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Abstract. This paper shows how to systematically and efficiently improve a reduced-order model (ROM) to obtain a5
better ROM-based estimate of the Conditional Value-at-Risk (CVaR) of a computationally expensive quantity6
of interest (QoI). Efficiency is gained by exploiting the structure of CVaR, which implies that a ROM used for7
CVaR estimation only needs to be accurate in a small region of the parameter space, called the ε-risk region.8
Hence, any full-order model (FOM) queries needed to improve the ROM can be restricted to this small region9
of the parameter space, thereby substantially reducing the computational cost of ROM construction. However,10
an example is presented which shows that simply constructing a new ROM that has a smaller error with the11
FOM is in general not sufficient to yield a better CVaR estimate. Instead a combination of previous ROMs12
is proposed that achieves a guaranteed improvement, as well as ε-risk regions that converge monotonically13
to the FOM risk region with decreasing ROM error. Error estimates for the ROM-based CVaR estimates14
are presented. The gains in efficiency obtained by improving a ROM only in the small ε-risk region over a15
traditional greedy procedure on the entire parameter space is illustrated numerically.16
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1. Introduction. In this paper we develop an approach to systematically and efficiently im-19

prove a reduced-order model (ROM) to obtain a better ROM-based estimate of the Conditional20

Value-at-Risk (CVaR) of a computationally expensive quantity of interest (QoI). This paper builds21

on our recent work [3], where we analyzed uses of ROMs to substantially decrease the compu-22

tational cost of sampling based estimation of CVaR. Our previous paper used the approximation23

properties of a ROM, but the ROMs could have been computed separately. This paper integrates24

the ROM generation into the estimation process. Efficiency is gained by exploiting the struc-25

ture of CVaR, which implies that a ROM used for CVaR estimation only needs to be accurate26

in a small region of the parameter space. Hence, any expensive full-order model (FOM) queries27

needed to improve a given ROM can be restricted to this small region of the parameter space,28

thereby substantially reducing the computational cost of ROM construction. CVaR and related risk29

measures have been used to quantify risk in a variety of applications ranging from portfolio opti-30

mization [18, 8, 11], engineering design [16, 23, 21, 19], to PDE-constrained optimization [7, 25].31

While in special cases the CVaR for some random variables with known distributions can be com-32

puted analytically [12], for most science and engineering applications the distribution of the QoI33
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is not known analytically. Instead, this distribution depends on the distribution of the random vari-34

ables entering the system and on the dependence of the system state (often the solution of a partial35

differential equation (PDE)) on these random variables. In this situation CVaR must be estimated36

by sampling the QoI, and each sample requires a computationally expensive solution of the FOM37

system equations. The ROM approach proposed in this paper provides sequences of CVaR esti-38

mates with guaranteed error bounds, and decreasing errors with substantially reduced total number39

of expensive FOM evaluations.40

Estimating the CVaR of a QoI requires sampling in the tail of the distribution of the QoI, and41

these samples lie in a small region, called the risk region, of the parameter space. Unfortunately,42

as indicated earlier, this risk region is not known analytically, but must be estimated from samples43

of the QoI. In [3] we have shown how to use a ROM for which an error estimate is available to44

construct a so-called ε-risk region that contains the true risk region of the original computation-45

ally expensive FOM QoI, and an estimate of the CVaR of the FOM QoI that only requires ROM46

evaluations. The error between the CVaR of the FOM QoI and this ROM based CVaR estimate47

depends only on the ROM error in the ε-risk region. Therefore we need to improve the ROM only48

in the ε-risk region. This is typically achieved by evaluating the FOM. Since these FOM queries49

are now restricted to the small ε-risk region and not the entire parameter space our tailored process50

of improving the ROM is computationally substantially more efficient than traditional approaches.51

However, we present a simple example which shows that simply constructing a new ROM that has52

a smaller error with the FOM is in general not sufficient to yield a better CVaR estimate. Instead53

we propose a combination of the previously used ROM with the new ROM that achieves a guar-54

anteed improvement in the CVaR estimate of the FOM QoI. We present error estimates for our55

ROM-based CVaR estimates, and we numerically demonstrate the gains in efficiency that can be56

obtained by improving a ROM only in the small ε-risk region over a traditional greedy procedure57

on the entire parameter space.58

ROMs play a role in multifidelity methods for uncertainty quantification and optimization,59

see, e.g., the survey [13]. However, this survey focuses on the risk neutral expected value esti-60

mation. The use of ROMs for CVaR estimation and risk averse optimization is more recent and61

more limited. As we have already stated in [3], ‘Proper orthogonal decomposition based ROMs62

have recently been used in [21] to minimize CVaRβ for an aircraft noise problem modeled by the63

Helmholtz equation. However, they do not adaptively refine the reduced-order models, nor analyze64

the impact of ROMs on the CVaRβ estimation error.’ ‘The design of an ultra high-speed hydrofoil65

by using CVaRβ optimization is considered by Royset et al. [19]. They propose to build surrogates66

of the CVaR of their QoI and model these surrogates as random variables “due to unknown error67

in the surrogate relative to the actual value” of the CVaR of their QoI. This randomness in the68

CVaR surrogate is then incorporated into the design process by applying CVaR again, but with a69

different quantile level to the surrogate. Ultimately, they use a surrogate for the quantity of interest70

that combines high-fidelity and low-fidelity QoI evaluations into a polynomial fit model. Our work71

does not require additional stochastic treatment of model error, and focuses on the efficient and72

accurate sampling of CVaR using ROMs of the QoI that satisfy the original governing equations.’73

Zahr et al. [22] extend the adaptive sparse-grid trust-region method of Kouri et al. [6] to include74

ROMs into optimization under uncertainty. The algorithm allows differentiable risk measures,75

such as a smoothed CVaR, but the numerical example in [22] considers risk neutral optimization76
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ADAPTIVE ROM CONSTRUCTION FOR CONDITIONAL VALUE-AT-RISK ESTIMATION 3

using the expected value. While sparse grids can be very efficient for the integration of QoIs that77

are smooth in the random variables, numerical results [20, Sec. 3.2.4] indicate that they may not78

be much more efficient than plain Monte-Carlo sampling when applied to CVaR and other risk79

measures. Thus improving the efficiency of Monte-Carlo sampling by integrating ROMs, CVaR80

structure, and Monte-Carlo sampling as proposed in this paper seems beneficial for risk averse81

optimization.82

Chen and Quarteroni [1] integrate ROMs into the evaluation of failure probabilities. An adap-83

tive approach [1, Alg. 3] refines the ROM by a greedy method based on a criterion that tends to84

place snapshots near the boundary of the failure region in parameter space. However, no error85

estimates or improvement guarantees are given. The approach introduced in this paper could be86

integrated into [1, Alg. 3].87

The paper by Zou et al. [26], which is an extension of [24], is closest to our paper in spirit. They88

compute estimates of general risk measures including CVaR based on a ROM and on error estimates89

that take into account the structure of the risk measure. However, their analysis is tied to their ROM90

approach, which uses a piecewise linear approximation over a Voronoi tessellation of the parameter91

space. To improve their ROM the Voronoi tessellation is refined as necessary. Their error estimates,92

which are tailored to the structure of the risk measure, tend to refine Voronoi tessellation primarily93

in subregions of the parameter space roughly corresponding to what we referred to earlier as the94

risk region. In contrast, our basic analysis is based on a generic ROM for which an error estimate95

is available and we propose a combination of ROMs that leads to a guaranteed improvement of96

the ROM-based CVaR estimate. We then tailor our general framework to a class of widely used97

projection-based ROMs, see, e.g., [2], [4], or [15].98

This paper is organized as follows. Section 2 introduced the problem formulation and reviews99

results from [3] that are needed for the integration of ROM construction. Section 3 presents our100

new adaptive ROM strategy for CVaR computation and gives a complete algorithm. Section 4101

discusses practical aspects of the algorithm implementation as well as construction and error es-102

timation for projection-based ROMs. In Section 5 we present numerical results to support our103

theoretical findings and show the computational savings of our proposed adaptive ROM approach.104

