,) oo *(tx-1) *(tx)

(t,) x(tx)

X
«
W

roject
Project

P

Q

Project
<
<z
M
5
o
)
>
Project

Figure 3

Data sampling with reprojection alternates between collecting data and projecting data onto the subspace V
to generate a state trajectory that describes Markovian dynamics in V. Fitting an Operator Inference model
to reprojected trajectories recovers the same models that are obtained with intrusive model reduction, under
mild conditions.
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MOTIVATING THE STRUCTURAL FORM OF THE LEARNED REDUCED MODEL

Why is it that the high-dimensional numerical model of the form
d ¢ .
&x(t; R)= ZAi(IL)x’(H ) + B(pu(z) SBI.
i=1
leads us to learn a reduced-order model of the form
d. NNy R
Ex(t; w) =Y AW E: p)+ Bpu()? SB2.
i=1

The answer lies in classical intrusive projection-based model reduction methods. If we were to construct an intru-
sive projection-based reduced model, we would first approximate the high-dimensional state x(¢; p) € RY in the
n-dimensional subspace V' spanned by the orthonormal basis V' € RN*": x(t; w) ~ V&(t; ), where &(t; p) € R”
are the coordinates in the reduced-order representation. Substituting this approximation into the full-order model
would yield a residual. The Galerkin reduced model would then be obtained by imposing the condition that the
residual be orthogonal to the subspace V, which leads to the reduced dynamical system, whose reduced-order ma-
trices are the projections of the corresponding full-order matrices onto the subspace V. That is, in this special case,
we have B(n) =V " B(n),A,(n) = V' 4, (1)V, and so on.

Operator Inference does not compute the reduced operators via projection; however, the intrusive projection
framework reveals how projection preserves the structural polynomial form in the reduced model. Recall that this
structural form in turn reflects the terms in the governing PDEs. Thus, it is the PDEs—the governing laws of
physics—that dictate the particular structured form of the reduced model that we learn.

Equation 13 has full rank, then 4; =A;and B=Bfori=1,...,¢ Note that 41,...,A4, and B
are the matrices learned with Operator Inference for assembling the model given in Equation 7,
whereas A1, . .., A; and B are the reduced matrices of the Galerkin reduced model obtained with
intrusive model reduction. In this sense, reprojection connects classical, intrusive model reduction
that constructs 4, . .., A, and B via an intrusive projection step (see the sidebar titled Motivating
the Structural Form of the Learned Reduced Model) with nonintrusive Operator Inference that
learns Ay, . .., A, and B from data. Thus, it enables one to carry over theory from intrusive model
reduction to nonintrusive model reduction.

4.2. Reprojection in Action

We now show how Operator Inference with reprojection can be put to use for error estima-
tion (Section 4.2.1) as well as for learning from noisy (Section 4.2.2) and partially observed state
trajectories (Section 4.2.3).

4.2.1. Error estimation for an end-to-end certification of predictions from data. On the
basis of the recovery guarantee obtained with reprojection, Uy & Peherstorfer (2021b) introduce
an a posteriori error estimator for models with linear dynamics. For a wide range of error estima-
tors developed for intrusive model reduction, the key components are an efficient computation
of the norm of the residual as well as a bound on the largest singular value of the operators of the
high-dimensional models. As Uy & Peherstorfer (2021b) show, building on the error estimator
introduced by Grepl & Patera (2005) and Haasdonk & Ohlberger (2011) from intrusive model
reduction allows the same principles to be applied to Operator Inference models. The result is
an end-to-end certification of predictions made with models obtained with Operator Inference
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from data. For example, based on the experiment reported by Uy & Peherstorfer (2021b),
Figure 4 shows an error bound for predicting the average outflow at boundary segments of the
spatial domain of a convection-diffusion problem. As the dimension 7 of the learned Operator
Inference model is increased, the certificates show that the predictions of the quantity of interest
with the learned model can be increasingly trusted.

Other studies have considered error estimation and uncertainty quantification for Operator
Inference. Guo et al. (2022) introduced a Bayesian Operator Inference approach. Given the pos-
terior distribution, the predictions can be equipped with confidence intervals that reflect the
uncertainties in the predictions.

