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When designing systems, uncertainties must be dealt with at various levels. The designer
must define appropriate cost and constraint functions that account for such uncertainties and
capture the risk associated with unwanted system behavior. The choice of these cost and
constraint functions additionally plays an important role in the convergence behavior of the
optimization and, among other things, the final design. This paper studies different types of
risk-based optimization problem formulations that can aid in efficient and robust design of
complex engineering systems. In tutorial form, the paper describes risk-based optimization
problem formulations, specifically, reliability-based design optimization, conditional-value-at-
risk-based optimization, and buffered-failure-probability-based optimization. The properties
of each formulation are analyzed and general guidelines for the appropriate choice of the
optimization problem are provided for a given application setup. An in-depth understanding
of the different optimization problems should facilitate development of future methods for
designing safe engineering systems.

I. Introduction
The design of efficient aerospace systems requires quantifying and accounting for risk in the presence of uncertainties.

This is not only vital to ensure safety of designs but also to safeguard against costly design alterations late in the design
cycle. The traditional approach using safety factors to compensate for uncertainties in a deterministic optimization
setup often ends up with overly conservative designs without a precise quantification of the involved risk. Hence, the
need to understand risk-based optimization problems that take the associated risk into account in order to design safe
systems that are not overly conservative is paramount. Depending on the application and the available knowledge about
the application and the parameters, different optimization problem formulations are required to design an efficient and
reliable system. The goal of this work is to provide various options for risk-based optimization problem formulations
and analysis of each formulation to help make a choice for a particular application. This paper is meant to serve as an
overview introducing and describing to the community the different available risk measures and the accompanying
optimization problems in the context of complex engineering applications in a tutorial form. We provide basic algorithms
for estimating the risk measures and analyze the properties of each optimization problem. We also highlight useful
insights from each risk-based optimization formulation and the implications to future engineering design research.

In this work, we concentrate on three different risk measures to formulate the optimization problems: (i) probability
of failure (PoF), (ii) conditional value-at-risk (CVaR), and (iii) buffered probability of failure (bPoF). The PoF risk
measure is widely and successfully used as a constraint in reliability-based design optimization (RBDO) [1, 2].
Much methodological and algorithmic research exists to make the RBDO efficient and applicable to a broad range of
engineering problems as we discuss later. In this work, we highlight some lesser-used methods for optimization under
uncertainty that lead to alternative design problem formulations. We discuss the advantages of using these alternative
ways of measuring risk in the design optimization cycle and its effect on the final design under uncertainty. To that
end, we describe optimization problem formulations using CVaR [3] and bPoF [4]. Conditional value-at-risk is a risk
measure that has been widely used for quantifying financial risk in portfolio optimization [5–7], and more recently in
engineering design [8–11] and PDE-constrained optimization [12–15]. Lastly, we describe design optimization with
bPoF, a recently introduced risk measure that possesses beneficial properties when it comes to optimization problem
formulations [4, 16, 17]. CVaR and bPoF are conservative risk measures that add a buffer zone to the limiting threshold.
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Adding a buffer prevents excessive wear and tear of the system (especially when experimental data is required) by not
needing to simulate limiting conditions at the brink of failure of the system. This is typically handled by adding safety
factors to the threshold. However, it has been shown before that the probabilistic approach is more efficient than the
safety factor approach. We will discuss in detail how the nature of probabilistic conservativeness introduced through
CVaR and bPoF makes practical sense since it is based on the magnitude of failure. We will discuss the probabilistic
approaches through some risk-based optimization formulations.

The remainder of this extended abstract is organized as follows. The problem setup is described in Section II. The
different risk-based optimization problem formulations along with the risk measures used in this work are described
in Section III. Section IV explains the features of different risk-based optimization formulations through numerical
experiments on the widely used short column problem. Section V presents the concluding remarks.

II. Problem Setup
To define risk-based optimization formulations, we define both a cost and a constraint function. Let the quantity of

interest of an engineering system be computed from the model f : D × Ω 7→ R as f (d, Z ), where the inputs to the
system are the nd design variables d ∈ D ⊆ Rnd and the nz random variables Z ∈ Ω ⊆ Rnz with the probability density
function π. The design variable space is denoted by D and the random sample space is denoted by Ω. The vector of a
realization of the random variables Z is denoted by z.

The failure of the system is described by a limit state function g : D×Ω 7→ R and a critical threshold t ∈ R. Without
loss of generality,

g(d, z) > t,

defines failure of the system. The limit state function in most engineering applications requires the solution of a system
of equations (such as, ordinary differential equations or partial differential equations). The limit state function g(d, Z )
can also be interpreted as a random variable, requiring a statistical formulation during the optimization. Risk measures
are a way of converting the random variable into a single quantity that can be used in the optimization formulation.
Risk-based optimization centers around the definition of risk measures and associated optimization problem formulations
accounting for the risk induced onto system-level outputs by uncertainties.

To motivate the upcoming use of risk measures, we take a closer look at the limit-state function g and its use to
characterize failure events. In the standard setting, a failure event is characterized by a realization of Z for some fixed
design d that leads to g(d, z) > t. This hard-threshold characterization of system failure, however, potentially ignores
important information quantified by the magnitude of g(d, z). For example, there may be a large difference between
the event g(d, z) = t + .1 and g(d, z) = t + 100, the later characterizing a catastrophic system failure. This is not
captured by a hard-threshold attitude toward failure events. If the magnitude of g(d, z) has meaning, it is important to
know if these events are common for a particular design. Similarly, one could also consider events g(d, z) = t − .1
and g(d, z) = t − 100. A hard-threshold assessment deems both of these events as non-failure events, even though
g(d, z) = t − .1 is clearly a near-failure event compared the later. However, a hard-threshold characterization of failure
will overlook these important near-failure events and consider them as safe realizations of g. In reality, failure events do
not usually occur using a hard-threshold rule. Even if they do, determination of the true threshold will also involve
uncertainty, blending statistical estimation, expert knowledge, and system models. Therefore, the choice of threshold
should be involved in any discussion of measures of failure risk.