2. Problem formulation and background. This section introduces the basic problem setting105

and notation, and reviews some results on CVaR. Specifically, in subsection 2.1 we define the106

state equation and the QoI. Subsection 2.2 defines the CVaR and its corresponding risk region, and107

subsection 2.3 briefly reviews the sampling-based computation of CVaR.108

2.1. The state equation and quantity of interest. Given a random variable ξ with values109

ξ ∈ Ξ ⊂ RM and with density ρ, we are interested in the efficient approximation of risk measures110

of the random variable111

(2.1) ξ 7→ s(y(ξ)),112

where s : RN 7→ R is a quantity of interest (QoI) which depends on y : Ξ 7→ RN which is implicitly113

defined as the solution of the the state equation114

(2.2) F(y(ξ),ξ) = 0 for almost all ξ ∈ Ξ,115

with F : RN ×Ξ 7→ RN . For now we assume that (2.2) has a unique solution y(ξ) for almost all116

ξ ∈ Ξ. Later we will verify this assumption for the specific applications we consider.117
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For many results in this paper, the specific structure (2.1), (2.2) of the QoI is not important.118

Therefore we define119

(2.3) X = s(y(·)).120

We assume that X ∈ L1
ρ(Ξ). The expected value of a random variable X is E[X ] =

∫
Ξ

X(ξ)ρ(ξ)dξ.121

2.2. Conditional Value-at-Risk. We review basic properties of the Conditional Value-at-Risk122

at level β, denoted as CVaRβ, that are required within this paper. The CVaRβ is based on the Value-123

at-Risk (VaRβ). For a given level β ∈ (0,1) the VaRβ[X ] is the β-quantile of the random variable124

X ,125

(2.4) VaRβ[X ] = min
t∈R

{
Pr
[
{ξ ∈ Ξ : X(ξ)≤ t}

]
≥ β

}
.126

We often use the short-hand notation {X ≤ t}= {ξ ∈ Ξ : X(ξ)≤ t} and the indicator function127

IS(ξ) =

{
1, if ξ ∈ S,
0, else.

128

Different equivalent definitions of CVaRβ exist. The following definition is due to Rockafellar129

and Uryasev [17, 18]. The CVaRβ at level β ∈ (0,1) is130

(2.5) CVaRβ[X ] = VaRβ[X ]+
1

1−β
E
[(

X−VaRβ[X ]
)
+

]
.131

The representation (2.5) of CVaRβ[X ] motivates the following definition.132

Definition 2.1. The risk region corresponding to CVaRβ[X ] is given by133

(2.6) Gβ[X ] :=
{

ξ ∈ Ξ : X(ξ)≥ VaRβ[X ]
}
.134

As mentioned before, VaRβ[X ] and CVaRβ[X ] depend only on the values of X that lie in the135

upper tail of the c.d.f. In particular, for any set Ĝ with136

(2.7) Gβ[X ]⊂ Ĝ⊂ Ξ137

we can write the VaRβ in (2.4) as138

VaRβ[X ] = min
t∈R

{
Pr
[{

ξ ∈ Ĝ : X(ξ)≤ t
}]
≥ β

}
,(2.8)139

140

and the CVaRβ (2.5) as141

CVaRβ[X ] = VaRβ[X ]+
1

1−β

∫
Ĝ

(
X(ξ)−VaRβ[X ]

)
+

ρ(ξ)dξ.(2.9)142
143

These representations show that we only need values of X in a subdomain Ĝ of the parameter space144

that includes the risk-region. In section 3 we will use ROMs to compute approximations Ĝ of the145

risk region with the property (2.7) and for parameters ξ ∈ Ĝ we will approximate the FOM QoI X146

by the ROM approximation. However, before we introduce ROMs, we briefly discuss sampling-147

based estimation of CVaRβ, upon which practical ROM-based CVaRβ estimators are based.148
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Algorithm 2.1 Sampling-based estimation of VaRβ and CVaRβ.

Input: Set Ξm = {ξ(1), . . . ,ξ(m)} ⊂ Ξ of finitely many parameters and corresponding probabilities
p(1), . . . , p(m), risk level β ∈ (0,1), and random variable X : Ξ→ R.

Output: Estimate V̂aRβ[X ] and ĈVaRβ[X ].
1: Evaluate X at the parameter samples: X(ξ(1)), . . . ,X(ξ(m)).
2: Sort values of X in descending order and relabel the samples so that

(2.10) X(ξ(1))> X(ξ(2))> .. . > X(ξ(m)),

and reorder the probabilities accordingly (so that p( j) corresponds to ξ( j)).
3: Compute an index kβ such that

kβ−1

∑
j=1

p( j) ≤ 1−β <

kβ

∑
j=1

p( j).

4: Set

V̂aRβ[X ] = X(ξ(kβ)),(2.11)

Ĝβ[X ] =
{

ξ ∈ Ξm : X(ξ)≥ V̂aRβ[X ]
}
,(2.12)

ĈVaRβ[X ] =
1

1−β

kβ−1

∑
j=1

p( j)X(ξ( j))+
1

1−β

(
1−β−

kβ−1

∑
j=1

p( j)
)

V̂aRβ[X ].(2.13)

2.3. Sampling-based estimation of VaRβ and CVaRβ. Algorithm 2.1 below is used to obtain149

sampling-based estimates of VaRβ[X ] and CVaRβ[X ]. The algorithm is standard, see, e.g. [18]. For150

additional information see [3].151

We note that the second term on the right-hand side of equation (2.13) in Algorithm 2.1 is152

nonzero for the case ∑
kβ−1
j=1 p( j) 6= 1−β and is based on the idea of splitting the probability atom at153

VaRβ[X ] (see [18]). An important observation is that the estimates (2.11) and (2.13) depend only on154

the parameters in the sample risk-region Ĝβ[X ] (2.12) and their corresponding probabilities. Thus155

Algorithm 2.1 called with a parameter set Ξm and a parameter set Ξ̃ such that Ĝβ[X ]⊂ Ξ̃⊂ Ξm give156

the same estimates V̂aRβ[X ] and ĈVaRβ[X ].157

As discussed in [3, p. 1418], we can also compute confidence intervals using the asymptotic158

results in [5, Sec. 2.1, 2.2]. Since we will use it in our computations, we note that the 100(1−α)%159

confidence interval (CI) for CVaRβ[X ] is160

(2.14)
[

ĈVaRβ[X ]− zα

κ̂β√
m
, ĈVaRβ[X ]+ zα

κ̂β√
m

]
,161

where zα = Φ−1(1−α/2), Φ is the c.d.f. of the standard normal variable, and κ̂β = ψ̂β/(1− β)162
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with163

(ψ̂β)
2 =

1
m

m

∑
j=1

IĜβ[X ]
(ξ( j))

(
X(ξ( j))− V̂aRβ[X ]

)2
−

(
1
m

m

∑
j=1

IĜβ[X ]
(ξ( j))

(
X(ξ( j))− V̂aRβ[X ]

))2

.164

165

3. Adaptive surrogate-based CVaRβ approximation. For our target application, FOM (2.2)166

is a large-scale system that arises from the discretization of a PDE. For given ξ the solution of (2.2)167

for y(ξ) is expensive and therefore sampling the QoI (2.1) for CVaRβ computations is expensive.168

In this section, we propose a method that combines adaptive ROM refinement with knowledge of169

the CVaRβ computation to generate efficient approximation of the CVaRβ of the QoI (2.1).170

We review ROM-based CVaRβ computation in subsection 3.1. In subsection 3.2 we propose171

our new method that adaptively refines surrogate models to achieve monotonically converging risk172

regions. Subsection 3.3 then presents our complete algorithm for adaptive surrogate-based CVaRβ173

approximation.174

3.1. Reduced-order models for CVaRβ computation. A ROM of (2.2) is a model of small175

dimension, i.e.,176

(3.1) Fk(yk(ξ),ξ) = 0 for almost all ξ ∈ Ξ,177

with Fk : RNk ×Ξ 7→ RNk , Nk� N, and a sk : RNk 7→ R such that178

(3.2) ξ 7→ sk(yk(ξ))179

is a good approximation of (2.1). We will provide a more detailed discussion of projection-based180

