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A B S T R A C T

This paper introduces a new approach for importance-sampling-based reliability-based design optimization
(RBDO) that reuses information from past optimization iterations to reduce computational effort. RBDO is a two-
loop process—an uncertainty quantification loop embedded within an optimization loop—that can be compu-
tationally prohibitive due to the numerous evaluations of expensive high-fidelity models to estimate the prob-
ability of failure in each optimization iteration. In this work, we use the existing information from past opti-
mization iterations to create efficient biasing densities for importance sampling estimates of probability of
failure. The method involves two levels of information reuse: (1) reusing the current batch of samples to con-
struct an a posteriori biasing density with optimal parameters, and (2) reusing the a posteriori biasing densities of
the designs visited in past optimization iterations to construct the biasing density for the current design. We
demonstrate for the RBDO of a benchmark speed reducer problem and a combustion engine problem that the
proposed method leads to computational savings in the range of 51% to 76%, compared to building biasing
densities with no reuse in each iteration.

1. Introduction

Designing efficient and robust engineering systems requires dealing
with expensive computational models while taking into account un-
certainties in parameters and surrounding conditions. Reliability-based
design optimization (RBDO) is a framework to minimize a prescribed
cost function while simultaneously ensuring that the design is reliable
(i.e., has a small probability of failure). RBDO is a two-loop process
involving an outer-loop optimization with an inner-loop reliability
analysis for each optimization iteration as shown in Figure 1(a). The
reliability analysis requires estimating a probability of failure. RBDO
approaches include: fully-coupled two-loop methods that evaluate the
reliability at each optimization iteration, single-loop methods that in-
troduce optimality criteria for an approximation of the reliability esti-
mate [1–4], and decoupled approaches that transform RBDO into a
series of deterministic optimization problems with corrections [5,6].
Surveys of existing RBDO methods can be found in Refs. [7–9]. In this
work, we concentrate on a two-loop RBDO method. For mildly non-
linear systems, reliability can be estimated using first-order and second-
order reliability methods [10,11]. However, strongly nonlinear systems
typically require Monte Carlo sampling. The use of Monte Carlo

methods is also more appropriate for systems with multiple failure re-
gions, which first-order and second-order reliability methods cannot
handle. The high cost of Monte Carlo sampling renders the RBDO
problem computationally prohibitive in the presence of expensive-to-
evaluate models. Thus, efficient methods are needed for evaluating the
reliability constraint in each RBDO iteration for nonlinear systems.

One way to reduce the computational cost for RBDO is by using
cheap-to-evaluate surrogate evaluations to replace the expensive high-
fidelity evaluations in the Monte Carlo estimation of the probability of
failure. Several methods use surrogates that have been adaptively re-
fined around the failure boundary. Dubourg et al. [12] proposed re-
fining kriging surrogates using a population-based adaptive sampling
technique through subset simulation for RBDO. Bichon et al. [13,14]
combined adaptive Gaussian-process-based global reliability analysis
with efficient global optimization (a.k.a. Bayesian optimization) for
RBDO. Qu and Haftka [15] presented a method to solve the RBDO
problem by building surrogates for probability sufficiency factor, which
defines a probability of failure on the safety factor instead of the limit
state function directly. Recent work has developed a quantile-based
RBDO method using adaptive kriging surrogates [16], which uses the
quantile (a.k.a. value-at-risk) instead of the probability of failure
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constraint. A comprehensive review on the use of surrogates in RBDO
can be found in [17]. We note that sampling directly from surrogate
models—while being computationally cheaper—introduces a bias,
while we propose a method that is unbiased. However, using surrogate
models offer substantial computational savings [17], and it would be
possible to extend the proposed method to incorporate surrogates. Also,
these methods do not reuse information from previous design itera-
tions, which is a source of computational savings that we explore in this
work.

Another approach to reduce computational cost is to use importance
sampling for the reliability analysis, which can allow for a drastic reduction
in samples needed to estimate the reliability (or failure probability).
Importance sampling is, in general, an efficient method for reliable systems
and can be used to estimate small failure probabilities [18,19] or other
measures of risk [20–23]. Although importance-sampling-based approaches
can increase the efficiency of probability of failure estimation, they could
still require many samples for the estimate if the biasing density is not
constructed appropriately. Various efficient adaptive importance sampling
methods [19] that iteratively get close to the optimal biasing density have
been devised to meet this challenge. The cross-entropy method is a popular
adaptive importance sampling method that uses the Kullback–Leibler (KL)
divergence to iteratively get closer to the optimal biasing density [24–26].
Adaptive importance sampling has also been implemented using mixture
models to account for multiple failure regions [27,28]. Subset simulation is
another method for efficiently estimating failure probabilities by converting
a small failure probability into a series of larger conditional failure prob-
abilities [29–31]. Surrogate-based importance sampling methods have also
been proposed to further improve computational efficiency [32–36]. In this
work, we develop an importance sampling method that builds good biasing
densities using the optimization setup in RBDO.

We propose a new importance-sampling-based RBDO method that
reuses information from past optimization iterations for computation-
ally efficient evaluation of the reliability constraint as illustrated in
Fig. 1(b). At the core of the IRIS-RBDO (Information Reuse for Im-
portance Sampling in RBDO) method, we propose to build a good im-
portance sampling biasing density by reusing data from previous opti-
mization iterations. The proposed method reduces the computational
time for probability of failure estimates in each RBDO iteration through
two levels of information reuse:

1. At the current design iteration, once the reliability estimate is
computed via importance-sampling based Monte Carlo sampling, we
reuse the current batch of samples from the reliability estimate to
form an a posteriori biasing density. The a posteriori biasing density is
built in an optimal way by minimizing the KL divergence measure to

the optimal (zero-variance) biasing density.
2. At the next design iteration, we reuse the available a posteriori

biasing densities from nearby designs explored in the past iterations
to construct a mixture density at the current iteration. The moti-
vation for this is that nearby designs are likely to have similar failure
regions, and hence reusing the a posteriori biasing densities from the
existing nearby designs can lead to efficient biasing densities.

In our IRIS-RBDO framework, the information from past optimiza-
tion iterations acts as a surrogate for building biasing densities in each
RBDO iteration. The optimization history is a rich source of informa-
tion. Reusing information from past optimization iterations in optimi-
zation under uncertainty has been previously done in the context of
robust optimization using control variates [37–39]. Cook et al. [40]
extended the control variates method for information reuse to a larger
class of estimators for robust optimization. The probabilistic re-analysis
method, which has been used for RBDO [41] and probability of failure
sensitivity analysis under mixed uncertainty [42], can be seen as a reuse
method. The probabilistic re-analysis method creates an offline library
with a large number of samples using a density encompassing the entire
design and random variable space, and then uses importance sampling
to re-weight the samples according to a specific density in each RBDO
iteration [43]. However, RBDO using probabilistic re-analysis is de-
pendent on restrictive assumptions on the structure of the design and
random variables, and does not guarantee the accuracy of probability of
failure estimates in each RBDO iteration since it is sensitive to the
quality of existing offline samples. Beaurepaire et al. [44] proposed a
method for reusing existing information in the context of RBDO through
bridge importance sampling, which is an adaptive sampling scheme
that uses Markov Chain Monte Carlo to sample from intermediate
densities. The initial density for the bridge importance sampling at the
current design is constructed using the existing density from previous
optimization iterations whose mode leads to the limit state function at
the current design to be closest to the failure boundary while being
within the failure threshold. This requires multiple new evaluations of
the limit state function for implementing the reuse. While similar in
purpose, our method is fundamentally different from the existing work
of Beaurepaire et al. [44] in the way information from past optimiza-
tion iterations is reused through a two-step process. We directly connect
to variance reduction for probability of failure estimates by building the
a posteriori biasing densities (leading to optimal biasing densities for the
existing designs). Note that no new evaluations of the expensive limit
state function are required to implement our information reuse. We
next outline several important advantages of our method.