In the following sections, we will start with the discussion of the most common measure of risk in PoF that uses a
hard-threshold characterization of of failure. We then discuss alternative risk measures, such as CVaR and bPoF, that do
not use a hard-thresholding rule. CVaR and bPoF consider both the magnitude and frequency of failure and near-failure
events in their summary assessments of failure risk. We will see the pros and cons of different risk measures from a
numerical perspective in the context of risk-based engineering optimization formulations.

III. Risk-Based Optimization Problem Formulations
This section describes a few risk-based optimization problem formulations which use three different risk measures:

Section III. A introduces reliability-based design optimization (RBDO)with the probability of failure (PoF); Section III. B
describes conditional value-at-risk in optimization (CVaR); Section III. C presents optimization based on buffered
probability of failure (bPoF).
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A. Reliability-Based Design Optimization
The RBDO problem uses probability of failure as the risk measure and has been the most popular choice for

designing reliable engineering systems.

1. Risk Measure: Probability of Failure
The PoF is defined via the limit state function and a failure threshold t as

pt (g(d, Z )) = P(g(d, Z ) > t). (1)

Typically, Monte Carlo (MC) simulation is used to estimate the PoF when dealing with nonlinear limit state functions.
The MC estimate of the PoF p̂t (g(d, Z )) for a given design d is

p̂t (g(d, Z )) =
1
m

m∑
i=1
IG (d, zi), (2)

where z1, . . . , zm are m samples distributed according to the probability density π, G = {z | g(d, z) > t} is the failure
set, and IG : D ×Ω→ {0, 1} is the indicator function defined as

IG (d, z) =



1, z ∈ G

0, else.
(3)

The MC estimator is unbiased and the variance decay rate is proportional to 1/m. Algorithm 1 describes standard MC
sampling for approximating PoF.

Algorithm 1 Sampling-based estimation of PoF.
Input: m i.i.d. samples z1, . . . , zm of random variable, design variable d, failure threshold t, and limit state function

g(d, Z ).
Output: p̂t (g(d, Z )).
1: Evaluate limit state function at the samples to get g(d, z1), . . . , g(d, zm).
2: Compute IG (d, zi) for i = 1, . . . ,m using Equation (3).
3: Estimate p̂t (g(d, Z )) using Equation (2).

2. Optimization Problem: RBDO
The most common RBDO formulation involves the use of a PoF constraint as

min
d∈D

Eπ[ f (d, Z )]

subject to pt (g(d, Z )) ≤ 1 − α,
(4)

where 1 − α is the acceptable threshold on the PoF. The RBDO problem formulation designs a system with optimal
characteristics, in terms of f (d, Z ), such that it maintains a reliability of at least α. For our upcoming discussion, it is
helpful to point out that a constraint of PoF is equivalent to a constraint on the α-quantile. The α-quantile at level α,
also known as the value-at-risk (VaR), is defined as

VaRα[g(d, Z )] = min
c∈R
{P(g(d, Z ) ≤ c) = α} . (5)

In the context of our optimization problem, using the same value of t and α, formulation (4) can be written equivalently
as

min
d∈D

Eπ[ f (d, Z )]

subject to VaRα[g(d, Z )] ≤ t .
(6)

PoF and VaR are natural counterparts in that they are inverses of one another as functions of t and α. They are also
natural measures of the tail of the distribution of g(d, Z ). When one knows that the largest 100 × (1 − α)% outcomes
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pt > 1 − α

t VaRα g(d, Z )

(a)

pt < 1 − α

VaRα t g(d, Z )

(b)

pt = 1 − α

VaRα = t g(d, Z )

(c)

Fig. 1 Illustration of equivalence of PoF and VaR showing that the two quantities converge at the constraint
threshold.

are the ones of interest, the quantile is a measure of the best-case scenario within the set of these tail events. When one
knows that outcomes larger than a given threshold t are of interest, PoF provides a measure of the frequency of these
“large” events. This equivalence of PoF and VaR risk constraints is illustrated in Figure 1.

In Section III. B, we will introduce CVaR, which was originally developed as an alternative for VaR with superior
mathematical properties. Then, we will introduce a related quantity called bPoF in Section III. C. Just as VaR can be
seen as the inverse of PoF, we have that bPoF is the inverse of CVaR.

3. Discussion about RBDO
When dealing with highly nonlinear limit state functions, the most straightforward method is to use a MC estimate

for PoF. However, the PoF estimation requires sampling from the tails of the distribution, which can often make MC
estimators expensive. A wealth of literature exists for methods that have been developed to deal with the computational
complexity of PoF estimation. We outline a few such methods below. First, variance reduction techniques such as
importance sampling, adaptive importance sampling, Markov chain Monte Carlo (see [18–20] and the references therein)
offer computational advantages. While the decay rate of the MC estimate cannot be improved upon, the variance of
the MC estimator can be reduced, which offers computational advantages in that fewer (suitably chosen) MC samples
are needed to obtain reliable PoF estimates. Multifidelity methods have been successfully used to identify proper
importance sampling densities at low-computational cost [21–23]. Note that here only the samples are chosen differently,
yet the limit state function is not approximated. Second, a popular approach in the structural community to deal with the
computational complexity of PoF estimation is to use reliability index methods (e.g., FORM, SORM, etc. [24, 25]).
Reliability index methods use geometric approximations of the limit state function to reduce the computational effort.
However, when the limit state function is nonlinear, the reliability index method could lead to inaccuracies in the
estimate. Third, adaptive data-driven surrogates for the limit state failure boundary identification have been developed to
improve computational efficiency [26, 27]. Fourth, some recent multifidelity/multi-information-source methods have led
to computational savings for the PoF estimate [28–30]. In sum, these existing efficient methods for PoF estimation make
the RBDO problem computationally tractable and a natural choice for risk-based optimization problem formulation.
Since the goal of this work is to analyze the properties of the different risk-based optimization problem formulations, we
use the standard MC estimate for probability of failure from Equation (2) when solving the RBDO problem. The reader
is referred to some of the above literature for more sophisticated and efficient RBDO implementations.