ROMs in subsection 4.1. For now, let Xk : Ξ→ R, k = 1, . . . , denote an approximation of the QoI181

X . We refer to Xk as a model of X . At this point it is not important that the evaluation of X requires182

the solution of a computationally expensive system (2.2)–(2.1), nor is it important how the models183

Xk are computed. However, we assume that we have an estimate for the errors between Xk and X ,184

namely185

(3.3) |Xk(ξ)−X(ξ)| ≤ εk(ξ) for almost all ξ ∈ Ξ, k = 1, . . . .186

We next show how to construct estimates of the risk region that satisfy (2.7) from approxi-187

mations Xk of X , and we derive approximations of VaRβ[X ] and CVaRβ[X ] based on Xk; for more188

information see our previous work in [3]. Recall the risk region of the QoI X from equation (2.6).189

The ε-risk region associated with Xk is defined as190

(3.4) Gk
β
=
{

ξ : Xk(ξ)+ εk(ξ)≥ VaRβ[Xk− εk]
}
.191

Note, that if the error εk is constant, then the translation equivariance of VaRβ implies VaRβ[Xk−192

εk] = VaRβ[Xk]− εk. Since193

Xk(ξ)+ εk(ξ)≥ X(ξ)≥ Xk(ξ)− εk(ξ)194

the monotonicity of VaRβ gives195

VaRβ[X ]≥ VaRβ[Xk− εk].196
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Hence Xk(ξ) + εk(ξ) ≥ X(ξ) ≥ VaRβ[X ] ≥ VaRβ[Xk − εk] for almost all ξ ∈ Gβ[X ]. Similarly,197

Xk(ξ)+ εk(ξ) ≥ Xk(ξ) ≥ VaRβ[Xk] ≥ VaRβ[Xk− εk] for almost all ξ ∈ Gβ[Xk]. The previous in-198

equalities imply199

(3.5) Gβ[X ]⊂Gk
β

and Gβ[Xk]⊂Gk
β
.200

Here and in the following we still use the set inclusion S1 ⊂ S2 if Pr
[
S1 \S2] = 0.201

We have shown in [3, Thm 3.3] that if (3.3) holds, then202

(3.6)
∣∣∣CVaRβ[X ]−CVaRβ[Xk]

∣∣∣≤ 1
1−β

∫
Gk

β

|X(ξ)−Xk(ξ)|ρ(ξ)dξ203

and204

(3.7)
∣∣∣CVaRβ[X ]−CVaRβ[Xk]

∣∣∣≤ (1+
1

1−β

)
ess sup

ξ∈Gk
β

εk(ξ).205

We note that under continuity conditions on the c.d.fs. of X and Xk, which often hold, the factor206

1+ 1/(1−β) on the right-hand side of (3.7) can typically be replaced by 1, see [3, Thm 3.3] for207

details. Moreover, the first inequality (3.6) appears in the proof of [3, Thm 3.3].208

We see from equations (3.6)–(3.7) that for the accurate estimation of CVaRβ[X ] with a surrogate209

model, we need a model Xk that is accurate in the ε-risk region Gk
β
. Moreover, applying (2.8) and210

(2.9) with X and Ĝ replaced by Xk and Gk
β

shows that we only need to evaluate Xk in the ε-risk211

region Gk
β

to evaluate CVaRβ[Xk].212

3.2. Improving CVaRβ computation with adaptive reduced-order models. What happens213

if CVaRβ[Xk] is not a good enough approximation of CVaRβ[X ]? In that case, we would like to214

generate a new model Xk+1, so that CVaRβ[Xk+1] is a better estimate of CVaRβ[X ] than CVaRβ[Xk],215

or at least that the upper bound (3.6) for the error is reduced. The upper bound (3.6) for the CVaRβ216

approximation error is non-increasing if the ε-risk region is non-expanding, Gk+1
β
⊂ Gk

β
, and the217

approximation error is non-increasing, εk+1(ξ)≤ εk(ξ) for ξ ∈Gk+1
β

, since then218

(3.8) ess sup
ξ∈Gk+1

β

εk+1(ξ)≤ ess sup
ξ∈Gk+1

β

εk(ξ)≤ ess sup
ξ∈Gk

β

εk(ξ).219

The CVaRβ approximation error is reduced, if Gk+1
β
⊂Gk

β
, Pr
[
Gk

β
\Gk+1

β

]
> 0, and εk+1(ξ)≤220

εk(ξ)−δk for ξ ∈Gk+1
β

and some δk > 0.221

In general, however, a model Xk+1 with a smaller error εk+1 < εk a.e. in Ξ alone does not222

guarantee that Gk+1
β
⊂Gk

β
as the following example shows.223

Example 3.1. Let X ≥ 0 be a non-negative random variable and consider the surrogate model224
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Xk = X + 1
k (−1)kX with error εk(ξ) = |X(ξ)−Xk(ξ)|= 1

k X . For k = 1, . . . the ε-risk regions are225

G2k−1
β

=
{

ξ : X2k−1 + ε2k−1 ≥ VaRβ [X2k−1− ε2k−1]
}

226

=

{
ξ : X(ξ)≥ VaRβ

[
X− 2

2k−1
X
]}

=

{
ξ : X(ξ)≥ 2k−3

2k−1
VaRβ[X ]

}
,227

G2k
β
=
{

ξ : X2k + ε2k ≥ VaRβ[X2k− ε2k]
}

228

=

{
ξ : X(ξ)+

1
k

X(ξ)≥ VaRβ[X ]

}
=

{
ξ : X(ξ)≥ k

k+1
VaRβ[X ]

}
.229

230

We have the inclusions231

G2k
β
⊂G2k−1

β
,232

since (2k−3)/(2k−1)< k/(k+1), but233

G2k
β
⊂G2k+1

β
,234

since (2(k+ 1)− 3)/(2(k+ 1)− 1) < k/(k+ 1). Thus, there is no monotonicity (in the sense of235

inclusion) of the ε-risk regions. Note, that the ε-risk regions are based on the models Xk. While the236

models Xk become more accurate, lack of monotonicity of the ε-risk regions is due to the fact that237

here the εk neighborhoods around the Xk are alternatingly below or above the true X .238

When does the use of a new model Xk+1 improve the approximation of CVaRβ[X ]? A sufficient239

condition for improvement is the monotonicity condition240

(3.9) Xk(ξ)+εk(ξ)≥Xk+1(ξ)+εk+1(ξ)≥X(ξ)≥Xk+1(ξ)−εk+1(ξ)≥Xk(ξ)−εk(ξ) a.e. in Ξ.241

In fact, monotonicity of VaRβ gives VaRβ[X ]≥VaRβ[Xk+1−εk+1]≥VaRβ[Xk−εk]. These inequal-242

ities and (3.9) yield243

Xk(ξ)+ εk(ξ)≥ Xk+1(ξ)+ εk+1(ξ)≥ X(ξ)≥ VaRβ[X ]244

≥ VaRβ[Xk+1− εk+1]≥ VaRβ[Xk− εk] a.e. in Gβ[X ],245246

and247

Xk(ξ)+ εk(ξ)≥ Xk+1(ξ)+ εk+1(ξ)≥ VaRβ[Xk+1− εk+1]≥ VaRβ[Xk− εk] a.e. in Gk
β
,248249

which imply250

(3.10) Gβ[X ]⊂Gk+1
β
⊂Gk

β
.251

Unfortunately, models Xk, k = 1, . . ., typically do not satisfy the monotonicity relations (3.9),252

as the simple Example 3.1 shows. However we can combine the models Xk, k = 1, . . ., into models253