4.2.2. Learning from noisy state observations with active data collection. Uy et al. (2023)
investigated Operator Inference with reprojection in the context of sampling state trajectories
with Gaussian noise using the reprojection scheme. They show that when collecting state obser-
vations with reprojection from systems polluted with Gaussian noise, the mean-squared error of
the inferred operators can be bounded as

SZ

B[ - Ali] S g 16.

min

where s is the standard deviation of the Gaussian noise; omin (D) denotes the smallest singular value
of the data matrix D; and 4; and A; are the learned and intrusive operators, respectively, for i =
1,..., £. The bound given in Equation 16 holds because of Operator Inference’s recovery guar-
antee with reprojection, which again lets the learned model be related to the projection-based
Galerkin reduced model from intrusive model reduction; it also guarantees the unbiasedness of
the learned operators. The ratio s/omyi (D) can be interpreted as the noise-to-signal ratio, where
s corresponds to the noise and oy, (D) represents the strength of the signal in the observed
states. On the basis of this interpretation as noise-to-signal ratio, Uy et al. (2023) introduce active
Operator Inference, which selects from a dictionary initial conditions at which to query the high-
dimensional model for data; the initial conditions are selected so that the noise-to-signal ratio is
greedily minimized. The mathematical task underlying the active Operator Inference scheme is
subselecting columns of a matrix to maximize the smallest singular value, which is widely studied
in numerical linear algebra with numerous applications in model reduction (Astrid et al. 2008,
Drma¢ & Gugercin 2016, Zimmermann & Willcox 2016, Peherstorfer et al. 2020).

4.2.3. Learning from partially observed state trajectories. When learning from partially
observed state trajectories, the information that is lost due to partial observations can be
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described with a similar concept of Markovian versus non-Markovian dynamics. To see that this is
the case, consider a high-dimensional state x(#;) at time #, and consider the observation operator
T € {0, 1}™*N that selects  components of x(t;). The operator T is an orthonormal matrix that
leads to a projection matrix T'' T', which in turn projects a state x(z;) onto the corresponding sub-
space 7. Analogously to Section 4.1.1, the states can then be decomposed into parts that are either
in T or in the orthogonal complement of 7, corresponding to observed and unobserved compo-
nents, respectively. This means that the observed states play an analogous role to the projected
states in Section 4.1.1 and thus correspond to dynamics that are non-Markovian in the subspace
T . On the basis of these insights, Uy & Peherstorfer (2021a) propose to compensate for the lost
information due to partially observed states in Operator Inference by learning reduced models
with memory terms so that future-state predictions depend on the current state and the history of
previous states. The result is a reduced model that includes Markovian and non-Markovian terms.
Related concepts based on the Mori-Zwanzig formalism and time-delay embeddings to account
for non-Markovian dynamics are widely used (Chorin et al. 2002, Li et al. 2014, Le Clainche &
Vega 2017, Pan & Duraisamy 2018, Thiede et al. 2019). Uy & Peherstorfer (2021a) also intro-
duce a reprojection scheme for partially observed states and show that non-Markovian terms, as
in Equation 15, are recovered under certain assumptions.

4.3. Convergence of Learned Operators to Projected Operators

Peherstorfer & Willcox (2016a) and Benner et al. (2020) show that structure in the learning pro-
cess can be leveraged to derive guarantees from data without reprojection. These guarantees
are of an asymptotic nature, however. Under assumptions that can be established if the time-
integration scheme used in the numerical model in Equation 3 is convergent, one can show that
for all € > 0 there exists a dimension » < N and a time-step size §t > 0 such that the difference
between the learned operators /il, . ,/ig and B from time-discrete states and the Galerkin op-
erators Ay, . .., A, and B obtained via intrusive projection can be bounded as ||Ai,- —A;|lp <eand
|IB—B|lp <efori=1,..., £ The result shows that the models learned with Operator Inference
converge with # — N to the reduced models of intrusive model reduction. It does not imply a
convergence rate, and empirical evidence suggests that the error does not decay monotonically
with 7.