While there are several advantages of the widely studied RBDO problem, there are also several potential drawbacks
associated with RBDO. First, PoF is not necessarily a convex function w.r.t. design variables even when the underlying
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limit state function is convex. Thus, we cannot formulate a convex optimization problem, possibly based upon a
sample-average-approximation (SAA), which guarantees convergence to a global optimum (even when underlying
functions f and g are convex). Global optimizers can be used instead, but they generally do not provide convergence
guarantees. Second, sensitivity issues can arise in the PoF gradients, which negatively affects the optimizer. During
optimization, the effect of small changes in design on the PoF is analyzed and this directly relates to the PoF gradients.
The accuracy of the PoF gradients estimated using approximate methods, such as, finite difference, is not always
good. There are better methods for estimating the gradients, but they have been developed under potentially restrictive
assumptions [31–33], which might not be easily verifiable for practical problems. Third, a qualitative drawback of PoF
(and VaR) is that it ignores the magnitude of failure of the system and instead encodes a hard threshold via a binary
function evaluation. Whether the failure is minor (g(d, z) slightly greater than t) or catastrophic (g(d, z) � t), both
events are treated equally (indicator function is 1 in both cases). PoF can be viewed as an optimistic measure of the
size and frequency of tail events. Fourth, PoF can suffer from sensitivity to the failure threshold due to it being a
discontinuous function w.r.t. t. However, as mentioned before, the choice of failure threshold is often uncertain, thus,
one would ideally like to have a measure of reliability that is not extremely sensitive to small changes in t.

B. Conditional-Value-at-Risk-Based Design Optimization
This section describes CVaR, also known as α-superquantile, and an associated risk-averse optimization problem

formulation. CVaR emphasizes tail events, and from an engineering perspective it is important to manage such tail risks,
e.g., minimizing or constraining CVaR.

1. Risk measure: CVaR
Intuitively, CVaR can be understood as simply a tail expectation, or an average over a portion of worst-case outcomes.

Given a fixed design d and a distribution of potential outcomes g(d, Z ), CVaR at level α is, loosely speaking, the
expected value of the largest 100 × (1 − α)% realizations of g(d, Z ).

The precise definition of CVaR is based on the α-quantile, VaRα[g(d, Z )] (see Equation (5)). In its simplest form,
assuming that the cumulative distribution of g(d, Z ) is continuous and strictly increasing for all d, the CVaR at level α,
CVaRα, can be defined [3] as a tail expectation given by

CVaRα[g(d, Z )] = Eπ
[
g(d, Z ) | g(d, Z ) ≥ VaRα[g(d, Z )]

]
.

Thus, we can think of CVaRα[g(d, Z )] as the conditional expectation of g(d, Z ) with the condition that g(d, Z ) is not
less than VaRα[g(d, Z )]. It follows from the definition that CVaRα[g(d, Z )] > VaRα[g(d, Z )]. Figure 2 illustrates the
CVaR risk measure.

α

1 − α

VaRα CVaRα g(d, Z )

Fig. 2 Illustration for CVaR: expectation of the worst-case 1 − α outcomes shown in blue is CVaRα[g(d, Z )].

Algorithm 2 describes standard MC sampling for approximating CVaR. The second term on the right hand side in
(7) is nonzero for the case

∑kα−1
j=1

1
m , 1 − α and is based on the idea of splitting the probability atom at VaRα[g(d, Z )]

(see [5]).

2. Optimization problem: CVaR as constraint
As noted in the previous section, the PoF constraint of the RBDO problem in (4) can be viewed as a VaR constraint

(as seen in (6)). The PoF constraint (and thus the VaR constraint) does not consider the magnitude of failure events, but
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Algorithm 2 Sampling-based estimation of VaRα and CVaRα.
Input: m i.i.d. samples z1, . . . , zm of random variable, design variable d, risk level α ∈ (0, 1), and limit state function

g(d, Z ).
Output: V̂aRα[g(d, Z )], ĈVaRα[g(d, Z )].
1: Evaluate limit state function at the samples to get g(d, z1), . . . , g(d, zm).
2: Sort values of limit state function in descending order and relabel the samples so that

g(d, z1) > g(d, z2) > . . . > g(d, zm).

3: Find the index kα = bm(1 − α)c to estimate V̂aRα[g(d, Z )]← g(d, zkα ).
4: Estimate

ĈVaRα[g(d, Z )] =
1

m(1 − α)

kα−1∑
j=1

g(d, z j ) +
1

1 − α

(
1 − α −

kα−1∑
j=1

1
m

)
V̂aRα[g(d, Z )]. (7)

only whether they are larger than the failure threshold. This could be a potential drawback for engineering applications.
A CVaR constraint, on the other hand, will consider the magnitude of such events, specifically constraining the expected
value of the largest 100(1 − α)% realizations of g(d, Z ). Additionally, depending upon the actual construction of
g(d, z) and the accuracy of the sampling procedure, the CVaR constraint may have numerical advantages over the VaR
constraint when it comes to optimization as discussed later. In particular, we have the optimization problem formulation

min
d∈D

Eπ[ f (d, Z )]

subject to CVaRα (g(d, Z )) ≤ t,
(8)

where α is the desired reliability level given the limit-state failure threshold t. The CVaR-based formulation typically
leads to a more conservative design than when PoF is used. This can be observed by noting that CVaRα (g(d, Z )) ≤
t =⇒ VaRα (g(d, Z )) ≤ 0 =⇒ pt (g(d, Z )) ≤ 1 − α. Therefore, if the design satisfies the CVaR constraint, then the
design will also satisfy the related PoF constraint. Additionally, since the CVaR constraint assures that the average of
the (1 − α) tail is no larger than t, it is likely that the probability of exceeding t (PoF) is strictly smaller than 1 − α and is
thus a conservative design if the target reliability was α. Intuitively, this conservatism comes from the fact that CVaR
considers the magnitude, or degree, of the worst failure events.