X̃k, k = 1, . . ., that satisfy (3.9). We define these new models X̃k in the next lemma.254
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ADAPTIVE ROM CONSTRUCTION FOR CONDITIONAL VALUE-AT-RISK ESTIMATION 9

Lemma 3.2. If the models Xk and error functions εk satisfy (3.3), k = 1, . . ., then the models X̃k255

and corresponding error functions ε̃k defined by X̃1 = X1, ε̃1 = ε1 and256

X̃k+1 =
1
2

(
max

{
Xk+1− εk+1, X̃k− ε̃k

}
+min

{
Xk+1 + εk+1, X̃k + ε̃k

})
,(3.11a)257

ε̃k+1 =
1
2

(
min

{
Xk+1 + εk+1, X̃k + ε̃k

}
−max

{
Xk+1− εk+1, X̃k− ε̃k

})
(3.11b)258

259

for k = 1, . . ., satisfy the monotonicity relations (3.9).260

The model construction (3.11) is illustrated in Figure 1.261

Figure 1: Illustration of the model construction (3.11). The true function X is contained in the
intervals [X̃k− ε̃k, X̃k + ε̃k] and [Xk+1− εk+1,Xk+1 + εk+1]. While the second interval is smaller, it
is not contained in the first. The model (3.11) is constructed so that [X̃k+1− ε̃k+1, X̃k+1 + ε̃k+1]
includes the true model and is nested.

Proof. The proof is by induction. By assumption on X̃1 = X1 and ε̃1 = ε1 and satisfy (3.3).262

Now, suppose that (X̃1, ε̃1), . . . ,(X̃k, ε̃k) satisfy the monotonicity relations (3.9). Since (X̃k, ε̃k)263

and (Xk+1,εk+1) satisfy (3.3),264

max
{

Xk+1− εk+1, X̃k− ε̃k

}
≤ X ≤min

{
Xk+1 + εk+1, X̃k + ε̃k

}
.265

By construction of X̃k+1 and ε̃k+1,266

X̃k− ε̃k ≤max
{

Xk+1− εk+1, X̃k− ε̃k

}
= X̃k+1− ε̃k+1267

≤ X ≤ X̃k+1 + ε̃k+1 = min
{

Xk+1 + εk+1, X̃k + ε̃k

}
≤ X̃k + ε̃k,268

269

i.e., the monotonicity relations (3.9) are satisfied for (X̃1, ε̃1), . . . ,(X̃k+1, ε̃k+1).270

The error (3.11b) satisfies271

(3.12) ε̃k+1 ≤min{ε̃k,εk+1} a.e. in Ξ.272
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10 M. HEINKENSCHLOSS, B. KRAMER, T. TAKHTAGANOV

Let G̃k
β

be the ε-risk region (3.4) associated with X̃k, ε̃k. The estimate (3.12) implies that to achieve273

(3.13) ε̃k+1(ξ)< ε̃k(ξ) a.e. in G̃k
β

274

we only need to improve the model Xk+1 in the small ε-risk region G̃k
β
, not in the entire parameter275

region Ξ, i.e., we only need that276

(3.14) εk+1(ξ)≤ ε̃k(ξ)−δk a.e. in G̃k
β

277

for some δk > 0. We summarize the improvement result in the following theorem.278

Theorem 3.3. If X̃k, k = 1, . . ., are the models with corresponding error functions ε̃k, k = 1, . . .,279

defined in (3.11a), (3.11b), and G̃k
β
, k = 1, . . ., are the ε-risk regions (3.4) associated with X̃k, ε̃k,280

then281

(3.15)
∣∣∣CVaRβ[X ]−CVaRβ[X̃k]

∣∣∣≤ (1+
1

1−β

)
ess sup

ξ∈G̃k
β

ε̃k(ξ), k = 1,2, . . . ,282

and283

(3.16) Gβ[X ]⊂ G̃k+1
β
⊂ G̃k

β
, k = 1,2, . . . .284

Moverover, if εk+1(ξ)≤ ε̃k(ξ)−δk a.e. in G̃k
β

for some δk > 0, then285

(3.17) ess sup
ξ∈G̃k+1

β

ε̃k+1(ξ)≤ ess sup
ξ∈G̃k

β

ε̃k(ξ)−δk.286

Proof. Since the models X̃k, k = 1,2, . . ., satisfy the monotonicity relations (3.9), the error287

estimate (3.15) is just (3.7), see [3, Thm 3.3]. The inclusions (3.16) follow from the arguments288

used to derive (3.10). The error reduction (3.17) follows from (3.12)–(3.14) and (3.16).289

Having defined new models X̃k and errors ε̃k, we revisit Example 3.1. We show that for this290

example problem, the monotonicity of the ε-risk regions is now indeed satisfied.291

Example 3.4. Recall the setup from Example 3.1, where X ≥ 0 is a non-negative random vari-292

able and a surrogate model is Xk = X + 1
k (−1)kX with error εk(ξ) = |X(ξ)−Xk(ξ)|= 1

k X . We now293

construct X̃k, ε̃k following Lemma 3.2. We have294

X̃1 = X1 = X +1(−1)1X = 0, ε̃1 = ε1 = X ,295

and with X ≥ 0 and evaluating equations (3.11a)–(3.11b), we find that for this particular example,296

X̃k = X , ε̂k = 0 for k ≥ 2. Moreover, the first risk region is G̃1
β
=
{

ξ : X ≥ VaRβ[−X ]
}
= Ξ and297

the subsequent risk regions are G̃k
β
=
{

ξ : X(ξ)≥ VaRβ[X ]
}
= Gβ[X ], the true risk region of the298

full order model X , for k ≥ 2. Consequently,299

G̃1
β
⊃ G̃2

β
= G̃k

β
=Gβ[X ], k ≥ 2,300

i.e., the risk regions are shrinking monotonically and contain the true risk region, as guaranteed301

by Theorem 3.3. The fact that the second adjusted risk region is already identical to the true risk302

region of the FOM X is particular to this artificial example.303
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3.3. Algorithm for surrogate-based CVaRβ approximation. The previous results lead to304

the following Algorithm 3.1 that adaptively constructs models Xk based on estimates G̃k
β

of the305

risk region Gβ[X ]. As noted earlier, applying (2.8) and (2.9) with X and Ĝ replaced by X̃k and306

G̃k
β
⊃ Gβ[X̃k] shows that we only need to evaluate X̃k in the ε-risk region G̃k

β
⊂ G̃k−1

β
to evaluate307

CVaRβ[X̃k]. Furthermore, Xk+1 only needs to improve upon X̃k in the ε-risk region G̃k
β
, i.e., we308

only need (3.14). Since G̃k
β

tend to be small (in probability) subsets of the parameter space Ξ,309

the adaptive generation of the models by the previous algorithm can lead to large computational310

savings.311

Algorithm 3.1 Surrogate-based CVaRβ estimation.

Input: Desired error tolerance TOL, maximum number of iterations kmax, risk-level β ∈ (0,1).
Output: CVaRβ[X̃k] and ε̃G

k such that |CVaRβ[X̃k]−CVaRβ[X ]| ≤ ε̃G
k ≤ TOL or k = kmax.

1: Set k = 1 and generate model X̃1 = X1, ε̃1 = ε1 with (3.3).
2: Compute CVaRβ[X̃1] and εG

1 = ess sup
ξ∈G̃1

β

ε̃1(ξ).

3: while ε̃G
k > TOL and k < kmax do

4: Compute model Xk+1 and error function εk+1 with (3.3) and (3.14).
5: Compute model X̃k+1 and error function ε̃k+1 as in (3.11a) and (3.11b).
6: Compute VaRβ[X̃k+1], CVaRβ[X̃k+1], ε-risk region G̃k+1

β
, and error in ε-risk region

ε̃
G
k = ess sup

ξ∈G̃k+1
β

ε̃k+1(ξ).