The key contribution of this paper is a new approach for reusing

Fig. 1. Two-loop process for RBDO using (a) the high-fidelity model, and (b) the proposed information reuse method.
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information from past optimization iterations in the context of im-
portance-sampling-based RBDO. There are several advantages of the
proposed IRIS-RBDO method. First, the method is computationally ef-
ficient as it does not require building a biasing density from scratch at
every iteration and can build efficient biasing densities by reusing ex-
isting information. The computational efficiency is demonstrated
through two numerical experiments. Second, the method can overcome
bad initial biasing densities by reusing samples to build (at every design
iteration) a posteriori biasing densities for future reuse. Third, the
method is potentially useful for building biasing densities for dis-
connected feasible regions or multiple failure regions because it uses a
mixture of existing biasing densities. Using mixture densities has been
shown to be useful for multiple disconnected failure regions for prob-
ability of failure estimation [27,28]. The novelty of our approach lies in
the way we choose the mixture densities from the existing biasing
densities, and the mixing weights in the context of RBDO. Fourth, there
is no bias in the IRIS-RBDO reliability analysis and it can maintain a
desired level of accuracy in the reliability estimates in every optimi-
zation iteration.

The rest of the paper is structured as follows. Section 2 provides the
RBDO formulation and background on methods used to estimate the
probability of failure. Section 3 describes the details of the proposed
IRIS-RBDO method along with the complete algorithm. The effective-
ness of IRIS-RBDO is shown using a benchmark speed reducer problem
in Section 4 and a combustion engine model in Section 5. Section 6
presents the conclusions.

2. Reliability-based design optimization (RBDO)

This section describes the RBDO formulation used in this work
(Section 2.1) followed by existing Monte Carlo methods for estimating
the probability of failure. Section 2.2 describes the Monte Carlo esti-
mate and Section 2.3 describes the importance sampling estimate for
probability of failure.

2.1. RBDO formulation

The inputs to the system are nd design variables d nd and an
nr-dimensional random variable Z: nr defined on the sample
space Ξ and with the probability density function p, henceforth called
nominal density. Here, denotes the design space and Ω denotes the
random sample space. A realization of Z is denoted as z∈ Ω. We use
z∼ p to indicate that the realizations are sampled from distribution p.
We are interested in the RBDO problem that uses a reliability con-
straint—herein a failure probability—to drive the optimization. The
RBDO problem formulation used in this work is

=

<

d d

d

J f Z

g Z P

min ( ) [ ( , )]

subject to ( ( , ) 0) ,
d

p

thresh (1)

where J: is the cost function, ×f : is the quantity of
interest, ×g: is the limit state function, and Pthresh is the ac-
ceptable threshold on the probability of failure. Without loss of gen-
erality, the failure of the system is defined by g(d, Z) < 0. With

=d d z z zf Z f p[ ( , )] ( , ) ( )dp we denote the expectation of the
random variable f( · , Z) with respect to the density p.

2.2. Monte Carlo estimate for probability of failure

The solution of the RBDO problem given by Eq. (1) is obtained via
an iterative procedure where the optimizer evaluates a sequence of
design iterates while seeking a minimum-cost solution that satisfies the
reliability constraint. Let dt be the design in optimization iteration t and
define the corresponding failure set as

= <z z d zg{ | , ( , ) 0}.t t (2)

We emphasize that evaluating the limit state function, g, and hence
checking if z ,t requires evaluation of an expensive-to-evaluate
model. The indicator function ×: {0, 1}t is defined as

=d z z( , ) 1, ,
0, else.t

t
t

(3)

The Monte Carlo estimate of the probability of failure
= <d dP g Z( ): ( ( , ) 0)t t is given by

=
=

d d z zP
m

p^ ( ) 1 ( , ), ,p t
t i

m

t i i
MC

1

t

t
(4)

where zi, =i m1, , t are the mt samples from probability density p
used in iteration t. The subscript for P̂ denotes the density from which
the random variables are sampled to compute the estimate.

In Monte Carlo simulation for estimating small probabilities, the
number of samples required to achieve a fixed level of accuracy in the
probability estimate scales inversely with the probability itself. Due to
the low probability of failure for reliable designs, standard Monte Carlo
sampling would be computationally infeasible for expensive-to-eval-
uate limit state functions because the number of samples, mt, required
to reach an acceptable level of accuracy would be prohibitively large.

2.3. Importance sampling estimate for probability of failure

Importance sampling is a change of measure—from the nominal
density to the biasing density—that is corrected via re-weighting of the
samples drawn from the new measure. In probability of failure esti-
mation, a biasing density is sought so that many samples lie in the set

t . In this work, we use a parametric biasing density denoted by q t for
optimization iteration t, where θt denotes the parameters of the
distribution. The biasing density must satisfy

d Z p Z q Zsupp( ( , ) ( )) supp( ( ))tt t . The importance sampling esti-
mate for P(dt) is given by

=
=

d d z z
z

zP
m

p
q

q^ ( ) 1 ( , ) ( )
( )

, ,q t
t i

m

t i
i

i
i

IS

1
t

t

t
t

t (5)

where z ,i =i m1, , t are the mt samples from probability density q t

used in iteration t. The ratio z
z

p
q

( )
( )

i

t i
is called the importance weight, or

likelihood ratio.
The unbiased sample variance for the importance sampling estimate

is defined by ,m

^mt
t

2
where m̂

2
t is estimated by

=
=

d z z
z

z
m

p
q

P q^ 1
1

( ( , ) ( )
( )

^ ) , .m
t i

m

t i
i

i
q i

2

1

IS 2
t

t

t
t

t t

The relative error, or coefficient-of-variation, in the probability of
failure estimate is given by

=( )e P
P m

^ 1
^

^
.q

q

m

t

IS
IS

2

t

t

t

(6)

The importance sampling estimate of the failure probability is unbiased,
i.e.,

=d d p
q

[ ( , ·)] ( , ·) .p t q tt t t
t

3. IRIS-RBDO: Information reuse in importance sampling for
RBDO

We propose an efficient importance-sampling-based RBDO method
that reduces computational cost through two levels of reusing existing
information:
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1. Reusing existing samples from the reliability computation in the
current iteration to build an a posteriori biasing density with optimal
parameters (see Theorem 1) that minimize the Kullback–Leibler
divergence measure as described in Section 3.1.

2. Reusing existing biasing densities from nearby designs as described
in Section 3.2.

The complete IRIS-RBDO algorithm is summarized in Section 3.3.