5. STRUCTURED SOLUTION SPACES: HAMILTONIAN SYSTEMS

Thus far, we have considered general dynamical systems with polynomial structure, as in
Equation 3. However, there is often more structure in the problem that one can exploit to obtain
predictive reduced models. A key tenet of fluid mechanics is the conservation of derived quantities.
For instance, the shallow-water equations and a large class of other wave-type problems can be for-
mulated as Hamiltonian systems that conserve a system’s energy over time. Hamiltonian models
are derived from Hamilton’s principle, so that their governing equations possess physical, mechan-
ical, and mathematical structures in the form of symmetries, symplecticity, Casimirs, and energy
conservation. The conservative nature and the underlying symplectic structure of Hamiltonian
systems are fundamental to their discretization and numerical treatment and allow simulations to
remain long-term predictive and stable, a major advantage of using such methods. The abovemen-
tioned structures constrain the solution space, and the behavior of these quantities in numerical
simulation provides an important measure of accuracy of the discretized model. Special numerical
approximations that satisfy these constraints are discussed by, for instance, Leimkuhler & Reich
(2004), Hairer et al. (2006), and Sharma et al. (2020).

This section demonstrates how Hamiltonian structure can be enforced in the Operator In-
ference framework (for more details, see Sharma et al. 2022). Section 5.1 briefly describes this
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structure, and Section 5.2 outlines how such structures can be preserved during learning. For ease
of exposition, in this section we drop the dependence on p.

5.1. Hamiltonian Models

In canonical Hamiltonian dynamical systems, the state is separated via x(t) = [¢()", p@)"]" €
R?N, where ¢(¢) € RV is the generalized position vector and p(¢) € RY is the generalized mo-
mentum vector. This separation of the state is due to distinct physical interpretations of the
components of the state, and their relationship induces the canonical Hamiltonian structure.
Consider a canonical nonlinear Hamiltonian system of the form

dlg0] _[ o 1][v,Haw),po)
dr | p@) | T |10 || V,H(g@), p) |

In almost all cases, the Hamiltonian can be decomposed as

H(q(®), p(t)) = Hquaa(q(®), p(t)) + Hu(q @), p(t)), 17.

where Hy,q is quadratic in the states g and p and Hyy contains the remaining nonlinear terms. For
a Hamiltonian system, its flow map preserves the canonical symplectic form, and the Hamiltonian
is conserved; that is, (d/dt)H (¢(2), p(z)) = 0 for all # > 0.

5.2. Hamiltonian Operator Inference

We consider a situation in which we are given the symbolic form of a canonical Hamiltonian PDE
model and we have simulated data thereof. Our goal is to learn a Hamiltonian reduced model
from the data of that system, so that the learned reduced model (#) is a canonical Hamiltonian
system, (b) retains the physical interpretation of the state variables (generalized positions and mo-
menta) and the coupling structure, and (c) respects the symmetric property of structure-preserving
space discretizations. Let ¢(t1), . . ., q(tx) and p(t1), .. ., p(tx) be the solutions of the Hamiltonian
high-dimensional numerical model computed with a structure-preserving numerical integration
scheme. We define the snapshot matrices

Q= I:q(tl), o ,q(tk)] eRVK  p_— [p(t, ). ,p(tK)] e RVK, 18.

Assuming that we know the functional form of Hy;, we define the nonlinear forcing f and f, as

9Hy 9Hy ! dH, dH, '
fq(qyp)— [Tm(%,Pl),-uym@N,Pz\’)] ,f[,(q,P)— qu(qupl)w"ym(qz\’ypl\/) )
which allows us to compute the forcing snapshot matrices:

Fy = [ £, pe0),.... £ @), pex) |, F, = [ £,(ae, @), ., (gt pex) |

Note that these forcing snapshot matrices are computed via postprocessing of the state snapshot
data, so the approach remains nonintrusive but exploits knowledge of the functional form of the
governing equations. Next, we compute time-derivative approximations ¢'(#;) and p'(z;) from the
state trajectory data using a finite-difference scheme to build the snapshot matrices of the time-
derivative data:

Q= [q’(tl),.-.,q’(tK)] e RVK P = [p’(tl), } ..,p’(tK)] e RVXK, 19.