7: Set k = k+1 and continue.
8: end while

Before we address several implementation details that are important for the realization of Al-312

gorithm 3.1 in combination with ROMs, we comment on the extension of our idea to estimation of313

probability of failure from a QoI X .314

Remark 3.5. There is a close relationship between probability of failure and the Value-at-Risk.315

If failure of a system is defined as X(ξ) ≥ X0, then the probability of failure is Pr
[
F[X ]

]
, where316

F[X ] := {ξ ∈ Ξ : X(ξ)≥ X0} is the failure region. If (3.3) holds and Xk(ξ)− εk(ξ)≥ X0, then317

X(ξ)≥ Xk(ξ)− εk(ξ)≥ X0.318

Similarly, if ξ ∈ F[X ], then319

εk(ξ)+Xk(ξ)≥ X(ξ)≥ X0.320

Hence, the failure region F[X ] can be estimated as321

{ξ ∈ Ξ : Xk(ξ)− εk(ξ)≥ X0} ⊂ F[X ]⊂ {ξ ∈ Ξ : Xk(ξ)+ εk(ξ)≥ X0} .322

This can be used in the estimation of failure probability, as e.g., in [1]. Since the models X̃k and323
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12 M. HEINKENSCHLOSS, B. KRAMER, T. TAKHTAGANOV

corresponding error functions ε̃k satisfy the monotonicity relations (3.9), we have that324 {
ξ ∈ Ξ : X̃k(ξ)− ε̃k(ξ)≥ X0

}
⊂
{

ξ ∈ Ξ : X̃k+1(ξ)− ε̃k+1(ξ)≥ X0

}
⊂ F[X ]325

F[X ]⊂
{

ξ ∈ Ξ : X̃k+1(ξ)+ ε̃k+1(ξ)≥ X0

}
⊂
{

ξ ∈ Ξ : X̃k(ξ)+ ε̃k(ξ)≥ X0

}
.326

327

Thus, the models X̃k and error bounds ε̃k can be used for failure probabilty estimation as well, and328

yield monotonely converging failure regions.329

4. Implementation. This section discusses an implementation of Algorithm 3.1 to estimate330

the CVaRβ of a QoI defined via (2.3) and a linear version of the state equation (2.2). The imple-331

mentation uses projection-based ROMs and sampling-based estimation of VaRβ and CVaRβ for the332

ROMs. We begin by reviewing the basic form of projection-based ROMs and error estimates in333

subsection 4.1. The standard greedy sampling strategy and differences with our proposed adap-334

tive sampling strategy are discussed in subsection 4.2. The combination of ROM adaptation and335

sampling-based CVaRβ computation is then presented in subsection 4.3.336

4.1. Error estimation for projection-based ROMs. We summarize results on error estimation337

for projection-based ROMs for linear parametric systems. These results are by now standard and338

can be found, e.g., [9, 4, 15, 2]. Given A(ξ)∈RN×N , b(ξ)∈Rn, parameters ξ∈ Ξ, and s : RN→R,339

we consider the FOM340

(4.1) A(ξ)y(ξ) = b(ξ) for ξ ∈ Ξ,341

and corresponding QoI342

(4.2) X(ξ) = s(y(ξ)) ∈ R.343

This fits the framework of Section 2.1 with F(y,ξ) = A(ξ)y−b(ξ). We assume that344

(4.3) ‖A(ξ)‖ ≤ γ, ‖A(ξ)−1‖ ≤ α
−1,345

We use α−1 to denote the upper bound for the inverse, since this notation is closer to what is used,346

e.g., in [9, 4, 15, 2], where (4.1) arises from the discretization of an elliptic PDE and α is related to347

coercivity constants of the PDE.348

The ROM is specified by a matrix Vk ∈ RN×Nk of rank Nk, and is given by349

(4.4) V T
k A(ξ)Vkyk(ξ) =V T

k b(ξ) for ξ ∈ Ξ,350

and corresponding QoI351

(4.5) Xk(ξ) = s(Vkyk(ξ)) ∈ R.352

We assume that the matrix Vk is such that (4.4) has a unique solution for all ξ ∈ Ξ. To simplify353

the presentation we also assume that the computation of quantities like V T
k A(ξ)Vk, A(ξ)Vk, and354

A(ξ)TVk for ξ ∈ Ξ is computationally inexpensive, which is the case if A(ξ) and b(ξ) admit an355

affine parametric dependence, see, e.g, [2, Sec. 2.3.5], [4, Sec. 3.3], or [15, Sec. 3.4].356
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The equations (4.1) and (4.4) imply the basic error estimate for the state357

(4.6) ‖y(ξ)−Vkyk(ξ)‖ ≤ α
−1 ‖A(ξ)Vkyk(ξ)−b(ξ)‖ for ξ ∈ Ξ.358

If s is Lipschitz continuous, i.e., |s(y)− s(z)| ≤ L‖y− z‖ for all y,z ∈ RN , then the basic error359

estimate360

(4.7) |X(ξ)−Xk(ξ)| ≤ εk(ξ) :=
L
α
‖A(ξ)Vkyk(ξ)−b(ξ)‖ for ξ ∈ Ξ361

holds for the QoI. This is the realization of the bound (3.3). Improved error estimates for linear362

QoIs can be obtained based on solutions of a dual or adjoint equation, see, e.g, [2, Sec. 2.3.4], [4,363

Sec. 4], [9], or [15, Sec. 3.6].364

4.2. Greedy ROM construction and estimation of CVaRβ. In a standard greedy algorithm,365

the ROM specified by Vk is updated by computing the FOM solution (4.1) at ξ(k) = argmaxξ∈Ξ εk(ξ)366

and setting Vk+1 = [Vk,y(ξ(k))]. In practice, one often does not simply add the FOM solution y(ξ(k))367

as a column to Vk, but instead computes an orthonormal basis (see, e.g., [4, Sec. 3.2.2], or [15,368

Chapter 7]).369

In our recent work [3] we have used this greedy procedure and the resulting ROMs without370

adjustment. That is we have used X̃k = Xk and ε̃k = εk, which implies G̃k
β
= Gk

β
and ε̃G

k = εG
k .371

While for each ROM a CVaRβ error bound holds, this approach has two deficiencies. First, as372

discussed in subsection 3.2 the ROM CVaRβ estimation error is not guaranteed to decrease as we373

go from ROM Xk to ROM Xk+1. Second, the standard greedy procedure seeks the maximum of374

εk(ξ) over the entire parameter space. Even though computation of εk(ξ) only requires ROM (4.4)375

solutions and FOM residual evaluations, these evaluations at a large number of points ξ ∈ Ξ is still376

expensive. Moreover, the ROM error over ε-risk region determines the ROM CVaRβ estimation377

error, see Theorem 3.3, limiting the greedy approach to this smaller set tends to decrease this error378

faster.379

Our adaptive approach corrects these deficiencies: It uses the modified reduced order models380

X̃k and error bounds ε̃k introduced in Lemma 3.2 to guarantee monotonicity of the resulting ROM381

CVaRβ estimation error, and it selects FOM snapshots by maximizing the current ROM error bound382

ε̃k only over the small ε-risk region G̃k
β
. The details are specified in the next section.383

4.3. Adaptive ROM construction and estimation of CVaRβ. The sampling-based version of384

Algorithm 3.1 is presented in Algorithm 4.1 below. In each step k of the algorithm a projection385

based ROM (4.4) of size Nk×Nk is computed, as well as the corresponding ROM QoI (4.5). To386

improve the ROM snapshots of the FOM are computed using the greedy approach limited to the387

current estimate G̃k
β

of the risk region. As (3.13) and (3.14) show, we only need to improve Xk+1388

in G̃k
β
. in order to improve the estimate of CVaRβ. Since we work with a discrete sample space389

Ξm, (3.13) implies (3.14) with some δk > 0. Furthermore, we can easily check whether the condi-390

tion max
ξ∈G̃β

k
ε̃k+1 < ε̃G

k holds, which is sufficient for ε̃G
k+1 to be less than ε̃G

k , and is weaker than391

condition (3.13). We recommend to use this last condition in practice because it can sometimes be392

achieved with fewer FOM snapshots than are needed to enforce (3.13). In Algorithm 4.1 we limit393

the number of snapshots that are added in each iteration by `max. Even though the (possibly pes-394

simistic) error bound may not be reduced, the actual error may reduce. Finally, in Algorithm 4.1395
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we simply add the FOM solution y(ξ(`)) to the current ROM basis, but in practice we compute396

orthogonal bases.397

Algorithm 4.1 Adaptive construction of ROMs for CVaRβ estimation.