The formulation with CVaR as the constraint is useful when the designer is not sure about the failure boundary
location for the problem but requires a certain level of reliability from the design. For example, consider the case
where the failure is defined as maximum stress of a structure not exceeding a certain value. However, the designers
cannot agree on the cut-off value for stress but can agree on the desired level of reliability they want. One can use this
formulation to design a structure with a given reliability (1 − α) while constraining a conservative estimate of the cut-off
value (CVaRα) on the stress.

Remark 1 (Convexity in CVaR-based optimization) Without any assumptions about the distribution of g(d, Z ), it
can be shown that CVaR can be written in the form of a convex optimization problem [3] as

CVaRα[g(d, Z )] = min
γ∈R

γ +
1

1 − α
Eπ

[
g(d, Z ) − γ

]+ , (9)

where d is the given design and [c]+ = max{0, c} and γ is an auxiliary variable. Using Equation (9), the formulation (8)
can be reduced to an optimization problem involving only expectations as given by

min
γ∈R, d∈D

Eπ[ f (d, Z )]

subject to γ +
1

1 − α
Eπ

[
g(d, Z ) − γ

]+
≤ t.

(10)

The above formulation is a convex optimization problem when g(d, Z ) is convex in d since [·]+ is a convex function
and preserves the convexity of the limit state function. A similar convex reformulation also exists for the bPoF-based
optimization formulation discussed later.
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Another advantage of (10), as outlined in Ref. [3], is that the nonlinear CVaR constraint can be reformulated as a set
of linear constraints if the density π of the random variable Z is independent of the design variable d and expectations
can be estimated empirically. Specifically, consider a Monte Carlo estimate where zi, i = 1, . . . ,m are m samples from
probability density π. Then, using auxiliary variables bi, i = 1, . . . ,m to define b = {b1, . . . , bm}, we can reformulate
(10) as

min
γ∈R, b∈Rm, d∈D

Eπ[ f (d, Z )]

subject to γ +
1

m(1 − α)

m∑
i=1

bi ≤ t,

g(d, zi) − γ ≤ bi, i = 1, . . . ,m,
bi ≥ 0, i = 1, . . . ,m.

(11)

In the case where the density π depends upon d, it is still possible to perform optimization. For example, [34] provide
a simple sampling-based estimator for the gradient of CVaR, using these gradients in a stochastic gradient descent
algorithm for optimizing a CVaR objective function. For the constrained CVaR problem, such gradient estimates can be
used within stochastic optimization algorithms designed for the constrained setting, such as [35].

3. Optimization problem: CVaR as objective
CVaR naturally arises as a replacement for VaR in the constraint, but it can also be used as a cost function in the

optimization problem formulation. For example, in PDE-constrained optimization, CVaR is used in the objective
function [12, 13]. The optimization formulation becomes

min
d∈D

CVaRα[g(d, Z )]

subject to CVaRβT [ f (d, Z )] ≤ CT ,
(12)

where α and βT are the desired risk levels for g and f respectively, and CT is a threshold on the quantity of interest f .
This could be an interesting formulation for cases where it is easier to define a threshold on the quantity of interest than
deciding a risk level for the limit state function. For example, if the quantity of interest is the cost of manufacturing
a rocket engine, one can set a budget constraint and use the above formulation. The solution of this optimization
formulation would result in the safest rocket engine design such that the expected budget is does not exceed the given
budget.

4. Discussion about CVaR-based Optimization
A favorable property of CVaR is that it is a proper and coherent risk measure [36], and accordingly it is convex,

monotonic, translation invariant and positive homogenous. From an optimization perspective, an important feature of
CVaR is that it preserves convexity of the function it is applied to, i.e., the limit state function or cost function. CVaR
also takes the magnitude of failure into account, which makes it more informative than PoF.

As noted in [37], CVaR estimators are less stable than estimators of VaR since rare, large magnitude tail samples can
have large effect on the sample estimate. This is more prevalent when the distribution of the random quantity is fat-tailed.
Thus, there is a need for more research to develop efficient algorithms for CVaR estimation. A drawback of CVaR is that
it is non-smooth, and a direct CVaR-based optimization would require either nonsmooth optimization methods, for
example variable-metric algorithms [38], or gradient-free methods, which lead to similar issues as faced by PoF-based
optimization formulations. Also, smoothed approximations exist [12] which significantly improve optimization.

As noted in Remark 1, CVaR-based formulations can lead to well-behaved convex optimization problems. The
formulation in (11) increases the dimensionality of the optimization problem from nd + 1 to nd + m + 1, where m is the
number of MC samples, which poses an issue when the number of MC samples is large. However, the optimization
formulation (11) has mostly linear constraints and can also be completely converted into a linear program by using a
linear approximation for g(d, zi) (following similar ideas as reliability index methods described in Section I). There are
extremely efficient methods for finding solutions to linear programs even for high-dimensional problems.
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C. Buffered-probability-of-failure-based Design Optimization
Buffered probability of failure was first introduced by Rockafellar and Royset [4] as an alternative to probability of

failure. This section describes bPoF and the associated optimization problem formulations. As we will show, the use
of bPoF and CVaR constraints are equivalent. In this case bPoF simply provides an alternative interpretation of the
CVaR constraint that is, arguably, more natural for application dealing with constraints in terms of failure probability
instead of constraints involving quantiles (i.e. VaR). There are, however, clear differences between CVaR and bPoF
when considered as an objective function. This allows, for example, one to minimize bPoF, a conservative upper bound
of PoF, subject to constraints on costs or other performance measures. This then provides a method for finding the
optimally reliable design under performance constraints as opposed to the problem of finding the optimally performing
design under reliability constraints.