To learn the reduced operators, we project the high-dimensional state trajectories onto low-
dimensional symplectic subspaces and then fit operators to the projected trajectories in a
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structure-preserving way. For the symplectic projection step, we choose the cotangent lift algo-
rithm (see Peng & Mohseni 2016, where other options are also discussed) to generate a symplectic
basis matrix @ that is used to approximate both the generalized position and the momenta. The
following block structure of the symplectic basis matrix retains the physical interpretation of the

] [®0][70)
oI IIFGI

We obtain projections of the trajectory snapshot data, the forcing functions, and the time-

reduced state variables:

derivative data via the projections onto the symplectic basis matrix, namely Q = ®7Q, P =
TP, Fq =®'F, Fp =®'F, Q/ =&'Q, and P = ® TP’ which are all real » x K data ma-
trices. Inspired by the separation of the Hamiltonian functional in Equation 17, we define the
following reduced Hamiltonian H, in terms of the reduced operators ﬁq e R™" and Dp e R™”
as

. I ra | N .
H.(q@), p(t)) = Eq(t)TDM(t) + Ep(t)TDpP(t) + Hu(®4(1), Dp(t)). 20.
The equations of motion of the reduced model are then derived from Hamilton’s principle:
; oH, ., . . N . .
(1) = o @@), p@)) = D,p(t) + @' £, (4(t), ®P(1)),
5 oH, . . o T . .
@) =— P (q(@), p@t)) = —D,q(t) — @ f,(4(), ®p()),

which ensures that the reduced system is a canonical Hamiltonian system. Thus, the reduced
model states are physically interpretable in that they retain the coupling structure and mechanical
meaning of the states. We solve for D, and D, via the constrained optimization

Q/_Fq(Q’i)) _ q i)p ?
P +F,QP)| |-D, 0[P

The optimization problem for D, and D, can be broken down into separate symmetric linear

21.

A AT
b,=D,,
Dy=D;

F

least-squares problems; subsequently, the symmetric reduced operators can be obtained by solving
the Lyapunov equations

(QQ"D, +D,(Q0") = OR, +R,Q", PP)D, + D,(PP) = PR) + R,P',  22.
where Rp = Q/ - F,,(Q, P) and i?p Py FP(Q, P). The symmetry constraints on Dq and i)p en-
sure that the learned operators yield structure-preserving reduced models that are Hamiltonian
systems.

Figure 5 depicts a numerical example of the structure-preserving properties that Hamiltonian
Operator Inference can achieve. The test problem is a nonlinear Schrédinger equation, which,
in addition to preserving the nonlinear Hamiltonian energy, possesses quadratic mass and mo-
mentum invariants (for details, see Sharma et al. 2022, section 4.3). Figure 5 plots the errors
in the conservation of energy, which is evaluated via the Hamiltonian of the high-dimensional
model as |[H(®4(), ®p(t)) — H(®4(to), ®p(to))|. Conservation of mass and momentum are simi-
larly evaluated; these errors are also plotted in the figure. As shown in Figure 54, the Hamiltonian
Operator Inference reduced model exhibits bounded energy error of the high-dimensional
Hamiltonian H(-), which is a key indicator of the structure-preserving property. Figure 5&
shows that the learned reduced model also exhibits bounded error for the mass invariant, and
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Figure 5

Hamiltonian Operator Inference reduced models for the nonlinear Schrodinger equation. (#) The reduced model exhibits bounded
energy error. (b) The learned reduced model also exhibits bounded error for the mass invariant. () The reduced model conserves the
momentum invariant to machine precision. These are key indicators of structure preservation. Figure adapted with permission

from Sharma et al. (2022).

Figure 5¢shows that the model exactly (to machine precision) conserves the momentum invariant.
These invariants are evaluated as defined by Sharma et al. (2022, section 4.3). We further observe
that the structure-preserving Hamiltonian reduced models show excellent long-term predictive
capabilities, as the models provide accurate results 400% outside the training interval.