Input: Linear FOM (4.1) with (4.3) and Lipschitz continuous QoI (4.2). Parameter samples Ξm =
{ξ(1), . . . ,ξ(m)} with probabilities p(1), . . . , p(m). Risk level β ∈ (0,1). Tolerance TOL.

Output: ĈVaRβ[X̃k] and ε̃G
k such that |ĈVaRβ[X̃k]− ĈVaRβ[X ]| ≤ ε̃G

k ≤ TOL or k = kmax.
1: Set k = 1 and generate V1 ∈ RN×N1 and ROM (4.4), X̃1(ξ) = X1(ξ) = (V T

1 c(ξ))T y1(ξ) with
error function ε̃1(ξ) = ε1(ξ) given by (4.7).

2: Set G̃0
β
= Ξm.

3: while k < kmax do
4: Call Algorithm 2.1 with Ξm = G̃k−1

β
, corresponding probabilities p( j), and X = X̃k to com-

pute V̂aRβ[X̃k], and ĈVaRβ[X̃k].
5: Call Algorithm 2.1 with Ξm = G̃k−1

β
, corresponding probabilities p( j), and X = X̃k− ε̃k to

compute V̂aRβ[X̃k− ε̃k].
6: Estimate G̃k

β
= {ξ( j) ∈ G̃k−1

β
: X̃k(ξ

( j))+ ε̃k(ξ
( j))≥ V̂aRβ[X̃k− ε̃k]} and set

ε̃G
k = max{ε̃k(ξ

( j)) : ξ( j) ∈ G̃k
β
}.

7: if ε̃G
k < TOL then

8: break
9: end if

10: Set `= 1 (number of snapshots to add) and Vk+1 =Vk
11: while ` < `max do
12: Compute the FOM solution y(ξ(`)) at ξ(`) = argmax

ξ∈G̃k
β

ε̃k(ξ).

13: Update ROM matrix Vk+1← [Vk+1,y(ξ(`))] and set Nk+1 = Nk + `.
14: Construct the new ROM of size Nk+1 and evaluate Xk+1(ξ

( j)) and εk+1(ξ
( j)) for ξ( j) ∈ G̃k

β
.

15: Compute model X̃k+1(ξ
( j)) and error function ε̃k+1(ξ

( j)) as in (3.11a) and (3.11b) for
ξ( j) ∈ G̃k

β
.

16: if ε̃k+1(ξ
( j))< ε̃k(ξ

( j)) for ξ( j) ∈ G̃k
β

(
or max ε̃k+1(ξ)< ε̃G

k for ξ( j) ∈ G̃k
β

)
then

17: break
18: end if
19: Set `= `+1.
20: end while
21: Set k = k+1 and continue.
22: end while
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5. Numerical results. We now apply our Algorithm 4.1 to the so-called thermal fin problem398

with varying numbers of random variables. We describe the test problem in subsection 5.1 and399

discuss the format of our reported results in subsection 5.2. The results for the case of two, three,400

and six random variables are shown in ?? to ??.401

5.1. Thermal fin model. We consider a thermal fin with fixed geometry as shown in Fig-402

ure 2, consisting of a vertical post with horizontal fins attached. We briefly review the problem403

here and refer to [10, 14] for more details. In particular, [14, Sec. 3] discusses the efficiency404

of the derived reduced-basis error bounds for the thermal fin problem. The thermal fin consists405

of four horizontal subfins with width L = 2.5, thickness t = 0.25, as well as a fin post with unit406

width and height four. The fin is parametrized by the fin conductivities ki, i = 1, . . . ,4 and post407

conductivity k0, as well as the Biot number Bi which is a nondimensionalized heat transfer coef-408

ficient for thermal transfer from the fins to the surrounding air. Thus, the system parameters are409

[k0, k1,k2, k3, k4,Bi] ∈ [0.1, 1]× [0.1, 2]4× [0.01, 0.1]. In our experiments some or all of these410

parameters play the role of the random variables ξ, which are uniformly distributed in the parame-411

ter space above. The system is governed by an elliptic PDE in two spatial dimensions x = [x1,x2]
T412

whose solution is the temperature field = y(x,ξ). We consider cases when only k0 and Bi are ran-413

dom (subsection 5.3), k0, k1 and Bi are random (subsection 5.4), and finally, when all six parameters414

are random (subsection 5.5).

Figure 2: Thermal fin geometry and model parameters.

415
The fin conducts heat away from the root Γroot, so the lower the root temperature, the more

effective the thermal fin. Thus, as a QoI we consider the average temperature at the root, i.e.,

X(ξ) =
∫

Γroot

y(x,ξ)dx.

The FOM is a finite element discretization with N = 4,760 degrees of freedom. The ROM416

are reduced-basis (RB) approximations yk, see [14] for details of RB methods for the thermal417

fin problem. The ROM-based estimates are compared to a FOM-sampling-based estimation of418

CVaRβ[X ] using Algorithm 2.1.419

We consider the problem with two random variables, three random variables, and six random420

variables, as specified in Sections 5.3–5.5 below. The CVaRβ estimates and corresponding confi-421
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dence interval (CI) widths computed with several samples sizes |Ξm| using the FOM are shown in422

Table 1.423

Table 1: CVaRβ estimates for β = 0.99 and corresponding confidence interval (CI) widths com-
puted with several samples sizes |Ξm|. For |Ξm|= 5,000 samples the CI widths are less than 5% of
the CVaR estimates

ĈVaRβ Width CI |Ξm|
2 RV 12.404 0.437 5,000
2 RV 11.956 0.326 10,000
2 RV 11.984 0.232 20,000
3 RV 10.379 0.405 5,000
3 RV 10.187 0.274 10,000
3 RV 10.546 0.194 20,000
6 RV 10.435 0.421 5,000
6 RV 10.510 0.296 10,000
6 RV 10.419 0.189 20,000

Since the CI widths are less than 5% of the CVaR estimates computed with 5,000 samples we424

use |Ξm|= 5,000 samples in the following computations.425

Since the ROM needs to approximate the FOM on these sets of samples, we use them as426

training sets to construct the ROMs. The thermal fin model and the RB ROM fits exactly into the427

framework of subsection 4.1. We use the error bound (4.7) in the adaptive CVaRβ approximation428

below. The risk level β is set to429

β = 0.99.430

In the following sections we report the numerical results obtained with the adaptive Algo-431

rithm 4.1 and with the greedy approach outlined in subsection 4.2. The latter corresponds to Algo-432

rithm 4.1 with X̃k = Xk, ε̃k = εk, G̃k
β
=Gk

β
, and ε̃G

k = εG
k . Moreover, in the latter case, in step 12 we433

compute the FOM solution y(ξ(`)) at ξ(`) = argmaxξ∈Ξm
εk(ξ) to update the ROM Xk. In steps 4 and434

5 we call Algorithm 2.1 with the full set Ξm of parameters. Since computation of argmaxξ∈Ξm
εk(ξ)435

in step 12 already requires computation of Xk and εk at all parameters in Ξm, this modification of436

steps 4 and 5 is insignificant.437

5.2. Overview of reported data. We report the results of the CVaRβ estimation using the438

adaptive and the greedy approach in Table 2–Table 7 in ??–?? below. Each table contains the same439

information, which we discuss for convenience here:440

• ĈVaRβ reports the sampling-based CVaRβ estimates for the FOM or the kth ROM,441