1. Risk Measure: bPoF
The bPoF is an alternate measure of reliability which adds a buffer to the traditional PoF. The simplest way to

introduce bPoF is to define it as the sum of probability of failure P(g(d, Z ) > t) and the probability of near-failure
P (g(d, Z ) ∈ [λ, t]), where the near-failure region [λ, t] is determined by the frequency and magnitude of tail events
around t. While PoF is given by P(g(d, Z ) > t), we have that bPoF (under some simplifying assumptions∗) is given by

p̄t (g(d, Z )) = P(g(d, Z ) ≥ λ), where λ is such that Eπ[g(d, Z ) | g(d, Z ) ≥ λ] = t . (13)

In this definition, we see bPoF as the sum of failure probability P(g(d, Z ) > t) and near-failure probability P(g(d, Z ) ∈
[λ, t]), where the size of the near-failure region [λ, t] is determined by the magnitude and frequency of tail events above
and below threshold t. Specifically, the right-hand-side condition of (13) says that λ is chosen so that the tail expectation
beyond λ is equal to t. Thus, the magnitude of events in the tail will determine the value of λ and thus the size of the
near-failure region.

The bPoF at a given design d can also be understood in the context of the CVaR measure as defined by

p̄t (g(d, Z )) = {1 − α | CVaRα[g(d, Z )] = t}. (14)

This relationship can be viewed in the same way as that connecting VaR and PoF. Recall that VaRα[g(d, Z )] = t ⇐⇒
pt (g(d, Z )) = 1− α. In this way, we also have that† CVaRα[g(d, Z )] = t ⇐⇒ p̄t (g(d, Z )) = 1− α. Bringing together
(13) and (14), we can arrive at another definition of bPoF in terms of VaRα[g(d, Z )] as

p̄t (g(d, Z )) = P[g(d, Z ) ≥ VaRα[g(d, Z )]], where α is such that CVaRα[g(d, Z )] = t.

The above definition is the same as Equation (13) with λ = VaRα[g(d, Z )] and is illustrated in Figure 3.

buffer

pt = P(g(d, Z ) > t)

p̄t = 1 − α

VaRα = λ CVaRα = t g(d, Z )

Fig. 3 Illustration for bPoF. The PoF equals P(g(d, Z ) > t) as shown by the area in red. For the same threshold
t, bPoF equals p̄t (g(d, Z )) = 1 − α the combined area in red and blue.

In general, we can see that for any design d,

p̄t (g(d, Z )) ≥ pt (g(d, Z )). (15)
∗ g(d, Z) is a continuous random variable
†assuming 0 ∈ (E[g(d, Z)], sup g(d, Z))
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Thus, the bPoF is a conservative estimate of the probability of failure for any design d. However, we can see that the
bPoF carries more information about failure than PoF since it takes into consideration the degree of failure. In other
words, the bPoF takes the tail behavior of the g(d, Z ) distribution into account. This property of bPoF is especially
useful during optimization to differentiate between designs that have the same probability of failure.

Going back to interpretation (13), we see that the conservatism of bPoF comes from the data-dependent mechanism
that selects the conservative threshold λ < t, which acts to establish a type of buffer zone. Specifically, the size of the
buffer zone (λ, t) is determined by the magnitude of failure events above and below the original failure threshold of t. If
realizations of g(d, Z ) beyond t are very large (potentially catastrophic failures), λ will need to be smaller (making
bPoF bigger) to drive the expectation beyond λ to t. Thus, the larger bPoF serves to account for not only the frequency
of failure events, but also their magnitude. The bPoF also accounts for the frequency of near-failure events that have
magnitude below, but very close to t. If there are a large number of near-failure events, bPoF will take this into account,
since it will be included in the λ-tail which must have average equal to t. Algorithm 3 describes standard MC sampling
for approximating bPoF.

Algorithm 3 Sampling-based estimation of bPoF.
Input: m i.i.d. samples z1, . . . , zm of random variable, design variable d, failure threshold t, and limit state function

g(d, Z ).
Output: p̄t (g(d, Z )).
1: Evaluate limit state function at the samples to get g(d, z1), . . . , g(d, zm).
2: Sort values of limit state function in descending order and relabel the samples so that

g(d, z1) > g(d, z2) > . . . > g(d, zm).

3: c = g(d, z1) . Initialize CVaR estimate
4: k = 1
5: while c<t do . Check if CVaR estimate equals threshold
6: k ← k + 1
7: c = 1

k

∑k
i=1 g(d, zk ) . Update CVaR estimate

8: end while
9: Estimate bPoF as p̄t (g(d, Z )) ≈ k−1

m . Estimate bPoF as 1 − α when c ≈ t

2. Optimization problem: bPoF as constraint
One of the downsides of the the CVaR-based optimization formulation given by (8) is its interpretability when

compared to the widely-used PoF constraint. The bPoF concept, however, is easier to relate to PoF. While PoF gives
the probability of exceeding the failure threshold, bPoF is the probability of exceeding the failure threshold plus the
probability of being in a near-failure region.