6. DISCUSSION AND OUTLOOK

Surrogate modeling continues to play an increasingly important role in achieving optimization,
design, control, data assimilation, and uncertainty quantification for complex physical systems.
Even as computing capabilities continue to increase, the demands for increased resolution, higher
fidelity, and rapid turnaround times will necessitate surrogate models. For example, surrogate
modeling is an essential enabler for digital twins, which require high-fidelity yet rapid and
lightweight computations to achieve real-time data assimilation and control. While automated
learning of surrogate models from data is becoming increasingly popular, it remains critical to
rigorously incorporate information about the physics that underlie the systems of interest. This
information, provided by governing equations, first principles, and theoretical insights, is imper-
ative to derive surrogate models that generalize well to new, unseen parameter ranges and that
provide physically meaningful predictions even in edge cases and limit states.

In this review, we have discussed Operator Inference, a nonlinear reduced modeling approach
that incorporates the physics by defining a structured form for the reduced model, and then learns
the corresponding reduced operators from simulated training data. We demonstrate that this
structured approach to learning surrogate models connects data-driven modeling with systems
and control theoretic concepts, such as Lyapunov stability theory, to validate models beyond mere
empirical evaluations on test data sets. The polynomial structure of the Operator Inference mod-
els also plays a key role in carrying over the rich theory of traditional intrusive model reduction to
data-driven modeling with Operator Inference. In particular, we discuss conditions under which
Operator Inference can provide error bounds for model predictions, and we derive insights to
explain and improve predictions from noisy data and partial observations. We also show that the
fundamental concepts of Operator Inference are flexible, so that energy-preserving models based
on Hamiltonian structure can be learned to predict far into the future (i.e., beyond a training
horizon) while retaining the physical meaning of states.
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We emphasize that Operator Inference was designed with ease of use in mind; having a low
barrier to adoption is critical for the success of a computational method in practice. First, Operator
Inference is a nonintrusive approach, which sets it apart from traditional model reduction methods
that are predominantly intrusive and thus typically require rewriting solvers. The intrusive nature
of many model reduction methods has limited their scope and use in application-driven science
and engineering—it is often infeasible to develop reduced model solvers from scratch when large-
scale codes are involved that have grown over years, if not decades. Second, the training process in
Operator Inference relies on only a few hyperparameters that can be selected via cross-validation
in a principled way. Third, all steps in training Operator Inference reduced models are scalable
to snapshots with millions of state components via scalable linear algebra (e.g., randomized algo-
rithms), as demonstrated by Swischuk et al. (2020a) and Farcas et al. (2022, 2023a). Fourth, the
polynomial structure of Operator Inference models strikes a balance between, on one hand, be-
ing sufficiently expressive to cover a wide range of dynamics found in science and engineering
and, on the other hand, being manageable for efficient computations. In contrast, other nonlin-
ear approaches, such as deep neural network architectures, tend to be more expressive in general
but also allow almost arbitrary architectures, with little guidance on how to choose them.

We highlight three avenues for future research that apply to Operator Inference and, more
generally, to learning low-dimensional models from data. First, this review has focused on reduc-
tion methods that exploit low-rank structure by constructing low-dimensional linear subspaces in
which to evolve the reduced model state; however, dynamics that are dominated by transport, such
as strongly advecting flows and particle systems, are affected by the so-called Kolmogorov bar-
rier, which states that the error of linear approximations in low-dimensional spaces decays slowly
(for a survey, see Peherstorfer 2022). In the context of nonintrusive modeling with Operator Infer-
ence, researchers have proposed adapting models during the online phase (Peherstorfer & Willcox
2015, 2016b; Kramer et al. 2017), constructing multiple local subspaces instead of a single global
one (Geelen & Willcox 2022), learning on quadratic manifolds (Geelen et al. 2023), and learning
and embedding spatial shifts when formulating the Operator Inference problem (Issan & Kramer
2022) to obtain nonlinear reductions for circumventing the Kolmogorov barrier. More remains
to be done, especially regarding stability, online efficiency, and structure preservation.