• ‘Width CI’ is the width of the CI (2.14) of the sampling-based CVaRβ estimate using the442

FOM or the kth ROM,443

• ‘Abs error’ is |ĈVaRβ[X ]− ĈVaRβ[Xk]|, i.e., the error between estimates with the FOM and444

the kth ROM (via adaptive or greedy approach),445

• εG
k and ε̃G

k are the CVaRβ error bounds computed using the ROM Xk / modified ROM X̃k,446
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• |Gk
β
| and |G̃k

β
| denotes the percentage of ‘volume’ measured in probability occupied by the447

ε-risk region for the ROM Xk / X̃k within the parameter region Ξ,448

• Nk is the size of the k-th ROM,449

• |Ξm| is the number of samples at which the current ROM has to be evaluated.450

5.3. Results for two random variables. We start with a problem with two random variables451

ξ = (k0,Bi) uniformly distributed in Ξ = [0.1,1]× [0.01,0.1]. Having two random variables allows452

us to visualize both the risk regions and the error estimates. We fix k1 = k2 = k3 = k4 = 0.1.453

(a) Risk region of FOM, Gβ[X ] (b) ε-risk region of ROM 1, G̃β

1 (c) ε-risk region of ROM 4, G̃β

4

Figure 3: Risk regions shown in light yellow for thermal fin problem with two random variables
and β = 0.99. The ε-risk regions for the ROMs are designed to contain the FOM risk region. The
smaller the ROM error, the closer the ε-risk regions to the true FOM risk region.

The reference value ĈVaRβ[X ] is estimated with m = 5,000 Monte Carlo samples in Ξ. These454

samples, Ξm, also serve as input for Algorithm 4.1 with corresponding probabilities p( j) ≡ 1/m,455

j = 1, . . . ,m. The risk region Ĝβ[X ] is shown light yellow in Figure 3a. The ε-risk regions G̃k
β

for456

the ROMs are designed to contain the FOM risk region, and are the closer to the FOM risk region457

Ĝβ[X ] the smaller the ROM error is.458

The error in the FOM estimate ĈVaRβ[X ] is quantified by the confidence interval (CI) width459

(2.14). We want a ROM estimate of the same quality. Therefore, we apply Algorithm 4.1 with460

tolerance461

TOL = 10−1× (CI width),462

i.e., 10% of the current estimate of the width of the confidence interval for ĈVaRβ[X ].463

Initially, Ξm is the set of 5,000 Monte Carlo samples. The initial ROM basis V1 is generated464

with N1 = 1 snapshot of the FOM at a randomly selected ξ ∈ Ξm. The error function ε̃1(ξ) = ε1(ξ)465

evaluated at the samples is plotted in Figure 4a. To construct the next ROM we consider only466

the samples and the corresponding error values in the risk region G̃1
β

plotted in Figure 3b. More467

generally, in step k we add a snapshot taken at a sample corresponding to the largest value of468

ε̃k(ξ) in G̃k
β
. For the newly constructed ROM X̃k+1 and its error function ε̃k+1 we check whether469

ε̃G
k+1 < ε̃G

k . If this is not the case we add another FOM snapshot to the basis Vk+1. In the current470

example we found that ε̃G
k+1 < ε̃G

k is always satisfied after the addition of a single FOM snapshot.471
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(a) Error of ROM 1, ε̃1(ξ)
(both)

(b) Error of ROM 2, ε̃2(ξ)
(both)

(c) Error of ROM 3, ε̃3(ξ)
(adaptive)

(d) Error of ROM 3, ε3(ξ)
(greedy)

(e) Error of ROM 4, ε̃4(ξ)
(adaptive)

(f) Error of ROM 4, ε4(ξ)
(greedy)

Figure 4: Error functions ε̃k(ξ) for the ROMs obtained at different steps of Algorithm 4.1 and error
functions ε(ξ) obtained with a greedy approach evaluated at samples. Note the different magnitudes
on the color bars. Both approaches reduce the error, but error reduction for the adaptive approach
is focused more on the risk region.
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Table 2: Results for the adaptive algorithm for the thermal fin problem with two random variables
and β = 0.99. The sizes of the ε-risk region |G̃k

β
| and of the error bound ε̃G

k decrease monotonically.
The current ROM needs to be evaluated at a decreasing number |Ξm| of samples, which approaches
1% = (1−β)∗100% of the original number of samples.

ĈVaRβ Width CI Abs error ε̃G
k |G̃k

β
| Nk |Ξm|

FOM 12.404 0.437 — — — — 5,000
ROM1 11.381 0.354 1.0238 3.3645 3.60 1 5,000
ROM2 11.486 0.360 0.9185 1.6908 2.44 2 180
ROM3 12.360 0.432 0.0445 0.1461 1.12 3 122
ROM4 12.401 0.438 0.0032 0.0191 1.02 4 56

In our adaptive framework, reported in Table 2, we only need to evaluate X̃k and ε̃k in the472

current ε-risk region Ξm = G̃k
β
. For example, to build X̃2 we consider 8,128 (and not the full473

5,000) samples as candidates for the snapshot selection. These are the only samples that we use in474

Algorithm 2.1 to evaluate VaRβ[X̃2], CVaRβ[X̃2], and G̃2
β
. As we continue, the number of samples475

at which we need to evaluate the current ROM gets closer to 1% = (1−β) ∗ 100% of the size of476

the initial set Ξm.477

We contrast the results obtained with adaptive Algorithm 4.1 to those obtained with the greedy478

approach described in subsection 4.2 and at the end of subsection 5.1. We start with the same initial479

snapshot, i.e., the initial ROM X1 is the same. The results for the greedy approach are reported in480

Table 3. As mentioned before, in each iteration we add a snapshot corresponding to the largest481

value of εk(ξ) at all original samples. Thus all ROMs Xk and error bounds εk need to be evaluated482

at all |Ξm| = 5,000 samples. Although there is no guarantee, in this case the greedy approach483

also happens to monotonically decrease the size of the ε-risk region Gk
β

and the error bound εG
k .484

However, the error does not decrease as fast as with the adaptive approach.485

Table 3: Results for the greedy approach for the thermal fin problem with two random variables
and β = 0.99. Although this cannot be guaranteed, in this case the size of the ε-risk region |Gk

β
|

and the error bound εG
k happen to decrease monotonically. In each step the current ROM has to be

evaluated at all |Ξm|= 5,000 samples.

ĈVaRβ Width CI Abs error εG
k |Gk

β
| Nk |Ξm|

FOM 12.404 0.437 — — — — 5,000
ROM1 11.381 0.354 1.0238 3.3645 3.60 1 5,000
ROM2 11.644 0.353 0.7605 1.1809 2.34 2 5,000
ROM3 11.796 0.363 0.6081 1.0494 1.76 3 5,000
ROM4 12.386 0.437 0.0188 0.0680 1.06 4 5,000
ROM5 12.387 0.436 0.0170 0.0666 1.04 5 5,000
ROM6 12.403 0.438 0.0016 0.0057 1.02 6 5,000
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(a) Adaptive selection (b) Greedy selection

Figure 5: Snapshots for ROM construction generated by the adaptive and by the greedy approach
for the thermal fin problem with two random variables and β = 0.99. The adaptive approach tends
to select snapshots near the risk region.