3.1. Reusing samples for a posteriori biasing density with optimal
parameters

The first level of information reuse consists of building an a pos-
teriori biasing density. We propose a method for approximating the
optimal biasing density at current iteration t by reusing the current
batch of samples that are used in the probability of failure computation.
This first level of reuse builds on the ideas developed in the cross-en-
tropy method for probability of failure estimation [24] applied to the
context of reusing samples in the RBDO setup. The novelty lies in the
way KL divergence is applied to reusing existing data in the optimiza-
tion loop (after getting the reliability estimate), which is tailored to the
two-loop RBDO setup. While we do use KL divergence as a distance
measure to formulate the optimization problem to solve for the a pos-
teriori density, our approach is different from the cross-entropy method
(where KL divergence is used during the reliability estimate at a par-
ticular design in the RBDO iteration). Note that this reuse method can
be extended to use with cross-entropy method, where the initial density
can be defined by the mixture of these a posteriori densities (as de-
scribed in Section 3.2) to reduce the number of cross-entropy iterations.

After evaluating the importance-sampling failure probability esti-
mate dP̂ ( )q t

IS

t
with density q ,t we can compute an a posteriori biasing

density that is close to the optimal (also known as zero-variance)
biasing density. It is known [45, Chapter 9] that the theoretical optimal
biasing density results in the estimate dP̂ ( )h t*

IS
t having zero variance, and

is given by

=z
d z z

d
h

p
P

* ( )
( , ) ( )

( )
,t

t

t

t

(7)

where the superscript for h *t denotes that it is the optimal biasing
density for RBDO iteration t. However, due to the occurrence of P(dt) in
Eq. (7), it is not practical to sample from this density.

Consequently, we want to find an a posteriori biasing density that is
close to h *t . In this work, the KL divergence [46] is used as the distance
measure between two distributions. We thus define a density qθ para-
meterized by and want to minimize the KL divergence to h *,t
which is defined as

= = z
z

z zh q h
q

h
q

hKL( * ) ln
*

ln
*( )
( )

* ( ) d .t h
t t

t*t
(8)

The optimal parameters for qθ for RBDO iteration t are given by *,t
where the superscript denotes that it is the optimal solution. Then *t
can be found by solving an optimization problem given by

=

=

=

=

=

=

z z z z z z

z z z

d

arg min h q

arg min h
q

arg min h h q h

arg min q h

arg min q

arg min q

* KL( * )

ln
*

ln( * ( )) * ( ) d ln( ( )) * ( ) d

ln( ( )) * ( ) d

[ln( )]

[ ( , ·)ln( )],

z z

z

t t

h
t

t t t

t

h

p t

*

*

t

t

t (9)

where in the last step we used the definition of the optimal biasing
density from Eq. (7), and dropped the term P(dt) as it does not affect
the optimization. Since the integral requires evaluating the failure re-
gion, we use again importance sampling with density q t to obtain an
efficient estimate, i.e.,

=d dq p
q

q[ ( , ·)ln( )] ( , ·) ln( ) .p t q tt t t
t (10)

Overall, we obtain the closest biasing density in KL distance via

=

=

d

d z z
z

z

arg min p
q

q

arg min p
q

q

* ( , ·) ln( )

( , ) ( )
( )

ln( ( )) ,

t q t

i

m

t i
i

i
i

1

t t
t

t

t
t (11)

where we replaced the expectation by an importance sampling estimate
and z′ is sampled from the biasing density q t. Note that z′ samples are
existing samples that are reused after the probability of failure for dt is
already estimated.

We choose a multivariate normal distribution as the parametric
distribution for qθ. However, the method can be applied to any choice
of parametric distribution. In order to find analytic solutions for the
parameters, the chosen distribution can be mapped to an exponential
family. One can also directly sample from the zero-variance optimal
biasing density h *t using Markov chain Monte Carlo and this could be a
possible extension to the proposed method.

For the case of the multivariate normal distribution, i.e.,
µq ( , ),t t*t (and for several other parametric distributions, speci-

fically the exponential family of distributions), an analytic solution of
the optimal parameters *t can be derived and shown to be the global
optimum for Eq. (11) as described below.

Theorem 1. Let µq ( , )t t*t be a multivariate normal distribution, with
the mean vector =µ µ µ[ , , ]t t t

n1 r and = =[ ]t t
j k

j k n
,

, 1, , r being the
symmetric positive definite covariance matrix. Let

=z z z q[ , , ]i i i n,1 , r t represent the ith sample vector and zi j, represent
the jth entry of the ith sample vector for j n{1, , }r . Then the parameters

= µ* { , }t t t are given by

= =
=

=

=

=

d z

d z
µ

z z( , )

( , )
,

z
z

z
z

z
z

z
z

t
j i

m
t i

p
q i j

i
m

t i
p

q

i
p

q i j

i
p

q

1
( )
( ) ,

1
( )
( )

1
| | ( )

( ) ,

1
| | ( )

( )

t
t

i

t i

t
t

i

t i

t i

t i

t i

t i (12)

=

=

=

=

=

=

d z

d z

z µ z µ

z µ z µ
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( , )

( )( )
.

z
z

z
z

z
z

z
z

t
j k i

m
t i

p
q i j t

j
i k t

k

i
m

t i
p

q

i
p

q i j t
j

i k t
k

i
p

q

, 1
( )
( ) , ,

1
( )
( )

1
| | ( )

( ) , ,

1
| | ( )

( )

t
t

i

t i

t
t

i

t i

t i

t i

t i

t i (13)

and are the global optimum for the optimization problem given by Eq. (11).

Proof. See Appendix A. □

Constructing the a posteriori biasing density by reusing the existing
samples as proposed here can help overcome a bad initial biasing
density. Example 2 presents a two-dimensional example to illustrate the
effectiveness of the a posteriori biasing density constructed through the
first level of information reuse in the proposed IRIS-RBDO method.
These a posteriori biasing densities are then stored in a database for
future optimization iterations to facilitate the second level of reuse in
IRIS-RBDO as described in Section 3.2.

Example 2. We give a simple example to illustrate the reuse of samples
to build the a posteriori biasing density, which constitutes the first level
of information reuse in IRIS-RBDO. We compare with a common
method to built biasing densities following [18], where the biasing
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density is chosen to be the normal distribution with mean shifted to the
most probable failure point (MPP, see Appendix B on how to compute)
and the same standard deviation as the nominal density.

Given is a two-dimensional random variable Z with nominal density

p 1
10 , 0. 1 0

0 3
2

2 . The limit state function is

=zg z z( ) 18 1 2. Failure is defined as g(z) < 0. In this case, the MPP
is located at = =z z1.0078, 16.99221 2 . Therefore, the MPP-based biasing

density is q 1.0078
16.9922 , 0. 1 0

0 3
MPP

2

2 .

KL-MVN denotes the first level of information reuse in IRIS-RBDO
used for building the a posteriori biasing density with optimal para-
meters θ* for the multivariate normal distribution using KL divergence
as described in Section 3.1. In this case,

q 1.0107
18.0124 , 0.01 0.0112

0.0112 0.8812* .