In this sense, it can be more natural to consider the optimization problem with the PoF constraint replaced by the
bPoF constraint as given by

min
d∈D

Eπ[ f (d, Z )]

subject to p̄t (g(d, Z )) ≤ 1 − α.
(16)

The power of this formulation is in its interpretation and it offers similar properties from an optimization standpoint
when compared to the CVaR constraint formulation. Just as a PoF constraint is equivalent to a VaR constraint, it has
been shown that a bPoF constraint is equivalent to a CVaR constraint. The optimization formulation given by (16) is
equivalent‡ to the CVaR-based optimization formulation given by (8) [39]. Therefore, this formulation simply provides
another interpretation the of CVaR problem. This interpretation, however, is useful when considered in the context
of the originally intended PoF reliability constraint. As noted in the previous section, bPoF can be interpreted as
P(g(d, Z ) > λ) with λ < t and, loosely speaking, gives the probability that g(d, Z ) will be around the zero threshold.
In engineering applications, the exact failure threshold is often uncertain and chosen by a subject matter expert. Thus,
it could be beneficial that bPoF measures failure probability with a data-dependent soft threshold. In other words,

‡under the condition that the optimal solution d∗ does not have sup g(d∗, Z) = 0
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bPoF can be viewed as a reliability constraint that is robust to uncertain or inexact choices of failure threshold. The
conservatism of bPoF is data-driven and is a measure of reliability that simultaneously captures the frequency and
magnitude of failure and near-failure events.

Remark 2 (Convexity in bPoF-based optimization) Without any assumptions about the distribution of g(d, Z ), it
can be shown that bPoF§ can be written in the form of a convex optimization problem, similar to CVaR, as [16, 40]

p̄t (g(d, Z )) = min
λ<t

Eπ
[
g(d, Z ) − λ

]+
t − λ

= min
a≥0
Eπ

[
a(g(d, Z ) − t) + 1

]+ . (17)

where d is the given design and [c]+ = max{0, c} and λ, a is an auxiliary variable. The simplified right-most formulation
comes from making the simple change of variable a = 1

t−λ . The middle formulation using λ is important as the optimal
λ∗ is precisely the threshold from (13) which provides Eπ[g(d, Z ) | g(d, Z ) ≥ λ∗] = t.

Using Equation (17), the formulation (16) can be reduced to an optimization problem involving only expectations as
given by

min
λ<t, d∈D

Eπ[ f (d, Z )]

subject to
Eπ

[
g(d, Z ) − λ

]+
t − λ

≤ 1 − α.
(18)

One should note, however, that this can be reformulated, by a simple rearrangement of the constraint, to become
equivalent to CVaR constrained problem (10). Thus, it is a convex problem and the same linearization trick can be
performed as in (11).

3. Optimization problem: bPoF as objective
One of the novel uses of bPoF in risk-based optimization formulation is when it is used as an objective function.

While its use as a constraint is equivalent to a CVaR constraint, the same can not be said about the case in which bPoF
is used as an objective function. A bPoF objective provides us with an interesting optimization problem focused on
optimal reliability subject to satisfaction of other design metrics.

Consider, for example, the following PoF minimization problem given by

min
d∈D

pt (g(d, Z ))

subject to Eπ[ f (d, Z )] ≤ CT .
(19)

This optimization problem is normally not solved in RBDO due to the high level of difficulty caused by the objective
function. As already mentioned, PoF is often nonconvex and discontinuous, making gradient calculation ill-posed or
unstable. It is, however, a very desirable formulation if reliability is paramount. The formulation in (19) defines the
situation where given our design specifications, characterized by Eπ[ f (d, Z )] ≤ CT , we desire the most reliable design
achievable.

We can consider an alternative to the problem in (19) using a bPoF objective function as

min
d∈D

p̄t (g(d, Z ))

subject to Eπ[ f (d, Z )] ≤ CT .
(20)

Using Equation (17), the optimization problem in (20) can be reformulated in terms of expectations as

min
a≥0, d∈D

Eπ
[
a(g(d, Z ) − t) + 1

]+
subject to Eπ[ f (d, Z )] ≤ CT .

(21)

§assuming t ∈ (E[g(d, Z)], sup g(d, Z))
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4. Discussion about bPoF-based optimization
There are several advantages of using the bPoF-based optimization problem described by Equation (16) as compared

to the RBDO problem. Firstly, the bPoF-based optimization problem leads to a conservative design compared to RBDO
and a feasible design for bPoF-based optimization problem also leads to a feasible design for RBDO. Secondly, the
bPoF-based optimal design could be more desirable because it takes into account the magnitude of failure (or the tail
of the distribution) that guards against more serious catastrophic failures. Thirdly, bPoF-based optimization problem
preserves convexity if the underlying limit state function is convex (as compared to probability of failure which does
not preserve convexity). This leads to well-behaved convex optimization problems even for the risk-based formulation
and pushes us to pay more attention to devising limit state functions that are convex or nearly convex. Fourthly, under
certain conditions, it is possible to calculate (quasi)-gradients for bPoF [41]. We note that non-smoothness can also
be avoided by use of smoothed versions given by [42]. Lastly, if π is independent of d, the same linear reformulation
trick used with CVaR constraints (see (11)) can be used to transform the objective in (21) into a linear function with
additional linear constraints and auxiliary variables offering similar advantages as noted in Section 4. Moreover, if the
probability distribution of the limit state function, g(d, Z ), could be known analytically (and be part of a special class of
distributions), then the bPoF can also be derived analytically, see [17]. Statistical properties of empirical estimates of
bPoF are discussed in [43].

IV. Numerical Experiment: Short Column Problem
We use the short column design problem that has been widely used in the RBDO community as a benchmark

problem [2, 26] to compare some of the properties of PoF- and bPoF-based optimization formulations.

A. Short Column Problem Description
The problem consists of designing a short column with rectangular cross-section of dimensions w and h, subjected

to uncertain loads (axial force F and bending moment M). The yield stress of the material, Y , is also considered to be
uncertain. Table 1 shows the random variables used in the short column design. The correlation coefficient between F
and M is 0.5. The random variables are Z = [F, M, Y ]>. The design variables, d = [w, h]>, are the length and width
of the cross-section as shown in Table 2. The objective function is the cross-sectional area given by wh. Along with a
failure threshold t = 1, the limit state function is defined as

g(d, z) =
4M
wh2Y

+
F2

w2h2Y 2 . (22)

Table 1 Random variables used in the short column application.