A second important avenue of future research is establishing trust in predictions. This re-
view touches on studies that derive probabilistic error bounds and Bayesian formulations of
Operator Inference in Section 4.2.1, but much more research is required to give scientists and
engineers tools that they can trust for high-consequence decisions. An opportunity is that mod-
els are often used within outer-loop applications such as design, control, and data assimilation,
meaning that it may be sufficient to certify the outer-loop result (e.g., the optimal design, the
constructed controller) rather than to provide bounds for the model predictions. This approach is
taken by multifidelity methods that leverage computationally efficient approximate models while
keeping limited recourse to the expensive, high-fidelity models to establish accuracy guarantees
(Peherstorfer et al. 2018). In Section 5, we establish trust in models by retaining their physi-
cal interpretability and long-term stability. Lagrangian models, another important class of model
structures, arise by applying the Euler-Lagrange equations to a Lagrangian function, which is
the difference between the kinetic and potential energy. Lagrangian models are second order
in time, and many wave-type problems exhibit Lagrangian structure and have physically inter-
pretable quantities such as momentum, energy, or vorticity. A famous result obtained by Noether
(1971) states that there exists an invariant of the motion corresponding to each symmetry of the
system Lagrangian. While Lagrangian structure-preserving models can be learned via Operator
Inference (Sharma & Kramer 2022), more research needs to be done to include identification of
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nonlinear terms, more efficient basis constructions (e.g., via online updating), and extensions to
the parametric case.

A third future research direction is the development of methods that incorporate the down-
stream design/control task into the learning. This is closely related to goal-oriented intrusive
modeling where, for example, meshes and models are adapted so that quantities of interest are ac-
curately approximated rather than the high-dimensional states (Prudhomme & Oden 1999, Becker
& Rannacher 2001) and reduced models are constructed with specific goals in mind (Willcox et al.
2005; Bui-Thanh et al. 2007; Lieberman & Willcox 2013, 2014; Spantini et al. 2017). When it
comes to learning from data, the simplicity of a task can be measured with sample complexity,
that is, how many data samples are required to achieve a certain accuracy or success. For example,
Werner & Peherstorfer (2023a,b) show that inferring state-feedback controllers for the task of
stabilization requires provably fewer samples than learning models of the system dynamics and
subsequently applying control strategies on the learned models. Similarly, when models are used
in specific contexts such as within multifidelity computations for solving outer-loop applications,
taking this context into account during model training helps reduce the number of training sam-
ples that are required (e.g., Alsup & Peherstorfer 2023, Farcas et al. 2023b). Given that data are
scarce and physics is complex in science and engineering applications, it is important to optimally
identify what parts of the system dynamics need to be learned for solving downstream tasks and
exploit this information in the training phase.

1. Operator Inference is a reduced modeling approach that incorporates physics by defining
a structured polynomial form for the reduced model, and then learns the corresponding
reduced operators from simulated training data.

2. Operator Inference is nonintrusive and therefore has a low barrier to adoption. In con-
trast, traditional model reduction is intrusive and so requires access to operators of the
high-fidelity numerical models.

3. The polynomial model form of Operator Inference strikes a balance between being suf-
ficiently expressive to cover a wide range of nonlinear dynamics found in science and
engineering and providing efficient reduced model computations.

4. Under some conditions, the theory of traditional intrusive model reduction can be
carried over to data-driven modeling with Operator Inference, which provides error esti-
mators for model predictions, yields insights to improve predictions from noisy data and
partial observations, and makes it possible to encode Hamiltonian and other structures
for physically meaningful predictions beyond the training horizon.

1. Nonintrusive reduced modeling methods with nonlinear approximations are needed to
circumvent the Kolmogorov barrier of physical phenomena dominated by transport,
such as strongly advecting flows and wave problems. Early studies on nonlinear manifold
model reduction methods exist, but much more remains to be done regarding stability,
online efficiency, and structure preservation.
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2. It remains challenging to provide guarantees and establish trust in predictions of data-
driven models, which are required for high-consequence decisions. Active research
directions include certifying model predictions directly with error bounds, Bayesian ap-
proaches, and multifidelity methods to certify outer-loop results using limited recourse
to expensive, high-fidelity models.

3. Given that data are scarce and physics is complex in science and engineering, it is impor-
tant to understand how to optimally identify what parts of system dynamics need to be
learned to solve downstream decision tasks and to exploit this information in the training
phase.
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