We compute the probability of failure using importance sampling to
be ×9.7 10 3. The coefficient of variation of probability of failure es-
timate using the MPP-based biasing density is 0.0164 and KL-MVN-
based biasing density is 0.0081. In both cases, 104 samples are used
from the biasing densities. For this example, we observe that the KL-
MVN biasing density (constructed without any additional calls to the
limit state function) is a better biasing density since it leads to a re-
duction in the coefficient of variation by around a factor of two com-
pared to using the MPP-based biasing density. Notice that this example
has a linear limit state function which makes it easy to find the MPP,
leading to a good biasing density using MPP. This makes the reduction
in coefficient of variation of probability of failure estimate by a factor of
two using KL-MVN biasing density even more impressive and the gains
will be potentially much higher for non-linear limit states, where
finding a good biasing density using MPP is much more difficult.

Fig. 2 shows the resulting biasing densities and the failure
boundary. Note that the MPP-based biasing density successfully tilts the
distribution towards the failure region. However, since the MPP-based
method chooses the same variance as the nominal density with mean on
the failure boundary, samples drawn from that biasing density are far
from the failure boundary and about 50% of the samples are in the safe

region. This results in either small importance weights (which are prone
to numerical errors and increase variance in the estimate) or unin-
formative samples (in the safe region with indicator function equal to
zero). As can be seen from Fig. 2, the information-reuse-based a pos-
teriori biasing density places a large portion of samples in the failure
region, and close to the failure boundary, which leads to good im-
portance weights and variance reduction.

3.2. Reusing biasing densities from nearby designs for failure probability
computation

The second level of information reuse involves reusing the existing a
posteriori biasing densities (see Section 3.1) from past RBDO iterations
to construct a biasing density in current design iteration t. We propose
to reuse the a posteriori biasing densities corresponding to existing de-
signs …d d, , t0 1 from past optimization iterations that are close in de-
sign space.

A neighborhood of designs is defined as:
= d d dj t r: { | 0 1, },t j j t 2 where r is the radius of the

hypersphere defined by the user. The weights =j t, 0, , 1j for
existing a posteriori biasing densities are defined according to the re-
lative distance of design point dt to previously visited design points as

=
d dj t r

:
, 0 1,

0, else
.

d d
d d

j
j t 2

d

j t

j t i t
2

1

2
1

(14)

Note that == 1j
t

j0
1 . The weights for each biasing density in our

second level of information reuse reflects a correlation between the
designs, which exists if designs are close to each other. Nearby designs
from past optimization iterations will likely have similar failure regions
and thus similar biasing densities. We set the radius of the hypersphere
to only include designs that are in close proximity to the current design,
and otherwise set the weight to zero as seen in Eq. (14). In this work,
we chose the l2-norm as the distance metric, however, any other norm
can also be used in this method.

The information reuse biasing density for current design iteration t
is defined by the mixture of existing a posteriori biasing densities as
given by

=
=

q q: ,
j

t

j
0

1

*t j
(15)

where q *j are all the a posteriori biasing densities constructed using the
first level of information reuse (see Section 3.1) from the past RBDO
iterations j t{0, , 1} that are stored in a database. Using a mix-
ture distribution for constructing the biasing density also has the po-
tential to capture multiple disconnected failure regions.

3.3. Algorithm and implementation details

Algorithm 1 describes the implementation of IRIS-RBDO method
that constitutes of two levels of information reuse for an RBDO problem
as described by Eq. (1).

In this work, we set the radius of the specified hypersphere r to 0.5%
of the largest diagonal of the hypercube defining the design space. We
note that a distance measure of this nature works best if the design
space is normalized so that each design variable has the same scale. The
second level of information reuse described in Section 3.2 is used only if
there are nearby designs. If there are no nearby designs ( =t ) for
current optimization iteration t, we use an MPP-based [18] method (see
Appendix B on how to compute) for building a biasing density for im-
portance sampling with no reuse. However, any other method de-
pending on the user’s preference can be chosen to build the biasing
density for importance sampling with no reuse. Note that we do not put
any restrictions on how many designs to reuse, i.e., we reuse

Fig. 2. Illustrative example comparing a posteriori biasing density with MPP-
based biasing density.
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information from all nearby designs within the specified radius r, see
Eq. (14). However, the user can choose to limit the number of reused
designs.

Algorithm 2 shows the implementation for the failure probability es-
timation required in every iteration of Algorithm 1. We require the coef-
ficient of variation defined in Eq. (6), in the probability of failure estimate
to be within acceptable tolerance tol at iteration t. That is, we require

( )e P̂ .q
IS

tolt (16)

The value for tol can be set by the user depending on the level of accuracy
required for a specific application. We choose [10 , 10 ]tol

2 1 in the
applications presented in this paper. We follow an iterative process to add
samples and check if the coefficient of variation is below a specified error
tolerance. In this work, 100 samples are added at a time. However, to
ensure termination of the algorithm in case this criterion is not met, we set
a maximum number of samples mmax that shall not be exceeded at every
design iteration. Note that mmax can typically be set by taking into account
the values of Pthresh and tol.

After estimating dP̂ ( )q t
IS

t
within the specified relative error tolerance

,tol we reuse the existing samples to construct the a posteriori biasing
density q *t with optimal parameters *t using the method described in
Section 3.1. The algorithm then proceeds to the next optimization
iteration.

Remark 3 (Defensive importance sampling). Importance sampling (with a
good biasing density) is efficient for small probabilities and we are
commonly interested in low probabilities of failure in reliable
engineering design applications. It should be noted that for large
probabilities, importance sampling can be inefficient. To ensure a robust
method to guard against such cases when building biasing densities for
importance sampling with no reuse, one can use defensive importance
sampling (described in Appendix C) in combination with a method of
choice for importance sampling (in our case, MPP-based).However, we
found biasing densities built using IRIS to be efficient without the use of
defensive importance sampling even for higher probabilities of failure. A
reason is that we build the a posteriori biasing density via a weighted
sample average as given by Eqs. (12) and (13), where the weights depend
on the distance from the nominal density, naturally and efficiently
encoding the defensive part.For high probabilities of failure, IRIS should
potentially lead to similar number of required samples as defensive
importance sampling or generic Monte Carlo sampling, and we see that
to be the case in our numerical experiments.