Random variable Units Distribution Mean Standard
deviation

F kN Normal 500 100
M kNm Normal 2000 400
Y MPa Log-normal 5 0.5

Table 2 Design variables used in the short column application.

Design variable Lower bound (m) Upper bound (m)
w 5 15
h 15 25
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B. Optimization Problem Formulations: RBDO and bPoF-constrained
The RBDO problem is given by

min
w,h

wh

subject to pt (g(d, Z )) ≤ 1 − α,
`w ≤ w ≤ uw,

`h ≤ h ≤ uh,

(23)

where (`w, `h, uw, uh) denote the lower and upper bounds on w and h as defined in Table 2.
We first show that the optimization problem with a bPoF constraint can be formulated as a convex optimization

problem in this case. This will let us take advantage of convex optimization solvers and offer guarantees for the
optimization problem. Let π denote the joint distribution of Z = [F, M, Y ]>, with mean, variance and shape of the
distributions given by Table 1. We use the formulation defined in (18) for the bPoF-based optimization problem for the
short column design as

min
λ<t,w,h

wh

subject to
Eπ

[
4M
wh2Y

+ F2

w2h2Y2 − λ
]+

t − λ
≤ 1 − α,

`w ≤ w ≤ uw,

`h ≤ h ≤ uh .

(24)

To reformulate this as a more manageable convex optimization problem¶, we first rearrange the constraint to achieve the
equivalent form‖,

min
λ,w,h

wh

subject to λ +
1

(1 − α)
Eπ

[
4M
wh2Y

+
F2

w2h2Y 2 − λ

]+
≤ t,

`w ≤ w ≤ uw,

`h ≤ h ≤ uh .

(25)

Next, we note that both w and h are nonnegative and thus we can make the change of variable w = ex1, h = ex2

with x1, x2 ∈ R. Then the limit state function becomes g(x1, x2, z) = 4M
Y e−x1−2x2 + F2

Y2 e−2x1−2x2 and objective function
wh = ex1+x2 . These are both convex functions in the new decision variables (x1, x2). Thus, we can reformulate the
problem as

min
λ,x1,x2

ex1+x2

subject to λ +
1

(1 − α)
Eπ

[
4M
Y

e−x1−2x2 +
F2

Y 2 e−2x1−2x2 − λ

]+
≤ t,

ln `w ≤ x1 ≤ ln uw,

ln `h ≤ x2 ≤ ln uh .

(26)

Furthermore, since the distribution of the random variables are independent of the design variables, we can empirically
estimate the expectation in the constraint for any design by using a fixed set of m samples {z1, . . . , zm} that are sampled
a priori from the distribution π. Finally, this gives us a convex sample-average-approximation (SAA) optimization

¶We were required to find a formulation that was recognized as convex by modeling language CVXpy with convex solver MOSEK
‖Note that this is in the same form as a CVaR constraint from (10).
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problem for the given set of m samples as

min
λ,x1,x2

ex1+x2

subject to λ +
1

m(1 − α)

m∑
i=1



4Mi

Yi
e−x1−2x2 +

F2
i

Y 2
i

e−2x1−2x2 − λ



+

≤ t,

ln `w ≤ x1 ≤ ln uw
ln `h ≤ x2 ≤ ln uh .

(27)

Note that the constraint is convex since [·]+ is a convex function and preserves the convexity of the limit state function.

C. Experimental Comparison
We now compare the behavior of the RBDO formulation and the bPoF-constrained formulation. We solve the

RBDO problem with various values of α using the gradient-free COBYLA optimizer. We use Algorithm 1 to estimate
PoF in the RBDO problem by iteratively adding samples until the Monte Carlo error reaches below 1%. We solved the
bPoF-constrained problem (Equation (27)) with various values of α, utilizing the convex optimization solver MOSEK
with CVXpy as our modeling interface to the solver.

We begin by making the simple observation that, as hypothesized, PoF and bPoF are indeed natural counterparts
with both measuring similar notions of failure risk. Figure 4(b) and (c) shows that both the formulations can lead
to nearly identical frontiers of cross-section area for the optimal designs with similar PoF or bPoF, and they can be
obtained by setting higher values for 1 − α in bPoF-based optimization as compared to PoF-based optimization. Each
point in Figure 4(b) corresponds to an optimal design achieved by solving RBDO (“using PoF”) or bPoF-constrained
optimization for some α. The x-axis provides the estimated value of PoF of the design, estimated using a separate
evaluation sample of size 5 × 106. The y-axis provides the cross-section area of the optimal design. Figure 4(c) is
similar, except with the value of bPoF (estimated using 5 × 106 samples) as the x-axis. When comparing the solutions,
we see that RBDO and bPoF formulations achieve nearly identical frontiers. This highlights the fact that bPoF is indeed
a natural surrogate for PoF, achieving similar goals and controlling failure probability. However, an advantage of the
bPoF-based formulation is that while both achieve similar design frontiers, we have a guarantee that the design given by
the bPoF formulation is globally optimal for the given SAA problem in Equation (27). We have no such guarantee for
the designs given by RBDO. Thus, even if similar designs are achieved by RBDO and bPoF-constrained optimization,
we have additional guarantees about the quality of the bPoF-based design due to the underlying convexity.

Our second observation is the conservative nature of bPoF as compared to PoF. When formulated with identical
levels of α in the constraint, the bPoF-based optimization achieves a more conservative design than RBDO. The
conservative nature of the bPoF formulation is illustrated by Figure 4(a). Here, the x-axis provides the actual value of
1 − α used in the constraint to solve for the optimal design. We see that setting an upper bound of 1 − α on bPoF yields
a more conservative design than the corresponding RBDO problem formulated with the same upper bound of 1 − α on
PoF. This type of probabilistically derived conservativeness can be seen as desirable as discussed in Remark 3 below.