The snapshots selected by Algorithm 4.1 and by the greedy approach are shown in Figure 5.486

Our proposed adaptive algorithm selects FOM snapshots in the current ε-risk region, which is487

close to the original risk region. In contrast, the standard greedy algorithm selects FOM snapshots488

in the original parameter region. For example, the third snapshot is far outside the risk region, see489

Figure 5b. In this example, selecting the next snapshot globally in the entire parameter region still490

gives a good reduction of the ROM error in the ε-risk region εG
k . The greedy algorithm only needs491

two additional steps to reach the CVaRβ tolerance, compared to our adaptive algorithms. A big492

difference is in the expense of ROM evaluations, see the last columns of Table 2 and Table 3.493

5.4. Results for three random variables. Now we consider the problem with k1 = k2 =494

k3 = k4 and three random variables ξ = (k0,k1,Bi) uniformly distributed in Ξ = [0.1,1]× [0.1,2]×495

[0.01,0.1]. Again, we use 5,000 Monte Carlo samples.496

The results for the adaptive approach and the greedy approach are presented in Table 4 and497

Table 5, respectively. The format of these tables is identical to that of Table 2 and Table 3, respec-498

tively.499

The snapshots selected by both approaches are shown in Figure 6. We start with a randomly se-500

lected initial sample, which is chosen to be the same for both approaches (sample 1 in Figure 6a and501

Figure 6b). The second sample happens to be the same in both the adaptive and greedy approach.502

Due to our suggested ROM modification (3.11a), ROM X̃2 in the adaptive case has a smaller bound503

ε̃G
2 than ROM X2 in the greedy case, εG

2 . The third snapshot is different for the two approaches.504

However, the third snapshot selected by the greedy approach happens to lie in the ε-risk region G2
β

505

of ROM X2. (Of course, the third snapshot selected by the adaptive approach will always be chosen506

in ε-risk region G̃2
β

of ROM X̃2.) In this case, the resulting ROM X̃3 in the adaptive case has a larger507

bound ε̃G
3 than the bound εG

3 for ROM X3 in the greedy case. This can happen, since we compute508

the next snapshot based on an error bound of the current model, and not based on the error of the509
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Table 4: Results for adaptive algorithm for the thermal fin problem with three random variables
and β = 0.99.

ĈVaRβ Width CI Abs error ε̃G
k |G̃k

β
| Nk |Ξm|

FOM 10.379 0.405 — — — — 5,000
ROM1 8.292 0.477 2.0870 30.3903 19.88 1 5,000
ROM2 10.008 0.449 0.3718 10.1849 5.46 2 994
ROM3 10.281 0.423 0.0985 3.5377 2.00 3 273
ROM4 10.326 0.413 0.0534 0.2997 1.18 4 100
ROM5 10.357 0.411 0.0225 0.1305 1.08 5 59
ROM6 10.376 0.405 0.0035 0.0429 1.02 6 54
ROM7 10.378 0.405 0.0009 0.0140 1.02 7 51

Table 5: Results for the greedy approach for the thermal fin problem with three random variables
and β = 0.99.

ĈVaRβ Width CI Abs error εG
k |Gk

β
| Nk |Ξm|

FOM 10.379 0.405 — — — — 5,000
ROM1 8.292 0.477 2.0870 30.3903 19.88 1 5,000
ROM2 10.008 0.449 0.3718 11.1808 5.82 2 5,000
ROM3 10.294 0.418 0.0852 3.5377 2.00 3 5,000
ROM4 10.326 0.413 0.0533 0.2997 1.18 4 5,000
ROM5 10.362 0.409 0.0174 0.1792 1.08 5 5,000
ROM6 10.366 0.409 0.0137 0.0806 1.06 6 5,000
ROM7 10.368 0.409 0.0114 0.0815 1.08 7 5,000
ROM8 10.378 0.405 0.0010 0.0087 1.02 8 5,000

new model. In the majority of cases, however, the error bound ε̃G
k for the ROM constructed with510

the adaptive approach is smaller than the error bound εG
k for the ROM constructed with the greedy511

approach.512

By construction, the error bound ε̃G
k in the adaptive approach decreases monotonically. This513

may not be true for the greedy approach. In fact, as can be seen from Table 5, between ROM 6 and514

ROM 7 we observe an increase in the estimate of εG
k .515

A major strength of our proposed adaptive method is that the ROMs X̃k and their error bounds516

ε̃k have to be evaluated only at a small number |Ξm| of the total samples, whereas in the greedy517

approach all ROMs and they error bounds have to be evaluated at all 5,000 samples. This leads to518

significant computational savings for the adaptive ROM construction and CVaRβ estimation.519

5.5. Results for six random variables. Finally, we let all six parameters to be random, ξ =520

(k0,k1,k2,k3,k4,Bi) uniformly distributed in Ξ = [0.1,1]× [0.1,2]4× [0.01,0.1]. Again, we use521

5,000 Monte Carlo samples.522

Results for β = 0.99 are presented in Table 6 and Table 7. We omit some of the rows in both523
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Figure 6: Snapshots for ROM construction for the thermal fin problem with three random variables
and β = 0.99.

tables in the interest of saving space. In the greedy case we once more observe an increase in εG
k524

between subsequent iterations (see rows corresponding to ROM 10 and ROM 11 in Table 7).525

Table 6: Results for the adaptive algorithm for the thermal fin problem with six random variables
and β = 0.99.

ĈVaRβ Width CI Abs error ε̃G
k |G̃k

β
| Nk |Ξm|

FOM 10.435 0.421 — — — — 5,000
ROM1 9.386 0.388 1.0492 14.5163 15.08 1 5,000
ROM2 9.872 0.449 0.5630 11.6548 7.98 2 754
ROM3 10.201 0.403 0.2335 2.6354 2.42 3 399
ROM4 10.310 0.408 0.1249 0.7235 1.42 4 121
ROM5 10.363 0.416 0.0717 0.3908 1.34 5 71
ROM6 10.424 0.420 0.0110 0.2941 1.14 6 67
ROM7 10.430 0.421 0.0044 0.1314 1.02 7 57
ROM8 10.432 0.421 0.0026 0.0557 1.02 8 51
ROM9 10.433 0.421 0.0019 0.0285 1.02 9 51

6. Conclusions. We have presented an extension of our recent work [3] that systematically526

and efficiently improves a ROM to obtain a better ROM-based CVaR estimate. A key ingredient to527

make efficient use of ROM, is the structure of CVaR, which only depends on samples in a small, but528

a-priori unknown region of the parameter space. ROMs are used to approximate this region, and529

new ROMs only need to be better than the previous ROM in these approximate regions. However,530

to guarantee that this approach monotonically improves the CVaR estimate, we had to introduce a531

new way to combine previously constructed ROMs into new adaptive ROMs. We have provided532
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Table 7: Results for the greedy procedure for the thermal fin problem with six random variables
and β = 0.99.

ĈVaRβ Width CI Abs error εG
k |Gk

β
| Nk |Ξm|

FOM 10.435 0.421 — — — — 5,000
ROM1 9.386 0.388 1.0492 14.5163 15.08 1 5,000
ROM2 9.872 0.449 0.5623 12.4641 8.42 2 5,000
ROM3 10.206 0.401 0.2292 2.6354 2.48 3 5,000
ROM4 10.271 0.403 0.1634 1.9756 1.88 4 5,000
ROM5 10.349 0.413 0.0854 1.5134 1.68 5 5,000
ROM6 10.385 0.419 0.0496 0.8382 1.34 6 5,000
ROM7 10.398 0.421 0.0369 0.8645 1.32 7 5,000
ROM8 10.420 0.423 0.0144 0.2083 1.14 8 5,000
ROM9 10.421 0.423 0.0136 0.1854 1.12 9 5,000
ROM10 10.430 0.422 0.0052 0.0683 1.08 10 5,000
ROM11 10.430 0.422 0.0046 0.0680 1.08 11 5,000
ROM12 10.430 0.422 0.0043 0.0616 1.08 12 5,000
ROM13 10.431 0.422 0.0041 0.0655 1.06 13 5,000
ROM14 10.432 0.422 0.0032 0.0556 1.08 14 5,000
ROM15 10.433 0.422 0.0017 0.0266 1.06 15 5,000

error estimates, and demonstrated the benefits of our approach on a numerical example for the533

CVaR estimation of a QoI governed by an elliptic differential equation.534

Our approach requires the construction of ROMs with error bounds. In many examples it535

is difficult to find error bounds, and instead one may only have asymptotic bounds or estimates.536

Extension of our approach to such cases would expand the rigorous and systematic use of ROMs537

for CVaR estimation.538
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