Remark 4 (Optimizer and gradients). We emphasize that this work does
not develop a particular optimization algorithm for RBDO but provides
a general method of efficiently integrating information from past
optimization iterations into the reliability analysis. In this work, we
show the efficiency of the proposed method for both a gradient-free
optimizer and a gradient-based optimizer. Typically, it is difficult to
accurately estimate gradients of probability of failure making it
challenging to use a gradient-based optimizer for RBDO. However, for
high-dimensional optimization problems gradient-based optimizers
often are the only choice. If one wants to use a gradient-based
optimizer for black-box optimization, finite difference (although not
the most efficient) is a generic choice for calculating derivatives in a
number of off-the-shelf optimizers.The IRIS method offers an advantage
when finite difference is used to calculate the gradients because it
reuses biasing densities from a very close design (since the finite
difference step-size is very small) and leads to efficient estimates for the
probability of failure gradients. For differentiable dP̂ ( ),q

IS
the finite

difference estimate for derivative of the probability of failure at any
given design d is

+
=

d d e dP
d

P P
i n

^ ( ) ^ ( ) ^ ( )
, 1, ,q

i

q i q
d

IS IS IS

where is a small perturbation, and ei is the ith unit vector. We can
ensure that every probability of failure estimate meets a set error
tolerance tol as seen in Algorithm 2. The error in probability of failure
estimates directly affect the variance of the finite difference estimator
for the derivatives, and thus ensures that the variance is also under a
certain tolerance.The variance of the finite difference estimate for the
derivatives using IRIS is given by

+ +

+ +

[ ]d
d e d

d e d

P
d

P P

P P

ar
^ ( ) 1 ar ^ ( ) ar[ ^ ( )]

^ ( ) ^ ( ) .

q

i
q i q

q i q

IS

2

IS IS

tol
2

2

IS 2 IS 2

Notice that since ( ≪ r) is a small perturbation, we can use the IRIS
method for rest of the nd probability of failure estimates required in the
finite difference scheme after estimating dP̂ ( )q

IS
. Thus, using IRIS we

need substantially fewer samples to estimate +d eP̂ ( )q i
IS

while
maintaining the same error tolerance tol in the probability of failure
estimates required in the finite difference scheme as compared to
regular Monte Carlo estimator or importance sampling without reuse.
The variance of the derivative is also controlled through the error
tolerance given by Eq. (16).Further variance reduction at the cost of
additional bias can be obtained by using common random
numbers [47,48] for the finite difference scheme.There are also
several approximate methods available for estimating the gradient of
probability of failure that can also be used to solve the RBDO
problem [12,49–51].

4. Benchmark problem: Speed reducer

The speed reducer problem used in Ref. [52, Ch.10] is a benchmark
problem in RBDO. Here, we make the problem more challenging by
modifying the limit state functions in order to lead to lower prob-
abilities of failure for the system. We set a lower threshold probability
of failure of =P 10 ,thresh

3 as compared to 10 2 in Ref. [52]. The toler-
ance on coefficient of variation in probability of failure estimation
within IRIS-RBDO is set to = 0.01tol . This makes the estimation of the
lower failure probabilities within the specified tolerance more ex-
pensive and challenging than the original problem. The inputs to the
system are six design variables defined in Table 1 and three uncertain
variables defined as uncorrelated random variables in Table 2. Note
that the method can handle any distribution for the random variables
and they do not need to be uncorrelated. We fix the number of gear
teeth to 17.

Table 1
Design variables =d d d[ , , ]1 6

6 used in the speed reducer applica-
tion.

Design
variable

Lower bound
(mm)

Upper bound
(mm)

Initial design
(mm)

Best design
(mm)

d1 2.6 3.6 3.5 3.5
d2 0.7 0.8 0.7 0.7
d3 7.3 8.3 7.3 7.3
d4 7.3 8.3 7.72 7.88
d5 2.9 3.9 3.35 3.45
d6 5.0 5.5 5.29 5.34
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The RBDO problem formulation used in this work is given by

=

< =

d d

d

J f Z

g Z P i

min ( ) [ ( , )]

subject to ( ( , ) 0) 10 , 1, 2, 3,
d

p

i thresh
3 (17)

where

= × + ×
+ + +

+ +

d zf d z
d z d z d

z z d d

( , ) 0.7854 (3.3333 17 14.9334 17 43.0934)
1.5079 ( ) 7.477( )

0.7854( ),

1 1
2 2

1 3
2

6
2

3
3

6
3

2 3
2

4 7
2 (18)

is a cost function that penalizes the material used in the manufacturing
process with units of mm3. The limit state functions are

=

= = + × =

= = + × =

d z

d z

d z

g z
z z

g A
B

A z
z

B z

g A
B

A d
z

B d

( , ) 1 1.93
17

,

( , ) 1120 , 745
17

16.9 10 , 0.1 ,

( , ) 870 , 745
17

157.5 10 , 0.1 .

1
2
3

1 3
4

2
1

1
1

2

1

2
6

0.5

1 3
3

3
2

2
2

4

1

2
6

0.5

2 6
3

(19)

We used the COBYLA (constrained optimization by linear approxima-
tion) optimizer from the NLopt package to run the optimization and
also set a cut-off for maximum number of samples to be used in each
optimization iteration to = ×m 5 10max

5. COBYLA is a gradient-free
optimizer. We compare the efficiency of probability of failure estimates
using the proposed IRIS-RBDO method that reuses information to im-
portance sampling with no information reuse. We also compare those
results to subset simulation [29], a state-of-the-art method in reliability
analysis and failure probability estimation.1

Fig. 3 (a) shows the IRIS-RBDO convergence history versus the cu-
mulative computational cost in terms of number of samples used. We
see that the optimization requires around 2 × 105 samples before it
finds the first feasible design. The probability of failure history seen in
Fig. 3 (c) shows the progress of designs from infeasible to feasible re-
gions during the optimization. The best design obtained in this case is
given in Table 1, which had an associated cost of 3029.2 mm3.

The total number of samples used in each optimization iteration in
IRIS-RBDO versus importance sampling with no reuse and subset
sampling is shown in Fig. 4 (a). Note that we are showing the plots for
the same designs in each RBDO iteration for all the cases, which makes
it a one-to-one comparison. When no designs are nearby, our method
also builds a biasing density with no reuse, hence the two markers
overlap in those iterations. Otherwise, IRIS-RBDO always outperforms
the other methods. IRIS-RBDO leads to overall computational savings of
around 51% compared to importance sampling with no reuse and

subset sampling throughout the optimization. Current implementation
of subset simulation performs similar to the importance sampling with
no reuse for the speed reducer problem. For this problem, subset si-
mulation using 104 samples in each level does not meet the error tol-
erance (see Fig. 4 (c)). However, IRIS and importance sampling with no
reuse meet the set tolerance ( = 0.01tol ) on the coefficient of variation
in probability of failure estimate for every optimization iteration as
seen in Fig. 4 (c).

Fig. 4 (b) compares performance of IRIS-RBDO vs importance sampling
with no reuse and subset simulation by showing the number of samples
required for the corresponding probability of failure estimates. For the
case when there is no reuse, we see that the required number of samples is
approximately inversely proportional to the respective probability of
failure. However, for IRIS the required number of samples depend on the
quality and amount of information reused. In this case, using IRIS we
considerably reduce the number of samples required even for lower
probabilities of failure due to the extra information about the failure
boundary encoded in the biasing density by reusing information from the
past optimization iterations. As noted before, when the markers overlap it
means that there was no nearby designs and the biasing density was built
with no reuse (here, MPP-based) during IRIS-RBDO.

The number of designs reused in each optimization iteration of IRIS-
RBDO is shown in Fig. 5. Reusing designs leads to computational sav-
ings because of better biasing densities. As the iteration converges, IRIS-
RBDO finds many close designs and beneficially reuses the biasing
densities; compare this to Fig. 4 (a) to see how reuse saves model
evaluations. However, note that the computational savings are not di-
rectly proportional to the number of reused designs. For iterations
where no designs were reused—typically in the early design space ex-
ploration stage—the biasing density was built without any information
reuse (here, MPP-based).