Remark 3 (Desirable conservativeness) Let us take a closer look at the conservativeness induced by the bPoF-based
optimization for the same desired reliability level as compared to PoF-based optimization (as shown in Figure 4(a)) and
why this type of conservativeness could be desirable. There are other ways of introducing conservativeness, such as,
safety factors, basis values, stricter reliability levels. Typically, using safety factors lead to overly conservative designs.
When appropriate safety factor values are not used, the deterministic optimization setup could also potentially lead to
unreliable designs. This is because converting to deterministic optimization using just safety factors (or basis values)
to account for the uncertainty in the system does not take into account the distribution of the limit state function and
lacks enough information to make good decisions. These well-known issues with safety-factor- and basis-values-based
deterministic optimization formulations has progressively led us to consider risk-based optimization under uncertainty.

One way to introduce conservativeness in risk-based optimization is by using lower values of 1 − α, which leads to
stricter reliability constraints. However, this will just lead to more reliable designs than required without taking into
account any information about the magnitude of failure. The bPof-based (or CVaR-based) optimization can be seen as a
better way to induce conservativeness because they encode more information about the distribution of the limit state
function by taking the magnitude of failure into account to arrive at the optimal design. This leads to a probabilistically
informed way of getting to a conservative design, which could be seen as practically more desirable. Note that the
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Fig. 4 Optimal cross-sectional area obtained for different levels of desired reliability

conservativeness introduced through bPoF-based optimization depends on the distribution of the limit state function as
seen from Equations (13) and (15).

Figure 5 compares the desired reliability levels versus the estimated PoF/bPoF for the optimal designs obtained
through PoF- and bPoF-based optimization. For these plots, we use 5 × 106 samples∗∗ to get accurate estimates of the
PoF or bPoF at the optimum. Figure 5(a) shows the desired reliability level and the PoF/bPoF for the optimum design
obtained using the RBDO problem. We can see that since the Monte Carlo error for PoF estimate in the RBDO problem
was always ensured to be below 1%, the desired PoF and the PoF at the optimum overlap. The figure also shows the
conservative property of bPoF for same desired reliability level.

A third key observation is also illustrated by Figure 5(b), which compares the results for bPoF-based optimization
for different a priori sample sizes, i.e. the value of m in Equation (27). We make this comparison to analyze the effect
of fixing the sample set for all optimization iterations before starting the optimization, which is required to obtain the
convex optimization formulation shown in Equation (27). We can see that for lower sample sizes of 103 and 104, the
bPoF at the optimum and the desired bPoF do not overlap reflecting inaccurate estimates of bPoF. However, it should be
noted that the bPoF formulation is still surprisingly effective in controlling the PoF, even when sample size is small. In
other words, even when small samples are used within the optimization, the conservative nature of bPoF yields a design

∗∗These samples are not used in the optimization, but only to estimate at the optimal design after the optimization is completed.
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with very small PoF. Additionally, it is important to highlight the fact that the convex optimization problem, even when
formulated with a small sample size, is still very stable and can be solved reliably. One of the primary drawbacks of
RBDO is the potential fragility of the optimization, particularly when sample sizes are small, where the estimates of
PoF and/or gradients (if a gradient-based solver is used) are unstable and produce poor or inconsistent optimization
results. The bPoF formulation does not suffer in the same way as illustrated here.

0.005 0.01 0.015 0.02
0

0.01

0.02

0.03

0.04

0.05

0.06

(a) RBDO (PoF-based optimization)

0.01 0.02 0.03 0.04 0.05
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

(b) bPoF-based optimization

Fig. 5 Comparing PoF and bPoF estimates at the optimal design obtained through PoF- and bPoF-based
optimization for different desired reliability levels.

V. Concluding Remarks
In this work, we compare and contrast three different risk-based optimization formulations using probability of

failure, conditional value-at-risk, and buffered probability of failure. The purpose of this paper is to highlight the
properties of the different risk measures and look into their potential advantages in the context of engineering design
that can help outline some useful research directions for risk-based design optimization under uncertainty.

An advantage of bPoF and CVaR risk measure is the desirable conservativeness introduced by encoding extra
information about the limit state function distribution in the form of the magnitude of failure. This highlights a way to
get potentially better conservativeness in risk-based optimization by switching to a different optimization formulation.
While PoF is an intuitive measure, it has drawbacks in that it does not consider the magnitude of failure events, but
only their frequency. In addition, PoF can potentially mischaracterize the risk of near-failure events, which may have
magnitude less than, but very near to the failure threshold. CVaR and bPoF provide alternative measures of failure risk
that avoid such hard-threshold characterizations of failure events. CVaR provides a characterization of the failure risk
which allows measurement of the expected magnitude of a selected portion of worst-case events. However, CVaR can
be challenging to compare to PoF, since it does not provide a probabilistic characterization of failure risk relative to a
failure threshold. bPoF provides a natural intuitive alternative to PoF that takes magnitude and frequency of failure and
near-failure events into account.

From the computational perspective for risk-based optimization, bPoF and CVaR risk measures provide substantial
benefits because they preserve convexity of the limit state function. When limit-state functions are convex w.r.t. the
design variables, CVaR- and bPoF-based optimization problems can be formulated into convex optimization problems.
Consequently, we can use convex optimizers to solve risk-based optimization problems and provide convergence
guarantees. Using convex approximations for the limit state functions is one way of addressing non-convex problems.

The plethora of methods available for the RBDO problem and PoF estimation in engineering design reflects the
ease of working with PoF. There needs to be more research efforts directed towards bPoF and CVaR estimation from
an engineering design context. This will lead to flexibility in switching to appropriate and advantageous risk-based
optimization formulations for designing safe engineering systems.
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