5. RBDO for a combustion engine model

In this section, we show the effectiveness of the proposed IRIS-
RBDO method when applied to the design of a combustion engine. The
advent of reusable rockets for space flight requires new, more durable,
engine designs [53]. Satisfying reliability constrains is not only im-
portant for safety, but also for durability, as failure to meet reliability
constraints results in excessive wear of the engine, in turn limiting the
rockets’ repeated use. The computational model used to analyze the
combustion engine is described in Section 5.1. Section 5.2 describes the
RBDO problem formulation and the results are discussed in Section 5.3.

5.1. Computational model

We consider a continuously variable resonance combustor (CVRC),
which is a single element model rocket combustor as illustrated in Fig. 6. The
CVRC is an experiment at Purdue University which has been extensively
studied both experimentally [54–56] and computationally [57–59].

5.1.1. Governing equations and geometry
The experiment is modeled with a quasi-1D2 partial differential

equation model. Fig. 7 shows the computational domain of the com-
bustor, plotting the one-dimensional spatial variable x versus the
combustor radius R(x). From left to right, the figure shows the five
important combustor segments, separated by the dashed lines: the in-
jector, back-step, combustion chamber, back-step and nozzle. The in-
jector length is =L 3.49i cm, the chamber length is =L 38.1c cm, the
length of both backsteps is fixed at =L 3.81bs cm and the nozzle length is

=L 0.635n cm. The spatial variable is thus considered as

Table 2
Uncertain variables modeled as vector-valued random variable z 3

with realization =z z z z[ , , ]1 2 3 used in the speed reducer application.

Random variable Distribution Mean Standard deviation (μm)

z1 Normal d2 1
z2 Normal d4 30
z3 Normal d6 21

1 We use the recent Markov Chain Monte Carlo implementation for subset
simulation of [30] (https://www.mathworks.com/matlabcentral/fileexchange/
57947-monte-carlo-and-subset-simulation-example?s_tid=prof_contriblnk)
where we use 104 samples in each level. Note that we tried different sample
sizes for each level and settled on 104 in order to get close to the set error
tolerance. For this problem, subset simulation does not meet the set error tol-
erance as seen later. We use the approximate error estimate for subset simu-
lation from [30].

2 The three dimensional state variables are averaged across the combustor,
resulting in a stream-wise dependence of the state variables, i.e., states are x-
dependent.
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+ +x L x L L L2i bs c n. The injector radius is given by Ri and the
combustion chamber radius is given by Rc. The nozzle radii are

=R 1.0401t cm at the throat and 1.0922cm at the exit.
The quasi-1D Euler partial differential equation model for the

CVRC [59,60] is given as

= +
+

+
+

t
u

E
Y

A x

A u
A u p
Au E p

A uY

p
A

A
x

u

h
C

1 ( )
( )

d
d

/

,

f

f

f

f f o
ox

2

ox
0

/ (20)

which we solve for the steady-state solution = 0t via pseudo-time
stepping. In the following we compute steady-state solutions for Eq.
(20), i.e., time-independent solutions. The velocity is u(x) and Y x( )ox is
the oxidizer mass fraction. The state variables are density (x), specific
momentum (x)u(x), total energy E(x), and x Y x( ) ( )ox . The equation of
state

= +E p u
1

1
2

2
(21)

relates energy and pressure p(x) via the heat capacity ratio . In the
source terms of Eq. (20), which model the chemical reaction and the
cross-sectional area variation, h0 denotes the heat of reaction, which is
taken as a constant. The fuel-to-oxidizer ratio is the parameter Cf o/ .
Moreover, = =A A x R x( ) ( )2 encodes the cross-sectional area of the
combustor as a function of x . Fuel at a mass-flow rate mf is injected
through an annular rig at the backstep after the oxidizer injector,
centered at coordinate =x L ,f see also Fig. 7. The forcing function f in
Eq. (20) is then modeled as

=
+

++ +x m
m

A x x x
x( , )

( ) (1 sin( ( )))d
(1 sin( ( ))),f f

f

L
L L L2
i
bs c n

(22)

Fig. 3. Optimization progress using IRIS-RBDO showing (a) the objective function value for designs from all optimization iterations, (b) magnified convergence plot
of feasible designs against the cumulative computational cost in terms of number of samples, and (c) probability of failure history in each optimization iteration for
the speed reducer problem.
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x
x l
l l

l x l
( ) 2

2 ,

0, else
,

s

f s
s f

(23)

where =l L 4.44s f and = +l L 3.18f f . The computational model is a
finite-volume discretization with upwinding, where we use 800 non-
uniform finite volume elements and a fourth order Runge-Kutta in-
tegration scheme. The CPU time required for one evaluation of the
computational model is on average around 20 seconds.

5.1.2. Boundary conditions
The inlet boundary condition is modeled via a subsonic inlet. At the

inlet, we prescribe the oxidizer mass flow rate mox and the oxidizer
concentration Yox. The inlet stagnation temperature T0 is determined as
follows: we prescribe a reference temperature T∞ and reference pres-
sure p∞, which are typically given from upstream components of an

engine. We then use the relation = +T T
m R T

A p C0
1
2 p

ox
2

gas
2 2

2 2 with universal gas

constant = ×R 8.314 10 g
molgas

3 and specific heat of the fuel
= ×C 4.668 10p

J
kg K

3 . Due to the subsonic nature of the boundary, the
pressure is extrapolated from the domain. Having m Y T p, , ,ox ox 0 at the
inlet allows us to compute the boundary conditions for the state vari-
ables. The downstream boundary is modeled as a supersonic outlet,
with constant extrapolation of the state variables.

5.1.3. Design variables
We define a four-dimensional design space with the following

design variables d 4: the geometric parameters of the injector
radius Ri, the combustion chamber radius Rc and the location of the fuel
injection Lf (see Fig. 7), and the mass-flow rate mf that enters into the
forcing model in Eq. (22). The design variables =d R R L m[ , , , ]i c f f
and the respective bounds are given in Table 3.

Fig. 4. Comparison of IRIS, importance sampling (IS) with no reuse and subset simulation for the same designs showing (a) number of samples required in each
optimization iteration, (b) number of samples required to calculate the corresponding probabilities of failure, and (c) error in probability of failure estimate
(quantified by the coefficient of variation) in each optimization iteration for the speed reducer problem.
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5.1.4. Uncertain variables
The reference pressure p∞ and the reference temperature T∞ are

typically measured from upstream components of the combustion en-
gine and are therefore subject to uncertainty. They enter in the inlet
boundary conditions, see Section 5.1.2. Another uncertain variable is
the fuel-to-oxidizer ratio Cf/o which enters into the forcing term in the
governing equations, Eq. (20), and in practice is also uncertain. Since
all three uncertain variables are known within certain bounds, we
model them as a vector-valued random variable Z with a uniform
probability distribution. A realization of the random variable is

=z p T C[ , , ]f o/
3. We list the three uncertain variables and

their respective probability distributions (in this case, uncorrelated) in
Table 4.

5.2. RBDO formulation: Objective function and reliability constraints

Having defined both the design variables and uncertain variables,
we note that solutions to the state Eqs. (20) and (21) depend on the
design =d R R L m[ , , , ]i c f f and a realization =z p T C[ , , ]f o/ of the
uncertain parameters, i.e., the pressure = d zp x p x( ) ( ; , ). We next de-
scribe the cost function for RBDO and the reliability constraints,which

Fig. 5. Number of designs reused in IRIS in each optimization iteration for the
speed reducer problem.

Fig. 6. CVRC experimental configuration from [55]. The computational domain for the reactive flow computations is given in Fig. 7.

Fig. 7. Computational domain (dashed area in Fig. 6) for the CVRC model combustor and its segments. The injector radius Ri and combustion chamber radius Rc are
design parameters (for this plot chosen as the mean of the design parameter intervals). The location of the fuel source, Lf, is also a design variable.

Table 3
Design variables =d R R L m[ , , , ]i c f f

4 used in the combustion engine problem.

Design variable Description Range Initial design Best design

Ri Injector radius [0.889, 1.143]cm 1.02 1.14
Rc Combustion chamber radius [1.778, 2.54]cm 2.16 2.41
Lf Location of fuel injection [3.5, 4]cm 3.75 3.5
mf Mass flow rate for fuel injection [0.026, 0.028]kg/s 0.027 0.026

A. Chaudhuri, et al. Reliability Engineering and System Safety 201 (2020) 106853

12



then completes the RBDO problem formulation from Eq. (1).

5.2.1. Cost function
We are interested in maximizing C⋆ (“C-star”) efficiency, also

known as characteristic exhaust velocity, a common measure of the
energy available from the combustion process of the engine. To com-
pute C⋆, we need the total mass flow rate at the exhaust,

= +m m mout ox f . The oxidizer mass flow rate mox is given via
=m m

Cox
f

f o/
with the equivalence ratio ϕ computed from reference mass-

flow and oxidizer-flow rates as = C
0.0844

f o/
. We then obtain

=m m11.852ox f . The outlet mass flow rate follows as
=dm m( ) 12.852out f . Recall, that mf is a design variable.

The C⋆ efficiency measure is defined as

=d z d z
d

C p A
m

( , ) ( , )
( )

,t

out

with units of m/s. Here, =A Rt t
2 denotes the area of the nozzle throat

(see Fig. 7 for the nozzle radius Rt) and

Table 4
Random variable z 3 with realization =z p T C[ , , ]f o/ used in the combustion engine problem.

Uncertain variable Description Distribution Range

p∞ Upstream pressure Uniform [1.3, 1.6]MPa
T∞ Upstream oxidizer temperature Uniform [1000, 1060]K
Cf/o Fuel-to-oxidizer ratio Uniform [0.10, 0.11]

Fig. 8. Optimization progress using IRIS-RBDO showing (a) convergence history of mean C* values for designs from all optimization iterations, (b) magnified
convergence plot of feasible designs vs the cumulative computational cost in terms of number of samples, and (c) probability of failure history in each optimization
iteration for the combustion engine problem.
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+ +
d z d zp

L L L L
p x x¯ ( , ): 1

2
( ; , )d

L

L L L

i bs c n

2

i

bs c n

is the spatial mean of the steady-state pressure. We then define the
quantity of interest ×f : as

=d z d zf C( , ) ( , ),

and recall that the RBDO objective is to minimize the cost function from
Eq. (1).

5.2.2. Reliability constraint
The reliability constraint is based on the maximum pressure, as

engines are unsafe if the maximum chamber pressure exceeds a certain
threshold. Here, we limit the pressure deviation in the engine relative to
the inflow pressure to 13.5% to define failure, i.e., the engine is safe if

<max 0.135d z
x

p x p
p

( ; , ) . The limit state function ×g: for
this example is

=d z
d z

g
p x p

p
( , ) 0.135 max

( ; , )
,

x

where the pressure p(x; d, z) is computed by solving Eqs. (20)–(21) for
design d and with a realization z of the random variable. Note that p∞ is
an uncertain variable, defined in Section 5.1.4. Failure of the system is
defined by g(d, z) < 0. Recall from Eq. (1) that the reliability con-
straint is <dg Z P( ( , ) 0) thresh. For the CVRC application, the
threshold on the reliability constraint is set at =P 0.005thresh with error
tolerance = 0.05tol in Eq. (16).

5.3. Results of RBDO

We use the fmincon optimizer in MATLAB to run the optimization.
fmincon is a gradient-based optimizer that uses finite difference to
estimate the gradients. The maximum number of samples allowed in
each optimization iteration for estimating the probability of failure set
to =m 10max

4. Note that in this case, the mmax value is governed by cost

Fig. 9. (a) Comparison of IRIS and importance sampling (IS) with no reuse for the same designs showing number of samples required in each optimization iteration,
(b) number of samples required to calculate the corresponding probabilities of failure, and (c) the error in probability of failure estimate (quantified by the coefficient
of variation) using IRIS in each optimization iteration for the combustion engine problem.
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of evaluation of the computational model. IRIS-RBDO convergence
history in Fig. 8 (a) shows that it requires more than 2.5 × 104 samples
before the optimizer finds the first feasible design. The probability of
failure history in Fig. 8 (c) shows the progress of designs from infeasible
to feasible regions during the optimization of the combustion engine.
The best design obtained through RBDO is given in Table 3 and the
optimal mean C* efficiency obtained is 1426.2 m/s.

Fig. 9 (a) shows the number of samples used in each optimization
iteration using IRIS-RBDO compared to importance sampling with no
reuse. Note that the comparison is shown for the same designs in each
optimization iteration so that we can make a direct comparison of the
computational efficiency. We can see that when biasing density was
built with no reuse (here, MPP-based), the number of required samples
reached the maximum of 104 in most of the optimization iterations.
There were only six cases for IRIS-RBDO that reached the maximum
number of samples. In this case, IRIS-RBDO leads to overall computa-
tional saving of around 76% compared to importance sampling with no
reuse. The efficiency of IRIS-RBDO can also be seen from Fig. 9 (b) that
shows the required number of samples for corresponding probability of
failure estimates. We can see that specifically for low probabilities of
failure, the required number of samples are substantially lower when
compared to building biasing densities with no reuse.

Fig. 9 (c) shows that the coefficient of variation (error) in prob-
ability of failure estimate for IRIS-RBDO is below the set tolerance
( = 0.05tol ) for all but six optimization iterations. All of the cases where
the error tolerance was not met for IRIS-RBDO occurred because for
these cases the required number of samples reached m ,max which is set
to 104 (as seen from Fig. 9 (a)). These were also the same cases where
there were no nearby designs (as seen from Fig. 9 (a)) which mean that
even IRIS builds the biasing density with no information reuse (here,
MPP-based).

The number of designs reused in each optimization iteration by
IRIS-RBDO is shown in Fig. 10. We can see that all six cases of IRIS-
RBDO that required 104 samples were cases where no nearby designs
were available, i.e., no information was reused. However, we can see
that for most of the cases where information was reused, the required

number of samples was lower compared to building biasing densities
with no reuse (see Fig. 9 (a)). The required number of samples are the
same when there are zero reused designs. We can also see the additional
advantage of the IRIS method for the gradient-based optimizer using
finite difference. As pointed out in Remark 4, after estimating the
probability of failure at a particular design, the next nd probability of
failure estimates required for the finite difference estimate of the de-
rivative will always use the IRIS method in the implementation of our
method with a gradient-based optimizer. This can be clearly seen from
the first +n 1d (here, five) optimization iterations shown in Fig. 10,
where designs are reused after the first iteration. The efficiency of using
the IRIS method is reflected by concurrently looking at the number of
samples required by IRIS in the first +n 1d optimization iterations in
Fig. 9 (a). Note that in this case, an optimization iteration refers to
either a probability of failure estimate at a given design or the prob-
ability of failure estimates required for the gradient.

6. Concluding remarks

This paper introduced IRIS-RBDO (Information Reuse for
Importance Sampling in RBDO), a new importance-sampling-based
RBDO method. IRIS-RBDO reuses information from past optimization
iterations for computationally efficient reliability estimates. The
method achieves this by building efficient biasing distributions through
two levels of information reuse: (1) reusing the current batch of samples
to build an a posteriori biasing density with optimal parameters for all
designs, and (2) reusing a mixture of the a posteriori biasing densities
from nearby past designs to build biasing density for the current design.
The rich source of existing information from past RBDO iterations helps
in constructing very efficient biasing densities. The method can also
overcome bad initial biasing densities and there is no bias in the re-
liability estimates. We show the efficiency of IRIS-RBDO through a
benchmark speed reducer problem and a combustion engine problem.
IRIS-RBDO leads to computational savings of around 51% for the speed
reducer problem and around 76% for the combustion engine problem as
compared to building biasing densities with no reuse (using MPP in this
case). In this work, we develop the information reuse idea for im-
portance sampling in RBDO but the method can be easily extended to
building initial biasing densities for adaptive importance sampling
schemes used in the RBDO setup, and we will explore this in a future
work.
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Appendix A. Proof for Theorem 1

The proof follows from similar work in the cross-entropy method [24], where KL divergence is applied in a different context than in this RBDO
work. In this section, we derive the analytic solution for the parameters of multivariate normal density, which is chosen to be the distribution in this
work. Consider the multivariate normal density with parameters = µ{ , }:

Fig. 10. Number of designs reused in IRIS in each optimization iteration for the
combustion engine problem.
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Taking the logarithm of qθ(z), we get
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Then the objective function of the optimization problem given by Eq. (11) at iteration t can be rewritten as
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where z qi t.
The local optimum of Eq. (11) given by parameters = µ* { , }t t t for RBDO iteration t can be found by equating the gradients of Eq. (A.3) to zero

(Karush–Kuhn–Tucker (KKT) conditions).
The local optimum μt is found by setting the gradient of µ( , ) w.r.t. μ to zero as given by
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which then leads to the solution for the parameter μt as given by
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We used the fact that Σ is symmetric positive definite to get the derivative in Eq. (A.4). The expression given by Eq. (12) can then be derived by
writing out each entry of the vector in Eq. (A.5) as given by
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Since in Eq. (12), the indicator function =d z( , ) 1t it only for the failed samples z ,i t the indicator function can be removed by taking the sum
over the failed samples.

In order to show that Eq. (12) is the global minimum, we take the second-order partial derivative of µ( , ) w.r.t. μ as given by
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We get convexity in μ because µ
2 is positive definite. We know that the local minimum in convex optimization must also be the global

minimum [61]. Thus, Eq. (12) is the global optimum for μ.
In order to derive the local optimum Σt, we rewrite µ( , ) using traces due to its usefulness in calculating derivatives of quadratic form. Note

that z µ z µ( ) ( )i i
1 is a scalar and thus is equal to its trace, z µ z µtr(( ) ( ))i i

1 . Since the trace is invariant under cyclic permutations, we
have

=z µ z µ z µ z µtr(( ) ( )) tr(( )( ) ).i i i i
1 1 (A.8)

We can take the derivative of the above expression w.r.t. the matrix 1 to get

=z µ z µ z µ z µ(tr(( )( ) )) ( ) ( ).i i i i
11 (A.9)

Also note that since 1 is a symmetric positive definite matrix, we have

= =ln .1
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(A.10)

Using Eq. (A.8) and the fact that the determinant of the inverse of a matrix is the inverse of the determinant, µ( , ) can be rewritten as
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We can substitute the optimum value μt given by Eq. (A.5) in Eq. (A.11) to get
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The local optimum Σt is found by taking the gradient of ( ) w.r.t. the matrix 1 using the properties described in Eqs. (A.9) and (A.10), and
equating it to zero, as given by
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which then yields
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The expression given by Eq. (13) can be derived by writing out each entry of the matrix in Eq. (A.14) to get
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As noted before, the indicator function =d z( , ) 1t it only for the failed samples zi t and can be removed by taking the sum over the failed
samples in Eq. (13).

In order to show that Eq. (13) is the global minimum, we take the second-order derivative of ( )1 w.r.t. 1 as given by
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We get convexity in 1 because 2
1 is positive definite. Thus, Eq. (13) is the global optimum for Σ [61].

Appendix B. Most probable failure point

The point with the maximum likelihood of failure is called the most probable failure point (MPP), see [18,62] for further reading. Typically, this
is found by mapping Z ~ p to the standard normal space U 0 1( , diag( )) nr . Let the mapping be done by using some transformation =u zT [ ].
Then the MPP can be found by minimizing the distance from the mean to the limit state failure boundary =zg ( ) 0 in the standard normal space. The
optimization problem used to find the MPP is given by

=

u

ug T

min

subject to ( [ ]) 0.
u

2

1
nr

(B.1)

Appendix C. Defensive importance sampling

While exploring the design space, the system can have small and large failure probabilities. For small failure probabilities, importance sampling
with q is an efficient sampling scheme. For large failure probabilities, standard sampling from the nominal density p leads to good convergence of the
estimate. Defensive importance sampling [63] proposes to sample from the mixed biasing density

= +q q p: (1 ) .

In [63] it is suggested to use 0.1 ≤ α < 0.5. However, this is for computing small failure probabilities only. An adaptive approach to choose α can be
used to account for both rare and common events. Algorithm 3 describes one such adaptive method where we start with = 1 and sample the mean.
Then decrease α if the mean has not converged (which is often the case in small failure probabilities), effectively sampling more from the biasing

Require: Nominal densityp, biasing density (can be mixture)q, designdt.
Ensure: Adaptive mixture densityqα.

1: procedure AdaptiveISdensity(p, q,Pthresh)
2: α0 = 1, k = 1;
3: while P̂IS(dt) not convergeddo
4: qαθt := (1− α)q+ αp
5: mk = kP−1

thresh

6: ComputêPIS(dt) with samples fromqαθt .

7: Assignα = |# of failed samples|
mk

8: k = k+ 1.
9: end while

10: return P̂IS
qαθt

(dt)

11: end procedure

Algorithm 3. Adaptive defensive importance sampling.
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density.
Combining defensive importance sampling with IRIS, the information reuse biasing density with defensive importance sampling is given by

= +
=

q q p: (1 ) .
i

t

i
0

1

*t i
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